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Abstract. The optimal feedback control of nonlinear process is attacked in this pa-
per. The solution of this problem is numerically computed using a Continuous Piece-
wise Linear (CPWL) approximation of the Ordinary Differential Equations (ODEs)
system which describes the dynamics of the plant to control. In order to obtain this
solution, the optimal regulation problem of an affine system is obtained. A numerical
simulation example of a nonlinear chemical reactor is presented to shown the quality
of the obtained response.
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1 Introduction

In this paper, let us consider the optimal control problem of a nonlinear system, given
as:

ẋ(t) = f(x(t), u(t)), (1.1)

y(t) = h(x(t), u(t)), (1.2)

where x ∈ ℜn, u ∈ ℜm, y ∈ ℜm and f(x, u) : ℜn+m → ℜn and h(x, u) : ℜn+m → ℜm are
continuous functions.
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The control objective is to move the system from some initial condition (u(0), x(0))
to an stationary point (us, xs) minimizing the following penalty function,

min
u(t)

∫ tf

t=0

[

(x(t) − xs)
T R1(x(t) − xs) + (u(t) − us)

T R2(u(t) − us)
]

dt +

(x(tf ) − xs)
T P1(x(tf ) − xs). (1.3)

where R1 and P1 are positive semi-definite matrices, and R2 is a definite positive matrix.
This optimal control problem could be solved using Pontryagin’s maximum principle

(Pontryagin et al., 1962; Bertsekas, 2005) or by solving the Hamilton-Jacobi-Bellman
equation. In booth cases, the solution involves the integration of a system of ordinary
differential equations subject to two-point boundary conditions. The drawback with
this ideal solution is its numerical complexity, which in many cases precludes its use on
practical situations.

If this problem is constrained to linear systems there is a close solution that could be
written as a feedback control (Kwakernaak and Sivan, 1972; Anderson and Moore, 1989).
Some results present solutions for this problem for some types of non linear models, for
example in the case of bilinear systems (Cebuhar and Costanza, 1984; Costanza and
Neuman, 2006).

In this paper, we propose an alternative approach in the continuous time domain.
To perform it, a Continuous Piecewise Linear (CPWL) approximation of the nonlinear
model of the system is used. Then, the solution of the optimal control problem is
obtained.

The paper is organized as follow. In Section 2 the proposed solution for the Optimal
Control Problem is presented. In Section 3 a simulation example is developed to show
the numerical quality of the proposed method. The paper ends in Section 3 with some
conclusions.

2 Optimal control solution

In this section we will consider an approximated solution for the optimal control problem
(1.3) subject to the system model (1.1-1.2) . To obtain this solution, the nonlinear
system is first approximated by a continuous piecewise linear system, then the optimal
control solution of this approximation is computed. We will note that this solution is an
extension of the optimal control of linear systems to affine systems.

First, let us consider the CPWL approximation for the state-equation (1.1). Let the
sets X ⊂ ℜn and u ⊂ ℜm be domain of the x and u variables, respectively, and consider
the set

ℵ =
{

[xT , uT ]T : x ∈ X, u ∈ U
}

(2.1)

on which we want to approximate the given system. Consider also the simplicial partition
(Julián et al., 1999) of the set ℵ such that

ℵ =
r

⋃

i=1

ℵ<i>, (2.2)
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where ℵ<i> is the “i-th partition” of the set ℵ and r being the number of simplices
considered.

Let us note as f<i>
PWL the CPWL approximation of the vectorial function f on each

simplex. Then, for [xT , uT ]T ∈ ℵ<i> and i = 1, · · · , r, the CPWL system takes the form
(Julián et al., 1999)

ẋ(t) = f<i>
PWL(x) = A<i>x(t) + B<i>u(t) + C<i>, (2.3)

where the superscript < i > identifies the sector of the partition where are the variables.
Note that the system model depends on the simplices where it is evolving. Then, in
order to know A<i>, B<i> and C<i>, first it is necessary to know the profiles x(t) and
u(t). This fact will complicate the solution of the optimal control problem because it
requires the cross points from one simplex to the next one.

From the comparison of the CPWL model (2.3) with a classical linear approximation,
it is clear that the difference between them is the term C<i>. This term is why it is
not possible to use the classical linear solution and it is necessary to develop an optimal
control solution for this application.

Now, if we consider that the evolution of the system is constrained in the i-th simplex,
the optimal solution of this problem is (Bertsekas, 2005)

uo(t) = −R−1
2 (B<i>)T p(t) + us (2.4)

and

ṗ(t) = −(A<i>)T p(t) − R1(x
o(t) − xs). (2.5)

Then, the optimal behavior of the system (xo(t)) is given by the following system,
[

ẋo(t)
ṗ(t)

]

= Ã

[

xo(t)
p(t)

]

+ B̃ (2.6)

with

p(tf ) = P1 (xo(tf ) − xs) , (2.7)

where

Ã =

[

A<i> −B<i>R−1
2 (B<i>)T

−R1 −(A<i>)T

]

(2.8)

and

B̃ =

[

C<i> + B<i>us

R1xs

]

. (2.9)

Now, if Θ(tf , t) is the transition matrix of Ã, the integral of (2.6) is

[

xo(t)
p(t)

]

= Θ(tf , t)

[

xo(tf )
p(tf )

]

+

∫ t

tf

Θ(τ, tf )B̃dτ (2.10)
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To evaluate this expression let us consider the form of Θ(tf , t). Let us assume that
the system is moving through the simplices 1, 2, · · · , f at times t1, t2, · · · , tf . Then,

Θ(tf , t) = Θf (tf−1, tf ) · · ·Θ2(t1, t2)Θ1(t, t1) = Θ(tf , t1)e
A<1>(t−t1) (2.11)

where

Θ(tf , t1) = eA<f>(tf−1−tf ) · · · eA<2>(t1−t2). (2.12)

Under this condition, the integral term in Eq. (2.10) is

ΘI(tf , t) =
∫ t

tf
Θ(τ, tf )B̃dτ =

Θ(tf , t1)(A
<1>)−1

(

eA<1>(t−t1) − I
)

B<1>+

(A<2>)−1
(

eA<2>(t1−t2) − I
)

B<2> + · · ·

+(A<f>)−1
(

eA<f>(tf−1−tf ) − I
)

B<f>.

(2.13)

Now, considering the following partition in these matrices,

Θ(tf , t) =

[

Θ11(tf , t) Θ12(tf , t)
Θ21(tf , t) Θ22(tf , t)

]

(2.14)

and

ΘI(tf , t) =

[

ΘI1(tf , t)
ΘI2(tf , t)

]

. (2.15)

Then,

[

xo(t)
p(t)

]

=

[

Θ11(tf , t) Θ12(tf , t)
Θ21(tf , t) Θ22(tf , t)

] [

xo(tf )
p(tf )

]

+

[

ΘI1(tf , t)
ΘI2(tf , t)

]

(2.16)

and since p(tf ) = P1 (xo(tf ) − xs), it is possible to write

xo(t) = [Θ11(tf , t) + Θ12(tf , t)P1] x
o(tf ) − Θ12(tf , t)P1xs + ΘI1(tf , t) (2.17)

p(t) = [Θ21(tf , t) + Θ22(tf , t)P1] x
o(tf ) − Θ22(tf , t)P1xs + ΘI2(tf , t). (2.18)

Then,

p(t) = [Θ21(tf , t) + Θ22(tf , t)P1] × [Θ11(tf , t) + Θ12(tf , t)P1]
−1

×

[xo(t) + Θ12(tf , t)P1xs − ΘI1(tf , t)] − Θ22(tf , t)P1xs + ΘI2(tf , t). (2.19)

From this expression, it is possible to obtain p(t) as function of the present state
xo(t), then using Eq. (2.4) the control law is obtained as a function of the present state.
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Note that this expressions implies the generalization of the linear optimal control
problem to CPWL models (i.e., including the term C<i> in the model).

A problem of this control scheme is that it depends on the sectors visited by the
process trajectory and at which times the process changes of sector. In other words, this
method replaces the numerical complexity of solving a problem with two-points boundary
conditions with an iterative procedure that determines the points of sector change as the
system evolves with time. This is performed by evaluating the pair (xo(t),uo(t)) using
Eqs. (2.17) and (2.4), and verifying in which sector ℵ<i> this point is. To verify if the
pair belongs to a given set is equivalent to satisfying a linear inequality (Figueroa, 2000;
Figueroa, 2001), that is performed in a simple way.

2.1 Initialization

The data for the proposed control problem are R1, P1, R2 and tf .
For the solution of the problem, we should initialize the simplex that process switches

to during its evolution and the time at which switches occurs (i.e. ℵ<i> and ti for
i = 1, · · · , f). A good selection for this initialization is to consider that the system
moves from u(0) to us as

u(t) = (1 − t/tf )u(0) + t/tfus t ∈ [0, tf ]. (2.20)

Then, from the pairs (x(t), u(t)) it is possible to evaluate the simplex ℵ<i> where the
process is, the time ti at which the simplex switch and the model of the process (A<i>,
B<i> and C<i>) at each simplex (Figueroa, 2000).

In conclusion, the optimal control solution of PWL systems is solved by applying the
algorithm summarized in Table 1. Note that this algorithm involves an iteration because
to compute the optimal control we need to know within which simplex that the process
lies during its evolution, which, in turn, also depends on the applied control.

It is not possible to prove the convergence of this iteration, however, our experience
shows that in the almost all cases converge is achieved in few iterations. Then, a sub-
optimal solution is found with lower computational complexity than the required for
the nonlinear optimal control problem. If this is not the case, a possible solution is to
initializes the manipulated variable in a different way that the expressed in (2.20), for
example as u(t) = us.

3 Example: simulation of a CSTR

Consider an adiabatic CSTR in which the exothermic first-order irreversible Van de
Vusse reaction is taking place (Sistu and Bequette, 1995; Costanza and Neuman, 2006).
The dimensionless equations for the mass and heat balances are

ẋ1 = −θx1exp

(

x2

1 + x2γ

)

+ q (x1f − x1) (3.1)
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Table 1: Learning algorithm for the PWL-DFANN realization.

Data:
R1, P1, R2, tf , us, xs.

Initial Conditions: x(0), u(0)
Initialization:

Perform a simulation for u(t) = (1 − t/tf )u(0) + t/tfus for t ∈ [0, tf ].
Step 0: From (x(t), u(t)) compute ℵ<i> and ti for i = 1, · · · , f .
Step 1: Compute the model A<i>, B<i> and C<i> for i = 1, · · · , f .
Step 2: Compute p(t) from Eq. (2.19).
Step 3: Compute uo(t) from Eq. (2.4).
Step 4: From de model and uo(t), compute the pair x(t), uo(t).
Step 5: From (x(t), uo(t)) compute ℵ<i>

n and tni for i = 1, · · · , f .
Step 6: If the sectors ℵ<i> and times ti are close to ℵ<i>

n and tni ,
then stop the algorithm, the solution is found.
Otherwise, go to Step 1.

ẋ2 = βθx1exp

(

x2

1 + x2γ

)

+ q (x2f − x2) δx2 (3.2)

Typical values for the parameters are θ = 1.135, γ = 20, x1f = 1, β = 11, x2f = 0 and
δ = 1.5; the variable x1 is the dimensionless extent of reaction and x2 is the dimensionless
reaction temperature. The dimensionless feed flow rate q is the only variable that could
be manipulated.

The objective function is to control the reactor from an initial state‡ x(t0) =
[0.2569 1.4870]T to a final state x(tf ) = [0. 0.]T using the control strategy described
in the previous section.

The optimal control parameters for problem 1.3 are t0 = 0, tf = 10; R1 = I, R2 = 20
and P1 = 1000. To perform the PWL approximation the domain (0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2
and −1 ≤ q ≤ 1) is divided in 125 sectors. The parameters of the optimization problem
were determined to obtain a good performance of the complete nonlinear problem and
the number of sectors in the PWL approximation was selected to ensure close responses
between both models.

To perform the computation of the optimal control, a first set of sectors and cross
times is computed considering the free evolution of the process from the initial to final
state points. Using these data, in two iterations, the control law converges to a curve
that is shown in Figure 1. In this plot, the results are compared with the solution
of the complete nonlinear problem. Figure 2 shows the manipulated variable for the
PWL controller. The objective function for the proposed methodology is 2506 that is

‡Steady state corresponding to the control input q = 0.6.
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comparable with the value of 2486 obtained for the optimal case.
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Figure 1: Time Simulation for Reactor States: States.
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Figure 2: Time Simulation for Reactor States: Manipulated variable.
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Figure 2 shows the behavior of the states in the plane x1−x2. In this plot are include
the bounds of the simplices to show how the algorithm perform in a smooth way ever at
the sector switches, despite of small discontinuities in the manipulated variables.
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Figure 3: Phase plane with simplicial division.

4 CONCLUSIONS

A methodology for obtaining an optimal control law for a nonlinear system by approx-
imating the functions using Piecewise Linear models is developed. In particular, the
expression for the optimal solution of an affine model are developed and generalized to
general PWL systems. The proposed method is numerically efficient.
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