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Synthesis of Sinusoidal Waveform References
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Abstract—This paper proposes a novel method to generate
a sinusoidal waveform synchronized with any measurable pe-
riodic signal whose frequency is within a given neighborhood.
The synthesized sinusoidal signal could be used as a reference
current for certain applications of parallel active power filters or
any other where such synchronization would be necessary (e.g.,
ac/dc converters for renewable energy resources, power factor
correctors, power supplies, UPS, etc.) The method is based on the
behavior of a dynamical system and avoids employing the usual
combination of phase-locked loop (PLL) and lookup table found
in most parallel active filters synthesizing a sinusoidal source
current (a table also means using significant storage memory). The
novel method produces two high-quality sinusoidal waveforms
that are in quadrature and is applicable to those parallel active
filters whose control methodology is in the reference frame,
or alternatively, it produces three sinusoidal waveforms shifted
120 degrees for designs that work in the frame. Here, a
(2 + 1)th order implementation is described, including a proof
of convergence. For its most simple implementation ( = 1),
simulated and experimental results are included.

I. INTRODUCTION

THE use of parallel active power filters is one strategy to
compensate for undesired current components in distri-

bution lines. The filter could be thought as a controlled cur-
rent source that injects in the distribution line, in parallel with
the load, the opposite of the undesired load current compo-
nents. Some active filter control strategies synthesize a sinu-
soidal reference source current [1], in contraposition to those
control strategies that synthesize a resistive load behavior [2].
Similar needs appear in other applications such as ac/dc con-
verters for renewable energy resources, power factor correctors,
power supplies, UPS, etc. The sinusoidal reference source cur-
rents can be computed in the reference frame [3], [4], [5],
[6] or in the frame [7], [8]. In the first case, two quadra-
ture sinusoidal waveforms are needed, and in the second case,
they must be shifted by 120 degrees. A phase-locked loop (PLL)
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running at a frequency that is an integer multiple of the line fre-
quency (e.g., 1024 times) is a common method to generate these
sinusoidal waveforms [6]. The PLL signal is used to increment
a counter addressing a look-up table containing the sine func-
tion. Some events, such as the zero crossing point of the phase
voltage, synchronize the reading of the zero of the sine func-
tion. Other approaches use three PLL-based voltage-controlled
oscillators (VCO) to produce the desired sinusoidal signals [9].
Other authors [10] proposed a decoupled double synchronous
reference frame PLL for detection of the positive sequence of
three-phase power systems.

This paper proposes a novel method to generate these sinu-
soidal signals used as reference in parallel active power filters
and other applications. The method avoids the use of the addi-
tional control hardware or software look up tables required by
conventional methods, and the waveform synthesis is obtained
from the output of a dynamical system, which provides the re-
quired sinusoidal signals. This dynamical system in its basic
version has only three states so a relatively low computational
burden is added to the system controller in a digital implementa-
tion. The output has good quality for most practical applications.
Simulation and experimental results are given to illustrate the
feasibility of the proposed ideas. This work expands the results
shown in [11], including here a higher order realization of the
algorithm, and a convergence proof of the adaptive algorithm.

This work is organized as follows: Section II describes the
proposed dynamical system. Section III analyzes the system by
including a stability proof. Section IV describes the discrete im-
plementation of the system being useful for real-time operation.
Section V shows selected simulations and experimental results
illustrating the quality of the obtained sinusoidal waveforms. Fi-
nally Section VI presents the conclusions.

II. THE PROPOSED DYNAMICAL SYSTEM

This section describes the proposed dynamical system used
for generating two (or three) sinusoidal waveforms, phase
shifted adequately and useful for control purposes in active
filtering applications (or any other application having similar
requirements). The dynamical system synthesizes the sinu-
soidal signal using a measured input waveform as reference
(e.g., the load current , or the line voltage, , in the case of
single-phase systems). A two-dimensional output vector (called

or , respectively) is generated, containing information
about the phase and amplitude of the component at the funda-
mental frequency of the original measured waveform.

To present the proposed idea, consider that the line voltage
is a stationary input waveform (although slow variations will be
later allowed). The output vector will be

0885-8993/$25.00 © 2008 IEEE
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where is the fundamental frequency component of
scaled in amplitude (practically without errors in phase and
frequency). The component is a waveform 90 shifted
with respect to . The main characteristics of the output
vector will remain in steady state, despite the existence of slow
and bounded line frequency variations.

The general equations describing the dynamical system are

(1)

(2)

(3)

where is a saturation function given by

(4)

and define the neighborhood where the
actual angular frequency belongs (being the actual
line frequency in Hertz). Also

is a rotation matrix, is a design parameter, is the order
of the system,

are the states, is the system input which is
the extension to of is the output

vector of the system, ,
and finally are design constants.
The design rules for the constants are presented along the next
section, and resumed in Section III-C.

The proposed structure corresponds to a linear time-varying
system where is the (unique) slowly varying parameter, per-
manently adapted by (2).

To better visualize the system structure, the system (1)–(3)
are written here for the case

(5)

(6)

(7)

(8)

Note that the derivatives involved in (2) are algebraically
computed from (1). So no derivative action is needed to im-
plement the algorithm, an important advantage for digital
implementations.

Fig. 1. Bode diagram of the reduced-order system outputs (dash: ! = 80�,
solid: ! = 100�, dash-dot: ! = 120�).

III. SYSTEM ANALYSIS

A first simple analysis is done on the reduced system (5)–(7)
considering that the frequency (that is, the saturation (8)
is working in the linear zone). The objective is to understand
the behavior of circuit showing the mechanism that produces
the frequency tracking, prior to the development of the stability
proof of the general system.

First note that the particular structure of (5)–(6) for constant
corresponds to a second order linear system whose eigenvalues
are , where the natural resonance frequency is . The
input-output behavior corresponds to a pass band filter tuned at
the central frequency . The driving signal is periodic with
fundamental frequency and possibly with higher order
harmonic components and/or nonzero mean value. Fig. 1 shows
as example the magnitude and phase response of the simple
system (5)–(6) for and for the frequency set

. The harmonic components, and the
possible existing dc component of the driving signal are highly
attenuated at the filter outputs (6), which, in steady state, con-
tains mainly the fundamental frequency component, amplified
and phase-shifted accordingly to the filter response. In partic-
ular, the phase of the output signal falls abruptly from zero
to 180 degrees while the frequency of the input signal sweeps
from below to above , being exactly degrees when the
system is tuned at the driving frequency.

This implies that when the frequency then the phase
shift of belongs to the open interval degrees, and
when the phase-shift of belongs to the open interval

degrees.
By replacing the state derivatives (5) in the adaptation law (7)

and assuming linear behavior of (8), it results in

(9)

Being small enough, then the adaptation law (9) for
will respond in average to the mean value of the factor between
brackets. This mean value is positive for and negative
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Fig. 2. Block diagram of the system described by (1)–(4).

for (due to the phase-shift in each case), which forces
to move into a small bounded neighborhood of . For this, re-
member that in steady state the fundamental frequency present
at the output is , and all products between and the
dc- or harmonic components of the input signal have zero mean
value.

Turning back to the full order system (1)–(3), it is better an-
alyzed if expressed in a rotating frame synchronized with .
For that the variables of the system (1)–(2) referred to a sta-
tionary orthonormal reference frame are transformed to ex-
press them with respect to another orthonormal frame whose
axis is rotated radians with respect to the axis . The ade-
quate transformation matrix is

(10)

By changing variables in (1),

, and considering that

, the system is rewritten as

(11)

where and
.

In the new reference frame, the dependence of the system
equations with is not explicit since now it is taken into ac-
count by (10). From (11), it is clear that the system described
by (1)–(3) is functionally equivalent to that shown in the block
diagram of Fig. 2, where is

(12)

The so-obtained block diagram induces an heuristic justifica-
tion of the system behavior. For it, first assume that remains
between the saturation limits defined for (3), which it allows
rewriting (2) as

(13)

Then, the variables in (13) are also transformed to the
frame. First observe that in (13) coincides

with . Then, apply the already-defined change

of variables , recalling that

, and (where
is the identity matrix of second order). The transformed

version of (13) is

(14)

Considering that the vector is rotated radians with
respect to the axis , this last equation shows an important
fact: If varies, the right hand side of (14) represents the
angular velocity of the vector in the rotating reference frame

, as explained in the sequel. To visualize this fact, observe
that is given by . Recalling that

(being D the derivative
operator) results in

(15)

which coincides with (14). This means that the time derivative
of in (14) is proportional to the angular velocity of in the

considered rotating reference frame. As a consequence, if is
rotating in the clockwise direction (in the reference frame),
the system (1)–(3) acts to increase the value of , and conse-
quently, the speed of the reference frame, and vice-versa.
The system forces to change in such a way that the magni-
tude of the angular velocity of is reduced with respect to the
rotating reference frame. This fact explains the behavior of the
system. Moreover, assuming that: 1) the voltage converges
to a vector of constant amplitude and 2) the system is able to re-
duce practically to zero the angular velocity of with respect
to the frame , in such a way that (constant); then from
the structure of it is easy to understand that the output

of the system is a vector conformed by two
high-quality sinusoidal signals. Those two assumptions are ad-
dressed in the next two subsections.

A. Proof that Converges to a Constant Value

Here, we assume that the second assumption is true: con-
verges to a constant value near (this assumption will be dis-
carded in the next subsection). Then, we prove here that the first
assumption holds: Voltage converges to constant amplitude
vector.

For the general case of the input to the system (Fig. 2) having
harmonic components, it can be written that

(16)

where is the amplitude of the th harmonic component of
and is its relative phase. The dc component of the input

signal will not be considered here, but it is easy to prove by the
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same arguments that follow that the system is also able to deal
with this component.

The last particular way of writing the input signal leads to see
each component of the extension to of as formed by the
sum of two rotating vector components of frequency , one
with positive sequence and the other with negative sequence.
Clearly, the output of block in Fig. 2 will be composed
by the sum of all positive and negative sequence vectors having
frequencies as follows:

(17)

In this last expression, for the sake of clarity, the vector cor-
responding to the fundamental frequency of was separately
written.

Assuming that the transfer function is exponentially
stable by design, and considering that the saturation block
causes the frequency to remain in a bounded neighborhood
of (remember also that for the moment the assumption of

(constant) holds), the vector , output of the transfer
function (see Fig. 2), can be written in the steady state as
follows

(18)

where and are the
phase of the components of the output signal,

, . Ob-
serve that the first term of (18) is a low frequency vector (of

rad/s), and the remaining terms have frequencies that
are rad/s higher, for .

If G(s) is designed to be a low-pass filter with small enough
cutoff frequency then since

for , which means that the

% of (18) is smaller than the % of (17). For
and

. If the attenuation of
is high enough in the stopband, all terms of in (18) will
vanish except the first one.

If , and the magnitude of is reasonably con-
stant until its cutoff frequency, the magnitude of vector will
be similar to the magnitude of vector . The difference be-
tween the magnitudes of these two vectors is proportional to the

difference between and . The maximum value
of , for and , can
be kept bounded by designing properly. The magnitude of
all the remaining terms of (18) will be lower than the magnitude
of the first one. In compact form, (18) is rewritten as

(19)

where is a vector that collects together all the
terms of except the first one. This resulting vector is com-
posed by a sum of rotating vectors whose velocity is ,
with , and .

The settling time of to the value given by (19) depends
on the bandwidth of . For example, consider an application
where a 50-Hz sinusoidal signal has to be extracted. If it is re-
quired to have high speed in the response of the system output to
changes in the input, this transfer function could be chosen to be
a fifth order elliptic low-pass filter with cutoff frequency of 20
Hz, maximum attenuation of 1 dB in the passband region, and
minimum attenuation of 60 dB in the stopband region, which
assures a small enough ripple on with a fast enough tran-
sient response. If it is not required high speed in the response, a
single first-order low-pass filter could be chosen.

Convergence of to a predominant low frequency wave-
form with low-amplitude harmonic components is assured by
designing adequately and the saturation limits in (3)–(4)
(assuming constant and with harmonic components upper
bounded in magnitude). Observe that if it were proved that
converges to , then it would be assured that (19) converges
to an almost constant value and that the output of the system

would converge to a vector composed by
high quality sinusoidal signals. This convergence of will be
addressed in the next subsection.

B. Proof that Converges to a Constant Value of Nearly

It remains to analyze the convergence of to . Up to now,
it was considered as constant to obtain (19). It is convenient
to use (14) to analyze the variations of . The values of

are computed using (18) as follows:

(20)

where collects all the terms which are dependent on ,

and its magnitude is assumed negligible compared to . It is
easy to find a set of positive constant values , which depend
on and [that is, a strict proper transfer function as seen
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from (12)], such that they are upper bounds (at ) for the
products

.
So, the last equation is rewritten as

(21)

where is a bounded vector composed by the
sum of a series of bounded vectors rotating with frequency

, such that , plus . The sum is
naturally convergent due to the low-pass characteristics of
and the convergence of (18).

Using (19) and (21) in (14), and considering that
[since in (19)], we arrive at

(22)

where represents a bounded function, whose magnitude is
defined by the attenuation of in the passband and by the
harmonic components of the input. It is noted that this function
could have nonzero mean value, as can be verified by calcu-
lating the products in (22). Replacing (22) in (14), for

, it results that the sign of the time variation in is
equal to the sign of . This implies that if the trend
is to increase and vice versa.

Equation (22) was obtained under the assumption of conver-
gence of the internal variables of considering that is con-
stant. To justify the convergence of to , it will be assumed
that is a slowly varying parameter with respect to the speeds
of variation of all system variables in (22). The dynamics of

is specified by parameter (with units of time) in (14). Its
value is chosen high enough as to distinguish the dynamics of
from those of other system variables using the theory of singular
perturbations [12], which leads to a great simplification of the
stability analysis of nonlinear dynamic systems. Based on that
selection of , it is assumed that all variables except have con-
verged, so that the dynamics of can be computed from (22).
The assumption of slow variation of does not imply any limi-
tation for the application of the proposed system to active power
filters since the line frequency is a slow varying parameter.

From (14) and (22), and considering the constant, it is seen
that the error dynamics , described by

(23)

is such that the magnitude of the error is bounded.
This is shown below.

Defining as a Lyapunov function candidate, its
time derivative results in

(24)

which means that the function decreases for
, so that is kept upper bounded by . As a consequence,

and since in the first term of
(18). Neglecting the other high-frequency terms (because they
are highly attenuated by ) results in

(25)

and the output of the block in Fig. 2 is

(26)

which is the positive sequence component at the fundamental
frequency of the extension to of , obtained practically
without amplitude or phase error.

Furthermore, the two components of the output (26) are
shifted radians so both outputs can be used to implement
the transformation used in active power filter controllers that
work in the reference frame.

C. Design Rules

The design parameters are . The
design rules for them were presented along the previous section,
and are summarized below.

• Parameters define as in (12)
which must be designed as an exponentiallly stable low-
pass filter with , and with high enough
attenuation in the stopband. The bandwidth of (s) must
be chosen to keep the first term of (18) within the passband
and the remaining terms within the stopband. The attenua-
tion in the stopband of (s) determines the quality of the
output signal %). Higher attenuation means lower

%. The settling time of the filter output depends on
the bandwidth of . Wider bandwidth means shorter
settling time and higher sensitivity to perturbations on the
input waveform frequency and phase.
Parameter defines the time constant of the first-order
error dynamics (23) and its value is chosen high enough
as to distinguish the dynamics of from those of other
system variables.

D. Remarks

It was proven that the system (1)–(4) is able to asymptoti-
cally determine the fundamental frequency component of a peri-
odic input signal with negligible amplitude and phase error, even
when the frequency of the input signal has slow and bounded
variations. These characteristics are not easy to obtain by using
a standard bandpass filter, and it is harder when its transition
band is narrower.

The system (1)–(4) provides an output which is in phase with
the system input so it behaves like a PLL and can be used as
its replacement in some classical active filter designs (see [8])
where the line voltage is the input. A clear advantage is to avoid
the need of look-up tables for the evaluation of the sine function
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(the quality of the obtained sine signal degrades if the table is
not long enough) and all the components associated to the PLL
(VCO, filters, etc.).

To obtain a three-phase balanced output, it is enough to mul-
tiply the output by the following gain
matrix:

(27)

which transforms a vector in the frame, into other vector
expressed with respect to the frame with null zero-sequence
components, and whose module is times greater.

An alternative use of (1)–(4) appears from an analysis of (26),
which it is to replace the standard band-pass filters used in active
filtering applications [9]. The proposed system is not affected by
the amplitude and phase errors present in those filters under fre-
quency variations when designed for sharp cutoff frequencies.
For other cases, this strategy can extract accurately the
and signals needed for implementation of notch filters
used in unbalance rejection algorithms embedded in the con-
trollers of active magnetic bearings [13]. It is only necessary
to measure any periodic signal of the system with fundamental
frequency .

IV. DISCRETIZATION ISSUES

This section shows the discrete version of system (1)–(3) for
the case (useful for real-time applications) to illustrate
the practical implementation problems and the applied simplifi-
cations.

Observe that the system (1)–(4) is nonlinear since (1) contains
the product of states and , which are nonlinearly related
by (3). The fact that is a slowly varying parameter enables to
consider (1)–(3) as a discrete system where ,
with being the sample number. This allows to consider (1)
as a linear time-varying system, with as the varying param-
eter, being its value in the time interval (that is not
affected by variations of during that cycle). This approxi-
mation would require the discrete realization of (1) interval by
interval for each different value of . To avoid this cum-
bersome work, it is chosen to use a discrete integrator.

It was verified by computer simulations that using a for-
ward- Euler method for the discrete integrator (without direct
feedthrough) required a much higher sampling frequency
than a trapezoidal method to attain the same numerical
errors in the steady-state output (the benefits of using a
trapezoidal integration method are explained in [14]). So, a
trapezoidal method was chosen (with direct feedthrough, such
as , where are
the input and output of the integrator, and is the sampling
time) to approximate the integrals in the system (1). The chosen
integration method was adequate for typical sampling rates
within the range between 5 to 10 kHz and for inputs with
fundamental line frequency component.

Based on the above, the discrete system becomes

(28)

Observe from the last equation that the next state is
used in both sides of the equation because of the use of the
integrator with direct feedthrough.

Moving to the left-hand side the term with and rear-
ranging yields the following equivalent equation:

(29)

Computing the inverse of the matrix on the left hand side and
premultiplying both sides, the following discrete system results:

(30)

where

and .
The value of to be used in (30) is computed by

, where (the discrete version of
(2)), is obtained from the following linear filter:

(31)

being constants, obtained from the discretization of the
transfer function used in (3) (e.g., for a zero-order
sample and hold at the input), and

(32)
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Fig. 3. Estimated frequency ! =2� in Example 1.

(33)

(34)

Finally, the system output is obtained from

(35)

Expressions (30)–(35) represent the discrete version of
(1)–(3), useful for a digital implementation in real time.

The simplest version of the algorithm requires two divisions,
22 products, and 12 additions. This is approximately similar to
the computational load of a nonlinear control algorithm, and
perhaps a bit higher than a simple control algorithm (e.g., PI
controller).

Just for comparison, a simple PLL would require at least six
products, four additions, and two table entries (without consid-
ering table interpolation). Our algorithm is approximately three
times more complex but does not need the table lookup proce-
dure (saving memory space).

V. SIMULATION AND EXPERIMENTAL RESULTS

The performance of the system (1)–(4) is first analyzed by
simulations, and then by laboratory experiments. The results are
summarized in the following examples.

Example 1: The behavior of the system (1)–(4) is simulated
for the case for and . The chosen
value of is low enough for the filter G(s) to greatly attenuate
the first harmonic frequency . It is assumed that is a square
wave with zero mean value and peak-to-peak amplitude of 1.
The signal can easily be represented by (16) with appropriate
values for . The input frequency is set in three
successive simulations to rad/s, rad/s, and

rad/s. The saturation limits in (4) are set to
rad/s and rad/s. Fig. 3 shows the initial

behavior of , referred as the “estimated frequency” in the
figure and computed from (4), with all zero initial conditions in
system (1)–(3) except for rad/s.

Observe in the figure that for each different frequency of the
input signal the variable converges to the value of the

Fig. 4. Example 1: Outputs v and v for f = 45 Hz (top), f = 50 Hz
(middle) and f = 55 Hz (bottom).

input frequency. Fig. 4 shows the behavior of the output vari-
ables and as well as the square-wave input for the
three different input frequencies. In the three cases the outputs

and have the same amplitude of 0.636 p.u., coincident
with the amplitude of the fundamental-frequency component of
the square-wave input signal: p.u. In Fig. 4 the
signal is in phase with the input signal and is shifted
a quarter period with respect to for the three different fre-
quencies. The % of for Hz was 0.7%.

Fig. 5 shows the behavior of the system when the ampli-
tude of the input waveform is suddenly doubled (at )
for rad/s. The top figure shows the behavior of the
module of the estimation of , which converges
to the final value of 1.272 p.u., as theoretically expected. The
bottom figure illustrates the behavior of the estimated frequency

showing a small perturbation when the input changes its
amplitude.

Fig. 6 displays in detail the estimated frequency for the
case rad/s starting at . Observe that is
not constant in magnitude since its value oscillates around the
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Fig. 5. Behavior of v + v (top) and estimated frequency transient
(bottom) when the amplitude of the input signal in Example 1 is doubled.

Fig. 6. Example 1: Estimated frequency ! =2� for an input frequency of
50 Hz.

Fig. 7. Example 1: Spectrum of v and v (p.u.) for ! = 2�50 rad/s eval-
uated during one cycle starting at t = 7s.

value of the input waveform frequency. This oscillation is due
to the fact that the input to the filter (3) is time varying.

Fig. 7 depicts the simulated input and output
signal spectrum for rad/s and . Observe that
the output signal has negligible harmonic distortion. A similar
result is obtained at the other considered frequencies.

Example 2: To test the algorithm (30)-(35), the system of Ex-
ample 1 ( and ) was discretized

Fig. 8. Example 2: Output v (top) and estimated frequency ! =2�
(bottom), for the continuous (dashed line) and discrete simulations of the
system.

Fig. 9. Steady-state output of the discrete system (30)–(35).

using a sampling frequency of 5 kHz. The behavior of the dis-
crete system was simulated for an input frequency of
rad/s (used also in Example 1) with all zero initial conditions
except . To complete the comparison, also the con-
tinuous system was simulated with a variable-step Runge-Kutta
algorithm. Fig. 8 shows the behavior, predicted by the contin-
uous and discrete simulations (the curves are superposed), of
the output and the estimated frequency during the
initial transient period. Both simulations coincide fairly well.

Fig. 9 shows the steady-state output of the discrete system
having an amplitude of 0.6358 p.u., instead of the theoretical
value of p.u. The averaged output has a delay of
one or two sampling periods. The % of for
Hz was 1.23%. The results show that (30)-(35) produce a precise
enough estimation (for most practical uses) of the fundamental
frequency of the input signal.

Experimental Results: The simulated system
was tested experimentally, running the al-

gorithm on a Pentium 233-MHz PC with an analog I/O board
at 10 kHz (where the digital-to-analog converter had 12 b). The
algorithm was written in C language and executed in real time.
During the experiments a square-wave with peak-to-peak ampli-
tude of 2 V and zero mean value was used as the input signal for
these three different values of frequency: Hz,
Hz, and Hz. Fig. 10 shows the outputs and
that were measured using an oscilloscope. The waveform
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Fig. 10. Waveforms corresponding to f = 42 Hz (top), f = 50 Hz (center)
and f = 57 Hz (bottom).

is in phase with the input waveform while is a quarter pe-
riod out of phase. The peak-to-peak expected value is
2.5465 V. Measurements show that the amplitude varies approx-
imately between 2.547 and 2.719 V (some measurement noise
exists), which corresponds to an error of 0.02% to 6.7% (see
Fig. 10).

The frequency spectrum of the resulting waveform
showed no difference with respect to the theoretical value
in Example 1 so it is not included here. The % of the
resulting measured outputs was 1.9% which is a bit higher than
in Example 1 due to the measurement noise (see Fig. 10).

Fig. 11 shows in detail the input waveform and when they
cross through zero. The figure is scaled out for better apprecia-
tion and the zero of the vertical axis is in the middle of the figure.

Fig. 11. Zero crossings of the input waveform and v .

The waveform reaches zero just one sampling time after
the ideal zero crossing of the input signal, and it remains in zero
during a whole sampling time, so rises from zero at the
end of the second sampling interval after the ideal zero crossing
of the input. This maximum delay in this example is at most
200 s, or approximately 1% of the fundamental period of the
input waveform. This delay can be reduced by increasing the
sampling rate.

VI. CONCLUSION

This paper presented a simple method able to generate the
sinusoidal reference waveforms used in certain control ap-
proaches for parallel active power filter applications or any
other where such synchronization would be necessary (e.g.,
ac/dc converters for renewable energy resources, power factor
correctors, power supplies, UPS, etc.). The method avoided the
use of the conventional PLL and look up table configurations,
by replacing them with a simple three-state dynamical system
(when its most simple version is used) that provided the desired
sinusoidal reference signals for controllers working in either
the reference frame or the frame. The algorithm pro-
vides an output signal whose amplitude follows precisely the
amplitude of the fundamental component of the input signal.
Additionally, the method estimated the line fundamental fre-
quency of the input signal within a bounded neighborhood of
the actual value. One of the sinusoidal signals provided by the
system is in phase (neglecting the delay of at most two sam-
pling times that the simpler discrete realization introduces) with
the fundamental frequency component of the input voltage, so
no phase errors are introduced by false zero crossings of the
input produced by noise or harmonics components. Note that
standard PLL (e.g., [8]) use the zero crossing of the input as
synchronizing signal, and that does not necessarily represent
the zero crossing of the fundamental component of the input
signal. Simulation and experimental results illustrated the high
performance of the proposed method. Other possible applica-
tions of the method are the following: 1) to obtain an accurate
estimation of the line frequency of a distribution system when
synchronizing an isolated generator; 2) to replace the standard
bandpass filters used in active filtering applications since the
proposed system is not affected by the phase and amplitude
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errors present in those filters under frequency variations when
designed for sharp cutoff frequencies; and 3) to implement
notch filters used in unbalance rejection algorithms for active
magnetic bearings.

REFERENCES

[1] J. S. Tepper, J. W. Dixon, G. Venegas, and L. Morán, “A simple fre-
quency-independent method for calculating the reactive and harmonic
current in a nonlinear load,” IEEE Trans. Ind. Electron., vol. 43, no. 6,
pp. 647–658, Dec. 1996.

[2] T. Núñez-Zúñiga and J. Pomilio, “Shunt active power filter synthe-
sizing resistive loads,” IEEE Trans. Power Electron., vol. 1, no. 2, pp.
273–278, Mar. 2002.

[3] S. Bhattacharya and D. Divan, “Design and implementation of a
hybrid series active filter system,” in Proc. IEEE 26th Annu. Power
Electronics Specialists Conf. (PESC’95), Jun. 1995, vol. 1, pp.
18–22, 189–195.

[4] S. Bhattacharya, D. Divan, and B. Benerjee, “Active filter solutions
for utility interface,” in Proc. IEEE Int. Symp. Industrial Electronics
(ISIE’95), Jul. 10–14, 1995, vol. 1, pp. 53–63.

[5] S. Bhattacharya, P.- T. Cheng, and D. M. Divan, “Hybrid solutions
for improving passive filter performance in high power applications,”
IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 732–747, May/Jun. 1997.

[6] K. Sozañski, R. Strzelecki, and A. Kempski, “Digital control circuit for
active power filter with modified instantaneous reactive power control
algorithm,” in Proc. IEEE 33rd Annu. Power Electronics Specialists
Conf. (PESC’02), Jun. 23–27, 2002, vol. 2, pp. 1031–1036.

[7] S.-J. Huang and J.-Ch. Wu, “A control algorithm for three-phase three-
wired active power filters under nonideal mains voltages,” IEEE Trans.
Power Electron., vol. 14, no. 4, pp. 753–760, Jul. 1999.

[8] K. Chatterjee, B. Fernandes, and K. Dubey, “An instantaneous reac-
tive volt-ampere compensator and harmonic suppressor system,” IEEE
Trans. Power Electron., vol. 14, no. 2, pp. 381–392, Mar. 1999.

[9] J. Dixon, J. J. García, and L. Morán, “Control system for three- phase
active power filter which simultaneously compensates power factor
and unbalanced loads,” IEEE Trans. Ind. Electron., vol. 42, no. 6, pp.
636–641, Dec. 1995.

[10] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D.
Boroyevich, “Decoupled double synchronous reference frame PLL for
power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2,
pp. 584–592, Mar. 2007.

[11] C. A. Busada, H. G. Chiacchiarini, and J. C. Balda, “Sinusoidal wave-
form synthesis for parallel active power filter applications,” in Proc.
IEEE 35th Annu. Power Electronics Specialists Conf. (PESC’04), Jun.
20–25, 2004, vol. 3, pp. 2360–2364.

[12] M. Vidyasagar, Nonlinear System Analysis, 2nd ed. Upper Saddle
River, NJ: Prentice-Hall, 1993.

[13] R. Herzog, B. Philipp, G. Conrad, and L. Rene, “Unbalance compen-
sation using generalized notch filters in the multivariable feedback of
magnetic bearings,” IEEE Trans. Control Syst. Technol., vol. 4, no. 5,
pp. 580–586, Sept. 1996.

[14] L. O. Chua and P. Y. Lin, Computer-Aided Analysis of Electronic
Circuits: Algorithms and Computational Techniques. Upper Saddle
River, NJ: Prentice-Hall, 1975.

Claudio Alberto Busada was born in Bahía Blanca,
Argentina, on March 13, 1962. He received the B. Sc.
degree in electrical engineering in 1989 and the Ph.D.
degree in control systems in 2004, both from the Uni-
versidad Nacional del Sur, Bahía Blanca.

From 1988 to 2004, he was with the Mechanic and
Electrical Department, City of Bahía Blanca. Since
1989, he has been with the Departamento de Inge-
niería Eléctrica y de Computadoras (DIEC), Univer-
sidad Nacional del Sur, where he is a Professor. He
is also a Researcher with the Instituto de Investiga-

ciones en Ingeniería Eléctrica “Alfredo C. Desages” (UNS-CONICET). His
areas of research include power electronics, rotating machinery, active filters,
automatic control, and electric vehicle propulsion.

Héctor Gerardo Chiacchiarini (M’88–SM’04) was
born in Villa Regina, Argentina, in 1964. He received
the B.Sc. degree in electronics engineering from the
Universidad Nacional del Sur, Bahía Blanca, Ar-
gentina, in 1990. He was granted a scholarship from
CONICET during 1990–1997 for his posgraduate
studies. and received the Ph.D. degree in control
systems in 1996, also from the Universidad Nacional
del Sur.

He is a Professor at the Departamento de Ingeniería
Eléctrica y de Computadoras, Universidad Nacional

del Sur, teaching power electronics and industrial robotics. He has been a Re-
searcher since 1999 at the Instituto de Investigaciones en Ingeniería Eléctrica
“Alfredo C. Desages” (UNS-CONICET). His main research interests are power
electronics, robotics, mechatronics, motor drives, and control systems.

Dr. Chiacchiarini is a member of the Industrial Electronics Society. He was
President of the Joint Chapter (RAS, CSS, IAS, IES, PELS) of the IEEE Ar-
gentina Section during 2005–2006 and Vice President during 2003–2004.

Juan Carlos Balda (M’78–SM’94) was born in
Bahía Blanca, Argentina. He received the B.Sc. de-
gree in electrical engineering from the Universidad
Nacional del Sur, Bahía Blanca, Argentina, in 1979
and the Ph.D. degree in electrical engineering from
the University of Natal, Durban, South Africa, in
1986.

He was with Hidronor S.A., an electric utility in the
Southwestern part of Argentina, prior to his graduate
studies. He was later a Researcher and a part-time
Lecturer at the University of Natal until July 1987.

He then spent two years as a Visiting Assistant Professor at Clemson Univer-
sity, South Carolina. He has been at the University of Arkansas at Fayetteville
since July 1989, where he is currently a Full Professor and Associate Depart-
ment Head, and Faculty Advisor to the Ham Radio Club at the University of
Arkansas. His main research interests are power electronics, electric power dis-
tribution systems, motor drives and electric power quality.

Dr. Balda is a member of the Power Electronics and Industry Applications
Societies of the IEEE and the honor society Eta Kappa Nu. He is a counselor of
the IEEE Student Branch


