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Abstract

Purpose—Recent studies have shown that 20-hydroxyeicosatetraenoic acid (20-HETE) is a key 

molecule in sustaining androgen-mediated prostate cancer cell survival. Thus, the aim of this study 

was to determine whether 20-HETE can affect the metastatic potential of androgen-insensitive 

prostate cancer cells, and the implication of the newly described 20-HETE receptor, GPR75, in 

mediating these effects.

Methods—The expression of GPR75, protein phosphorylation, actin polymerization and protein 

distribution were assessed by western blot and/or fluorescence microscopy. Additionally, in vitro 
assays including epithelial-mesenchymal transition (EMT), metalloproteinase-2 (MMP-2) activity, 

scratch wound healing, transwell invasion and soft agar colony formation were used to evaluate the 

effects of 20-HETE agonists/antagonists or GPR75 gene silencing on the aggressive features of 

PC-3 cells.
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Results—20-HETE (0.1 nM) promoted the acquisition of a mesenchymal phenotype by 

increasing EMT, the release of MMP-2, cell migration and invasion, actin stress fiber formation 

and anchorage-independent growth. Also, 20-HETE augmented the expression of HIC-5, the 

phosphorylation of EGFR, NF-κB, AKT and p-38 and the intracellular redistribution of p-AKT 

and PKCα. These effects were impaired by GPR75 antagonism and/or silencing. Accordingly, the 

inhibition of 20-HETE formation with N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine 

(HET0016) elicited the opposite effects.

Conclusions—The present results show for the first time the involvement of the 20-HETE-

GPR75 receptor in the activation of intracellular signaling known to be stimulated in cell 

malignant transformations leading to the differentiation of PC-3 cells towards a more aggressive 

phenotype. Targeting the 20-HETE/GPR75 pathway is a promising and novel approach to interfere 

with prostate tumor cell malignant progression.
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1 INTRODUCTION

According to the classical model, the arachidonic acid (AA) cascade is bifurcated into the 

cyclooxygenase (COX-1 and COX-2) and lipoxygenase (LOXs) enzymatic pathways which 

generate, inter alia, prostaglandins and leukotrienes, respectively. A third, less explored 

pathway of the cascade is mediated by cytochrome P450 (CYP) enzymes. Several CYP4A 

and CYP4F enzymes generate the active signaling metabolite 20-hydroxyeicosatetraenoic 

acid (20-HETE) via ω-hydroxylation of AA. CYP4F2 is the most active isoform that 

produces 20-HETE in humans, followed by CY4A11 [1].

The finding that synthetic analogues of 20-HETE are partial or full competitive antagonists 

of its vasoconstrictor actions suggested the existence of a receptor for 20-HETE. Moreover, 

the observation that the vasoconstrictor and natriuretic actions of 20-HETE are 

phospholipase C (PLC) / protein kinase C (PKC) dependent, and its effects on cell migration 

and proliferation are associated with the activation of the Proto-Oncogene Tyrosine-Protein 

Kinase (c-Src) / epidermal growth factor receptor (EGFR), supported the hypothesis that 

these effects of 20-HETE are receptor-mediated [2]. Only recently, Garcia et al. 
demonstrated that in human endothelial cells, 20-HETE binds with high affinity and 

activates the G-protein coupled receptor (GPCR) GPR75, and signals via Gαq/PLC/PKC, c-

Src, and mitogen-activated protein kinases (MAPK) pathways to elicit its vascular effects 

[3]. Early findings only showed the expression of GPR75 receptor in cells surrounding 

retinal arterioles and in other areas of the brain [4]. However, databases indicate a broad 

expression profile for the GPR75 receptor in the majority of human tissues including the 

brain, heart, kidney and prostate (https://www.ncbi.nlm.nih.gov/geo/tools/profileGraph.cgi?

ID=GDS1096:220481_at).

Increasing reports suggest that 20-HETE can play an important role in cell growth and 

cancer development. In vitro studies show that 20-HETE induces mitogenic and angiogenic 

responses in several types of cancer cells, and inhibitors of the 20-HETE pathway have been 
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shown to reduce the growth of brain, breast and kidney tumors [5]–[7] . Moreover, other 

authors have reported that incubation of non-small cell lung cancer cell lines with stable 

agonists of 20-HETE as well as overexpression of ω-hydroxylases enhance their invasive 

capacity [8]. Also, inhibition of 20-HETE synthesis decreases migration and invasion in the 

metastatic triple negative breast cancer cell lines and reduces primary tumor growth and lung 

metastasis in vivo [9].

The expression of CYP4Z1, another ω-hydroxylase first described in normal mammary 

gland [10], has been suggested as a potentially reliable marker of prostate cancer prognosis 

utilizing biopsy specimens [11]. Besides, the urinary excretion of 20-HETE, which was 

significantly higher in patients with benign prostatic hypertrophy or prostate cancer than in 

healthy subjects, decreased to normal concentrations after removal of the prostate gland 

[12]. However, thus far there is complete lack of knowledge regarding the cellular actions of 

20-HETE that may promote the malignant potential of prostate cancer cells.

Our laboratory has reported that 20-HETE production is key to sustain cell viability in an 

androgen sensitive prostate cancer cell line, primarily by prevention of apoptosis. These 

findings support a role for 20-HETE as a mediator in androgen driven prostate cancer cell 

survival [13]. Although prostate cancer tumor growth is initially dependent on androgens as 

documented by Huggins as early as 1941 [14], many patients eventually develop an 

androgen-insensitive more aggressive phenotype of prostate cancer, termed castration-

resistant prostate cancer (CRPC).

Thus, in view of the increase in prostate cancer cells viability elicited by 20-HETE, 

considering the pro-metastatic effects of 20-HETE described in other tumor models, and in 

light of the recent discovery of GPR75 as the target for 20-HETE, we hypothesized that the 

20-HETE-GPR75 signaling complex promotes a malignant phenotype in prostate cancer 

cells.

This study shows that 20-HETE increases the metastatic potential of human prostate cancer 

cells determined in vitro, such as epithelial-mesenchymal transition (EMT), migration, 

invasion and anchorage-independent growth in the androgen insensitive PC-3 cells. In 

addition, our observations show for the first time the involvement of the GPR75 receptor in 

the activation by 20-HETE of intracellular signaling molecules already identified to be 

stimulated in cellular malignant transformations. Furthermore, our results demonstrate that 

GPR75 receptor stimulation is necessary for the pro-metastatic actions of 20-HETE in 

androgen insensitive prostate cancer cells.

2 MATERIALS AND METHODS

2.1. Drugs and Reagents.

Chemicals. 20-Hhydroxyeicosatetraenoic acid (20-HETE) and N-hydroxy-N′-(4-n-butyl-2-

methylphenyl)formamidine (HET0016), a selective inhibitor of 20-HETE synthesis, were 

from Cayman Chemical Company (Ann Arbor, MI, USA). N-(20-hydroxyeicosa-5[Z],

14[Z]-dienoyl)glycine (5,14-HEDGE), a synthetic analogue of 20-HETE, sodium 19(R)-

hydroxyeicosa-5(Z), 14(Z)-dienoyl-L-aspartate (19-HEDE amide) and sodium ((6Z,15Z)-N-
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(20-hydroxyeicosa-6(Z),15(Z)-dienoyl)aspartate) (AAA), two different antagonists of the 

20-HETE receptor, were synthesized by one of the authors. Dr. J. R. Falck. All other 

compounds were purchased from Sigma Chemical Co (St. Louis, MO). Stock solutions of 

all drags were prepared in ethanol with the exception of R0318220 (water), and LY29402 

and sulfasalazine (DMSO). Antibodies. Antibodies for Vimentin (ID#sc32322, 1/200), 

EGFR (ID#sc373746, 1/100; p-EGFR (Tyr 1092) ID#sc377547, 1/100), NF-κB (ID#sc8008, 

1/5000; p-NF-κB(Ser 536) ID#sc136548, 1/200), AKT (ID#sc8312, 1/200; p-AKT(Ser 473) 

ID#sc7985, 1/100), p38 (ID#sc7972, 1/100; p-p38(Tiy182) ID#sc-166182, 1/100), FAK 

(ID#sc271126, 1/200) and PKCα (ID#sc208, 1/500) were from Santa Cruz Biotechnology 

(Dallas, TX, USA). Antibodies for E-cadherin (ID#3195, 1/1000) and β-actin (ID#4970, 

1/1000) were from Cell Signaling Technology (Danvers, MA, USA). Anti HIC-5 antibody 

(ID#PA5-28839, 1/3000) and anti p-FAK (Tyr397) (ID#44625G, 1/1000) were from Thermo 

Scientific (Rockford, IL; EEUU). Anti GPR75 antibody (ID#ab75581, 1/500) was from 

Abcam (Cambridge; UK), and anti GAPDH antibody (ID#MAB374, 1/1000) from (Merck 

Millipore, Darmstadt, Germany). Polyclonal anti-rabbit (ID#7074S, 1/5000, Cell Signaling 

Technology) or anti-mouse (ID#NA931VS, 1/10,000, GE Healthcare, Buckinghamshire, 

UK; or ID#sc516102, 1/6500, Santa Cruz Biotechnology) antibodies conjugated with 

horseradish peroxidase (HPR) were used as secondary antibodies, accordingly.

For immunofluorescence assays, rhodamine conjugated phalloidin (#P1951, 1/200, Sigma-

Aldrich) or anti α-tubulin (ID#sc58666, 1/200, Santa Cruz Biotechnology) were used. 4′,6′-

diamidino-2-phenylindole (DAPI) was from Thermo Fisher Scientific. All the other primary 

antibodies were the same as mentioned above. An anti-mouse linked to rhodamine (ID# 

115-025-072, 1/500) and an-anti rabbit secondary antibody (ID#711-165-152, 1/800) from 

Jackson Immunoresearch, West Grove, PA, USA were used.

GPR75 gene silencing. Human GPR75 siRNA Gene Silencer (sc-94341), Control siRNAs 

(sc-37007) and support products for siRNA gene silencers were from Santa Cruz 

Biotechnology.

2.2. Cell culture.

The androgen-insensitive prostate cancer cell line PC-3 was obtained from the American 

Type Culture Collection (Manassas, VA, USA). Cells were cultured at 37°C with 5% CO2 

for up to 8 weeks and maintained up to 10 passages. They were routinely maintained in 

RPMI1640 medium supplemented with fetal bovine serum (FBS) 10%, penicillin 100 

IU/mL, streptomycin 100 μg/mL, and amphotericin B 2.5 μg/mL (complete medium). When 

necessary, cells were serum starved 24 h before the experiment. In each case, control 

conditions refer to the treatment of cells in the absence of drags with the vehicle used at the 

highest concentration, which never surpassed 0.1%.

2.3. Transfection with siRNA.

Cells were grown on 6-well plates to 80% confluence and were washed with siRNA 

transfection medium and incubated with the mixture of GPR75 receptor or Control siRNAs 

and siRNA transfection reagent following manufacturer’s instructions (Santa Cruz). The 

transfection solutions were replaced with fresh complete medium until 90% confluence. 
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Cells were placed in serum-free medium and treated with the specified drugs as described 

below.

2.4. Cell fractionation.

Cells were harvested in lysis buffer (Tris, 10 mM; NaCl, 150 mM; Triton X-100® 1%; 

EDTA, 1 mM; EGTA, 1 mM; Na4P2O7·10H2O, 10 mM; Na3VO4, 10 mM; and NaF, 100 

mM) supplemented with a mix of protease inhibitors (cOmplete™ Mini EDTA-free, Roche 

Diagnostics, Mannheim Germany). Whole cell extracts for western blotting were prepared 

as described previously [13]. For subcellular fractionation, cell lysates were first centrifuged 

at 4°C for 7 min at 3100 xg. The supernatants were further centrifuged at 100,000 xg for 1 h 

at 4°C. The supernatant was designated as the cytosolic fraction and the pellet was 

resuspended in lysis buffer containing 0.1% Triton X-100® (30 min at room temperature) 

and was designated as the membrane fraction [15]. The Bradford method was used for 

protein determination.

2.5. Western Blot Assays.

Protein separation and blotting were performed as previously described [13]. Briefly, equal 

amounts of protein were separated by denaturing SDS-PAGE and transferred to 

polyvinylidene fluoride (PVDF) microporous membranes (Millipore, Boston, MA). The 

resulting blots were blocked with 5% nonfat milk in TBS/0.1% Tween (TBS-T) or with 

blocking buffer (bovine serum albumin (BSA), 0.1%; Tween-20, 0.4%; EDTA, 1mM; in 

TBS-T) (only when anti-goat antibody was used), or with 3% BSA in TBS-T (only when 

anti phospho-protein antibody was used). The primary antibodies were diluted in TBS-T, 

and the blots were incubated with these antibodies overnight at 4°C followed by washing in 

TBS-T and incubation with HRP-conjugated secondary antibodies for 2 h at room 

temperature. Membranes were developed using a chemiluminescent reagent (ECL Blotting 

Detection Kit, GE Healthcare) and exposed to films (CL-XPosure Films®, Thermo 

Scientific, Rockford, IL; USA). The densitometric analysis was performed with ImageJ 

1.51j8.

2.6. Cell Viability assay.

Cell viability was determined by MTT assay. In brief, cells were seeded in a 96-well plate at 

a density of 2×103 cells/well, cultured until the confluence reached about 80% and placed in 

serum-free medium for 24 h. Cells were further grown in the presence or absence of the 

indicated concentrations of 20-HETE for 16 h before staining with 5 μL of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solutions (5 mg/mL) and 

incubated for 2 h at 37°C until the formazan crystals formed. Then, dimethylsulfoxide 

(DMSO) was added and the mixture was agitated at a low speed for 15 min to dissolve the 

formazan crystals, the absorbance (490 mn) was detected using a microtiter plate reader 

(Synergy HTX, BioTeK, Winooski, Vermont, USA).

2.7. Scratch wound assay.

Cells (2.5×105 cells/well) were grown in 6-well plates with complete medium until 

confluence and placed in serum-free medium for 24 h, then a wound in the cell monolayer 
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was performed with a sterile pipette tip. After washing with PBS, RPMI was refreshed, and 

drags were added. Pictures at initial time and after 16 h of incubation were collected. Image 

analysis included the assessment of the initial and final areas of the wound using the ImageJ 

1.51j8. Results are expressed as percentage of migration according to the formula 100-((final 

area*100)/initial area). Three wounds were made in each well and 9 to 12 microphotographs 

were taken for each condition.

2.8. Transwell invasion assay.

In vitro cell invasion assays were performed in 10-mm-diameter and 8-μm pore 

polycarbonate filter transwell plates. Membranes were precoated with 30 μl of a matrigel 

solution 1:4 on the upper surface, which formed a reconstituted basement membrane at 

37°C. PC-3 cells (2×105), wild type or GPR75 siRNA- transfected were grown for 24 h in 

serum-free medium before being seeded on the upper well of the chamber. Subsequently, 

serum-free medium with vehicle, 20-HETE (0.1 nM) or 19-HEDE (5 μM) was added to the 

upper chamber, while the lower well was filled to the top (800 μL) with complete medium as 

a chemoattractant. Cells were allowed to migrate for 16 h. The non-migrating cells were 

then carefully removed from the upper surface of the transwell with a wet cotton swab, and 

cells were fixed for 10 min in cold 100% methanol and stained for 5 min with crystal violet. 

Cells that had invaded to the bottom surface of the filter were counted with a Nikon Ti3 

inverted microscope at 40x magnification in a blinded manner, counting 10 high-powered 

fields per sample. The number of invasive cells was normalized to that of control condition 

and is expressed as a percentage.

2.9. Soft agar colony formation assay.

A thin layer of agar (0.6%) was placed in 60mm culture plates for 1 h at room temperature. 

Then, an agar solution (0.35%) containing 5×103 cells in the presence or absence of the 

indicated drugs was laid on top, and plates were left in the incubator for 14 or 21 days. All 

colonies having more than ten cells were counted using a Nikon Ti3 inverted microscope at 

low magnification. Results are expressed as Colony Forming Units every 5000 cells.

2.10. Zymography assay.

Cells were grown to confluence in 6-well plates. After washing with PBS, cells were placed 

in serum-free medium for 24 h in the presence or absence of drugs. Supernatants were 

collected for zymography assay and the cellular monolayer for total protein assessment. 

Zymography assay was performed as previously described [16].

2.11. Immunofluorescence assay.

Cells were seeded onto glass coverslips in 24-well plates and allowed to reach 40-60% 

confluence; then they were washed with PBS before serum deprivation, and were further 

incubated with 20-HETE in the presence or absence of AAA, or with HET0016 (without 

serum deprivation) for the indicated times. Cells were washed with PBS, fixed with 

paraformaldehyde 4% in PBS for 10 min at room temperature, and permeabilized with 

Triton X-100” 0.2% in PBS for another 10 min. After rinsing with PBS, cells were blocked 

with BSA 3% in PBS for 1 h. Incubation with phalloidin or specific primary antibodies was 
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performed for 16 h at 4°C. After rinsing with PBS, samples were incubated with the 

secondary antibody and DAPI, and mounted. Cells were observed in an Olympus 

FLUOVIEW FV1000 confocal laser scanning microscope (Olympus Corporation, Tokyo, 

Japan) and analyzed using the ImageJ 1.51j8 software. Intracellular protein distribution was 

calculated.

2.12. Statistical Analysis

The statistical analyses were carried out using one-way ANOVA followed by Tukey 

(multiple comparisons) or Student’s t test (two comparisons). Statistics were evaluated using 

GraphPad Prism V7.0 software (GraphPad Software, La Jolla, CA, USA). Differences were 

considered significant when p<0.05. All results are presented as mean±SEM.

3 RESULTS

3.1 Role of the GPR75 receptor in the intracellular signaling triggered by 20-HETE in 
androgen-insensitive prostate cancer cells.

The expression of GPR75 receptor protein was firstly confirmed in PC-3 cells cultured in 

complete or serum-deprived medium. Although the receptor was detected in both conditions, 

24 h serum starvation increased GPR75 protein abundance by 91% (p<0.05 vs. complete 

medium) (Fig 1a). Because some GPCRs are internalized and delivered to lysosomes for 

degradation upon activation [17], we explored the effect of 20-HETE on the expression of 

the GPR75 receptor. Incubation with 20-HETE (0.1 nM, 12 h) decreased GPR75 receptor 

abundance in cell homogenates by 78% (p<0.0001 vs. control), an effect that was reversed 

by the 20-HETE receptor antagonist AAA (5 μM) (p<0.01 vs. 20-HETE alone). Moreover, 

AAA increased the expression of GPR75 receptor by 34% (p<0.01 vs. control) (Fig 1b).

To investigate the role of the GPR75 receptor in the signaling cascade triggered by 20-HETE 

in PC-3 cells, changes in intracellular pathways were analyzed in cells treated with 20-

HETE in the presence or absence of the GPR75 receptor antagonist.

In human endothelial cells, the GPR75 receptor is associated with Hydrogen Peroxide 

(H2O2) Inducible Clone-5 (Hic-5) [3]. Hic-5 is a 55-kDa inducible focal adhesion protein 

belonging to the family of paxillin proteins that was identified as a critical modulator of 

tumor cell phenotype [18], 20-HETE (12 h) dose-dependently increased the expression of 

HIC-5 up to 95% from 0.01 nM to 1 nM (Fig 2a). The extent of this response was similar to 

the one of Transforming Growth Factor-betal (TGF-β, 5 and 10 ng/ml) (p<0.0001 vs. control 

for both) (Fig S1a). Incubation with 20-HETE (0.1 nM, 12 h) resulted in a 150% increase in 

HIC-5 abundance in whole cell homogenates (p<0.0001 vs. control). The presence of AAA 

in the incubation medium completely abolished the effect of 20-HETE (p<0.0001 vs. 20-

HETE alone for AAA 5 and 10 μM) (Fig 2b).

Protein phosphorylation studies were next performed by using antibodies raised against the 

phosphorylated or total forms of proteins from the main oncogenic pathways already 

identified to be activated by 20-HETE. Exposure of PC-3 cells to 20-HETE (0.1nM, 2 h) 

increased phosphorylation of EGFR, NF-κB and AKT in whole cell homogenates by 146, 

172 and 219% respectively (vs. control, p<0.01 for NF-κB, and p<0.001 for EGFR and 
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AKT) without modifying protein abundance. The magnitude of the increase in protein 

phosphorylation elicited by 20-HETE was in the range of the effect of other well-established 

activators of protein phosphorylation (Fig S1b). Coincubation with the GPR75 receptor 

antagonist AAA (5 or 10 μM) significantly decreased 20-HETE induced protein 

phosphorylation (AAA 10 μM, p<0.05 for NF-κB, p<0.01 for AKT and p<0.001 for EGFR, 

respectively, vs. 20-HETE alone). Conversely, incubation with AAA (10 μM), but not with 

20-HETE, increased the phosphorylation of p38 mitogen-activated protein kinase (p38) by 

248% (p<0.0001 vs. control) and this effect was reversed by the presence of 20-HETE. 

Moreover, AAA (5 and 10 μM) dose dependently increased p38 phosphorylation even in the 

presence of 20-HETE (p<0.001 and p<0.0001 vs. 20-HETE alone for 5 and 10 μM, 

respectively) (Fig 3).

The effect of 20-HETE (0.1 nM) on the intracellular distribution of total and phospho-AKT, 

NF-κB and PKCα was further studied. Although intracellular location of total AKT was not 

altered by 20-HETE, a decrease in its nuclear expression was observed following incubation 

with AAA (p<0.01 vs. control) (Fig 4a). Moreover, an increase in phospho-AKT was 

observed in cell nuclei in the presence of 20-HETE (p<0.001 vs. control), and tins effect was 

softened by AAA 5 μM (p<0.01 vs. 20-HETE alone). Also, AAA induced a significant 

decrease in the phospho-AKT signal in cell nuclei (p<0.001 vs. control) (Fig 4b). Similarly, 

incubation with AAA mitigated the NF-κB signal that was detected in the nuclei under 

unstimulated condition (p<0.001 vs. control), thus, suggesting that a sustained GPR75 

receptor stimulation facilitates NF-κB nuclear location (Fig 4c). On the contrary, for PKCα, 

incubation with 20-HETE induced a significant withdrawal of protein from the nuclei 

(p<0.05 vs. control) that was not affected by AAA (Fig 4d). Moreover, although non-

quantifiable under our experimental imaging conditions, the shift in PKCα signal towards 

the plasma membrane observed after a 10 min incubation with 20-HETE prompted us to 

evaluate PKCα intracellular redistribution through subcellular fractionation. Indeed, 

translocation of PKCα to the plasma membrane is associated with enzyme activation [15]. 

Under control conditions, a significant amount of PKCα was localized in the cytoplasmic 

fraction. Ten minutes after treatment with 20-HETE, PKCα was partially re-localized to the 

cell membrane fraction (p<0.01 vs. control). Pretreatment with AAA diminished the 

membrane associated signal intensity (p< 0.05 vs. 20-HETE alone) (Fig 4e).

3.2 20-HETE increases metastatic features of PC-3 cells.

3.2.1 20-HETE promotes a mesenchymal phenotype in PC-3 cells.—The effect 

of 20-HETE on the expression level of EMT-associated proteins was first analyzed. The 

expression of both E-cadherin and vimentin was modified in a concentration dependent 

manner by 24 h incubation with 20-HETE (0.01 and 0.1 nM). 20-HETE (0.1 nM) was the 

lowest concentration that significantly decreased the expression of E-cadherin together with 

a concomitant increase in the expression of vimentin (p<0.01 for both) (Fig S2a). The 

magnitude of the effect of 20-HETE 0.1 nM was similar to the one of the classical inducer of 

EMT, TGF-β (Fig S2b). The contribution of GPR75 receptor to this effect was further 

analyzed. 20-HETE (0.1 nM) increased by almost 150% the expression of the mesenchymal 

marker vimentin (p<0.0001 vs. control). This effect was decreased 75% by coincubation 

with AAA (5 μM) and was abrogated by a higher level of AAA (10 μM) (p<0.001 and 
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p<0.0001 vs. 20-HETE respectively). Correspondingly, the expression of the epithelial 

marker E-cadherin was downregulated by 40% following incubation with 20-HETE 

(p<0.0001 vs. control), and this response was reversed by coincubation with AAA (5 or 10 

μM) (p<0.05 vs. 20-HETE for both) (Fig 5a). The role of endogenous 20-HETE in 

promoting EMT was also confirmed since the inhibition of the synthesis of 20-HETE by 

HET0016 (10 μM, 24h) increased by 71% the expression of E-cadherin and decreased by 

73% the expression of vimentin (p<0.05 and p<0.01 vs. control for E-cadherin and vimentin 

respectively) (Fig 5b).

3.2.2 20-HETE increases motility of PC-3 cells.—The effect of 20-HETE on the 

migratory capacity of PC-3 cells was assessed by the wound healing assay. Under control 

conditions, 16 h after the wound was made, the percentage of wound closure was 

33.1±2.4%. 20-HETE (0.1-10 nM) increased wound healing, requiring a threshold 

concentration of 0.1 nM for a significant effect (45.5±1.5% of wound closure, p<0.01 vs. 

control), that was similar for higher concentrations (Fig S3a). In no case did 20-HETE affect 

cell viability (Fig S3b). The role of GPR75 receptor in the effect of 20-HETE on cell 

migration was assessed by cell coincubation with 20-HETE (0.1 nM) and AAA (5 μM). 

GPR75 receptor antagonism significantly reduced 20-HETE-induced cell migration (% 

wound closure: 20-HETE, 48.9±2.7%, p<0.0001 vs. control; 20-HETE+AAA, 36.0±2.9, 

p<0.05 vs. 20-HETE), suggesting that 20-HETE-stimulated cell migration is GPR75-

dependent (Fig 6a). Likewise, 19-HEDE amide (19-HEDE, 10 μM), another GPR75 receptor 

antagonist, impaired 20-HETE-induced cell migration (p<0.0001 vs. 20-HETE). Moreover, 

19-HEDE reduced the percentage of wound closure by 20% under control conditions 

(p<0.01 vs. control) (Fig 6b).

To further asses the role of GPR75 receptor in cell migration promoted by 20-HETE, we 

used a genetic approach to inhibit GPR75 receptor expression by performing knockdown of 

the receptor. PC-3 cells were transiently transfected with siRNA against GPR75 receptor 

(siGPR75) or with a non-targeting siRNA (siControl). The assessment of the knockdown 

efficiency of GPR75 was confirmed by a decrease of about 40% in the expression of GPR75 

protein in cell homogenates (Fig S4). As expected, incubation with 20-HETE (0.1 nM, 16 h) 

increased wound healing by about 40% in siControl cells (p<0.0001 vs. siControl). 

Knockdown of GPR75 completely impaired the stimulatory effect of 20-HETE on cell 

migration (p<0.0001 vs. siControl+20-HETE) (Fig 6c). In line with these findings, the 

inhibition of the synthesis of 20-HETE by HET0016 significantly reduced wound healing 

(control 37.9±2.0%; HET0016 1 μM, 30.8±1.7; HET0016 10 μM, 25.5±1.3; p<0.05 and 

p<0.0001 vs. control respectively) (Fig 6d).

The role of the intracellular pathways activated by 20-HETE (Figs 3–4) on 20-HETE-

mediated metastatic features was further investigated on cell migration. Coincubation of 20-

HETE with inhibitors of these pathways: PKC (RO318220, 100 nM) (Fig 7a), PI3K/AKT 

(LY 294002, 25 μM) (Fig 7b) and NF-κB (sulfasalazine, 500 μM) (Fig 7c), significantly 

reduced 20-HETE-induced cell migration (% wound closure: 20-HETE, 54.2±8.5%, 

p<0.001 vs. control; 20-HETE+ RO31820, 37.3±10.6, p<0.001 vs. 20-HETE alone; 20-

HETE+ LY 294002, 33.0±9.3, p<0.0001 vs. 20-HETE alone; 20-HETE+sulfasalazine, 

24.8±7.5, p<0.0001 vs. 20-HETE alone). Moreover, inhibition of PI3K/AKT and NF-κB 
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decreased cell migration per se (p<0.01 and p<0.0001 vs. control for LY 294002 and 

sulfasalazine, respectively), thus strengthening the contribution of these pathways to cell 

migration (Fig 7). These results confirm that the 20-HETE-activated pathways identified in 

the present study play a critical role in 20-HETE-promoted cell migration.

For cancer cells to invade efficiently, cell motility has to be accompanied by an increase in 

the ability to degrade the basal membrane. This step is achieved by the release of matrix 

metalloproteases, such as matrix metalloproteinase-2 (MMP-2). Incubation with 20-HETE 

(0.1 nM) for 24 h increased MMP-2 activity in PC-3 conditioned medium by 52%, measured 

as the ability of conditioned medium to hydrolyze collagen (zymography assay) (p<0.05 vs. 

control). Likewise, TGF-β (5 and 10 ng/ml), increased MMP-2 activity by 97% (p<0.01 vs. 

control for both concentrations) (Fig S2c). The role of GPR75 in the increase of MMP-2 

activity was confirmed since the response to 20-HETE was abolished by AAA (5 and 10 

μM) (p<0.01 and p<0.001 vs. 20-HETE for AAA at 5 and 10 μM, respectively) (Fig 8a). The 

involvement of endogenous 20-HETE in MMP-2 activity was further confirmed since the 

inhibition of the synthesis of 20-HETE by HET0016 (10 μM, 24h) decreased proteolytic 

activity by 34% (p<0.01 vs. control) (Fig 8b).

To elucidate the role of 20-HETE/GPR75 on cell invasiveness, the effect of 20-HETE on 

transwell invasion was analyzed on wild type PC-3 cells treated with 19-HEDE, and on 

siControl or siGPR75 PC-3 cells (Fig 9). 20-HETE (0.1 nM, 16 h) increased by 150-200% 

the invasion capacity in both, wild type and siControl cells (p<0.0001 vs. control for both). 

This effect was reduced by 32% by 19-HEDE in wild type cells (p<0.0001 vs. 20-HETE) 

(Fig 9a). As expected, 20-HETE did not modify invasion when tested on siGPR75 cells 

(p<0.0001 vs. siControl+20-HETE) (Fig 9b). These results confirm the role of GPR75 in 20-

HETE-driven invasiveness.

3.2.3 20-HETE contributes to the regulation of actin polymerization in PC-3 
cells.—Given that the alterations of cell migration might be related to a destabilization or 

alterations in the dynamics of cell cytoskeleton, the effect of 20-HETE on α-tubulin or F-

actin polymerization was next studied. In control cells, α-tubulin appeared as a filamentous 

network through the cell cytoplasm, and this disposition was not altered by 24 h incubation 

with 20-HETE, AAA or HET0016. F-actin in turn was labeled with rhodamine conjugated 

phalloidin in cells incubated under the same conditions. Control cells predominantly 

displayed fibrillar structures lying across the cells, with enriched phalloidin labeling at the 

cell periphery where the F-actin formed membrane protrusions. 20-HETE (0.1 nM) 

increased the actin stress fibers compared to the control, whereas AAA (10 μM) preserved 

enriched labeling at cell periphery although it did not allow the correct polymerization of 

actin filaments (Fig 10a). Consistently, HET0016-treated cells showed a loss of phalloidin 

staining, suggesting the depolymerization of the actin cytoskeleton (Fig 10b).

Focal adhesion kinase (FAK) is primary implicated in the regulation of signals that mediate 

cell adhesion to the extra-cellular matrix as well as in the actin cytoskeleton reorganization 

and cell polarization and, thereby, in cell migration and invasion. Phosphorylation at Tyr397 

(Y397) is its major activation mechanism [19]. Western blot analysis of cell lysates showed 

that incubation with 20-HETE (0.1 nM, 24 h) increased FAK Y397 phosphorylation by 89% 
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together with a 71% increase in the expression of total FAK (p<0.0001 vs control for both). 

Interestingly, coincubation with AAA 10 μM decreased 20-HETE-induced FAK 

phosphorylation by 65% (p<0.001 vs. 20-HETE) without altering total FAK expression (Fig 

10c).

3.2.4 20-HETE increases the ability of PC-3 cells to form colonies in soft 
agar.—In vitro anchorage-independent growth, which is defined as the ability of 

transformed cells to grow independently of a solid surface, is an indication of the metastatic 

potency of tumors [20].

Cells were plated onto soft agar plates in the presence of the stable synthetic analog of 20-

HETE, N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine (5,14-HEDGE) with or without the 

addition of AAA or 19-HEDE, or in the presence of HET0016, and allowed to form colonies 

for fourteen or twenty one days. Cells grown in the presence of 5,14-HEDGE (0.1 nM, 21 

days), formed around twice the number of colonies when compared to control cells, and this 

increase was abolished by coincubation with AAA or 19-HEDE (5 μM for both, p<0.05 and 

p<0.0001 vs. 5,14-HEDGE alone respectively), while neither AAA nor 19-HEDE altered the 

number of colonies per se. Correspondingly, a 45% decrease in colony number was observed 

when HET0016 (10 μM, 14 days) was added to the soft agar medium (p<0.01 vs. control) 

(Fig 11).

4 DISCUSSION

Results from the present study support the importance of GPR75-mediated 20-HETE effects 

in endowing prostate cancer cells with an aggressive behavior. Indeed, 20-HETE activated 

intracellular pathways involved in cell transformation lead to an overall enhancement of 

malignant properties of PC-3 cells. Furthermore, inhibition of the GPR75 receptor, through 

either a pharmacological or a genetic approach, reduced the pro-tumorigenic effects of 20-

HETE in PC-3 cells.

The concentration of 20-HETE used in the present study (0.1 nM) proved to be the lowest 

one that produced significant effects in our preliminary experiments and is within the range 

of the calculated Kd for the binding of 20-HETE to GPR75 receptors (3.75 nmol/L) [3]. 

Moreover, in previous studies from other authors, the same concentration of 20-HETE 

significantly increased phosphorylation of IkBα and ERK1/2 MAP kinase in endothelial 

cells [21]. Although it seems to be far below the intracellular 20-HETE levels measured in 

PC-3 cells (207.3±9.0 ng/mg protein) [13], it should be born in mind that this latter value 

represents the total endogenous 20-HETE intracellular pool (free plus esterified). Indeed, 

once produced, 20-HETE can remain unbound to lipids, or can be re-esterified into 

phospholipids generating a membrane pool of preformed 20-HETE, that constitutes a 

significant cell reservoir [22].

It is well accepted that the desensitization and downregulation of agonist-occupied GPCRs 

are primarily mediated by G protein-coupled receptor kinases (GRKs) [23]. GRKs are a 

family of serine/threonine kinases that are primarily localized to the cytosol and plasma 

membrane. Upon ligand binding, GRKs phosphorylate serine and threonine residues within 

Cárdenas et al. Page 11

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the intracellular carboxy-terminal domain of the receptors. The phosphorylated GPCRs can 

be then recognized by β-arrestins that bind to the cytosolic surfaces of receptors. As a 

consequence, β-arrestins can act as scaffolds or adaptors for the binding of other proteins, 

such as clathrin and clathrin adaptor proteins [24]. Clathrin recruitment and polymerization 

results in the invagination of the membrane. The ensuing clathrin-coated vesicles or 

endosomes contain the desensitized GPCR, and these vesicles or endosomes can then fuse to 

lysosomes for degradation of the receptors, thereby desensitizing cells to further ligand 

stimulation [17, 25].

In our hands, exposure to 20-HETE for twelve hours decreased expression of the GPR75 

receptor. Thus, the resultant decrease in receptor density will prevent the cell from over-

responding to the ligand. This response may be understood as a defensive mechanism 

against the hyperactivation of these receptors that may result in abnormally amplified signals 

throughout the cell leading to aberrant cell physiological properties. On the other hand, 

overexpression of the GPR75 receptor in serum starving cells may be viewed as an adaptive 

response when the enviromnent is depleted of other growth factors.

GPCR signaling generally results in the transmission of amplified signals throughout the 

cell, and hyperactivation of these receptors may result in abnormal cell behavior. Indeed, 

GPCRs play integral roles in regulating and activating cancer-associated signaling pathways, 

and can induce signaling cascades as well as downstream kinases such as phosphoinositide 

3-kinase (PI3K)/AKT and MAPK pathways [27]. Furthermore, depending on the receptor 

and cell type, GPCRs signaling involves transactivation of several different receptor tyrosine 

kinases (RTKs), such as EGFR and receptor serine/threonine kinases [28]. In line, the 

present results show that the 20-HETE-mediated activation of EGFR, NF-κB, AKT and 

PKCα previously described in other cells [6, 15, 29] requires stimulation from the GPR75 

receptor. Conversely, phosphorylation of p38, even if not affected by 20-HETE, was 

triggered by the antagonism of GPR75. This observation should be interpreted with the 

knowledge that activation of p38 signaling exerts tumor suppressive functions on metastatic 

cells by causing growth arrest, senescence or apoptosis [30, 31].

One of the ultimate goals of cellular signaling is the control of gene expression in the 

nucleus. In our hands, the 20-HETE driven increase of p-AKT in the nucleus together with 

the withdrawal of NF-κB elicited by AAA raises the hypothesis that 20-HETE may transmit 

signals into the nucleus in a GPR75-dependent manner. Indeed, the increased nuclear 

localization of signaling molecules has been previously reported in some kinds of cancer. 

Despite its increased nuclear expression in cancer cells, AKT has been shown to migrate 

into the nucleus in response to a wide variety of stimuli that include insulin-like growth 

factor-1 (IGF-1), hypoglycemia, insulin, and nerve growth factor (NGF). Indeed, some of 

AKT substrates are resident in the nucleus, such as the FOXO family of transcription factors 

or the transcriptional co-activator p300 [32]. Moreover, the presence of active, 

phosphorylated AKT within the nucleus has been described in prostate cancer [33]. Our 

results suggest that a sustained GPR75 receptor stimulation facilitates AKT and NF-κB 

nuclear location, whereas an increase in 20-HETE signaling induces nuclear AKT 

phosphorylation.
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The contribution of three of the pathways assessed in this study (PI3K/AKT, NF-κB, and 

PKC) to the 20-HETE-stimulated malignant cell features was confirmed by the observation 

that selective inhibitors of these pathways decreased the effect of 20-HETE on cell 

migration.

The oncogenic role of the PI3K/AKT axis on tumor growth extends beyond its pro-

proliferative and survival effects and includes migration and invasion [34]. AKT-mediated 

phosphorylation of the EMT transcription factor TWIST1 promotes EMT and breast cancer 

metastasis [35]. NF-κB contributes to cancer formation and invasiveness as a result of its 

specific transcriptional activity [36]. Among other tumors, activation of NF-κB was probed 

to be essential for EMT and metastasis in a model of breast cancer progression [37] and 

promoted the growth of prostate cancer cells in bone [38]. PKCα in its turn, is 

overexpressed in prostate cancer [39], and its activation resulted in increased cell motility 

associated with increased invasiveness in several in vivo and in vitro cancer models [40]. 

Thus, as a common driver of various oncogenic signaling pathway in prostate cancer cells, 

targeting 20-HETE/GPR75 might be considered an attractive target for the development of 

anticancer agents.

Besides the canonical GPCRs-associated signal transducers mentioned above, in the present 

study we present evidence that 20-HETE increases total cellular levels of Hic-5 in a GPR75- 

dependent manner. Hic-5 is involved in transcriptional regulation as well as in cytoskeletal 

organization, contractile activity, and cell spreading [41]. More recently, Hic-5 

overexpression in tumor cell lines proved to be sufficient to drive a shift toward a 

mesenchymal morphology and to promote phenotypic plasticity and invasion [18]. A recent 

publication confirmed that transcriptional activation of Hic-5 is positively regulated by 

NADPH oxidase-ROS-c-Jun N-terminal kinase (JNK) pathway and found one putative 

binding motif for c-jun, the downstream transcriptional factor of ROS-JNK pathway, in the 

binding regions on Hic-5 promoter responsible for activation of Hic-5 gene [42]. 

Interestingly, a number of reports have described that 20-HETE increases NADPH oxidase-

derived ROS production in normal and tumor tissues [43, 44, 7]; and increases JNK 

phosphorylation, thus interfering with the c-Jun pathway in gliosarcoma cells [45]. 

Therefore, although other pathways should not be ruled out, we hypothesize that the increase 

in HIC-5 expression elicited by 20-HETE might be related to its well-known capacity of 

stimulating ROS production.

Epithelial-mesenchymal transition allows a polarized epithelial cell to undergo multiple 

biochemical changes that enable it to assume a mesenchymal phenotype, which includes 

activation of transcription factors, expression of specific cell-surface proteins, reorganization 

and expression of cytoskeletal proteins, production of extracellular matrix-degrading 

enzymes, degradation of underlying basement membrane, and the formation of a 

mesenchymal cell that can migrate away from the epithelial layer in which it originated [46]. 

The observation that the expression of both protein markers for EMT (vimentin and E-

cadherin) were altered by incubation with HET0016 or with 20-HETE, and that the latter 

response was abolished by the antagonism of its receptor, strongly suggests that 20-HETE 

induces EMT through GPR75 receptor stimulation. Also, inhibition of the synthesis of 20-

HETE, or GPR75 knockdown and/or pharmacological antagonism abrogated cell migration, 
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secretion of MMP-2 into the conditioned medium and invasiveness capacity. These results 

support a role for 20-HETE/GPR75 in these well-known key components for tumor 

metastasis.

Cell migration is a dynamic process that requires the coordinated rearrangement of the 

cytoskeleton and cell adhesion. Our results support a role for endogenously synthetized 20-

HETE and for the GPR75 receptor in the regulation of the structure of the actin cytoskeleton 

as well as the phosphorylation of FAK. However, the fact that 20-HETE-induced expression 

of total FAK was not affected by AAA, suggests that this mechanism is GPR75-independent. 

Other authors have shown that cytoskeletal reorganization caused by the binding of ligands 

to actin allows not only the inhibition of migration, but also apoptosis of cancer cells [47, 

48]. Therefore, given its role in cellular transformation and biologic processes, disruption of 

the actin cytoskeleton has been proposed as a potential antitumoral therapeutic target [49, 

50].

Finally, our results from the in vitro assay for colony formation in soft agar suggest that the 

20-HETE/GPR75 pathway plays a pivotal role in metastasis of prostate cancer cells via 

regulating anoikis resistance and anchorage-independent growth. While these in vitro results 

are encouraging, in vivo studies are needed for confirmation of the role of 20-HETE in 

promoting prostate cancer metastasis.

Most prostate tumors initially shrink in response to androgen-deprivation therapy [14], but 

ultimately progress to the castration-resistant metastatic form. Management of castration 

resistant prostate cancer is a clinical challenge. Therefore, there is a need for developing 

drugs with novel mechanisms of action and different mechanisms of resistance compared to 

the classical antiandrogens [51]. Previous studies have demonstrated increased expression 

levels of the secreted form of phospholipase A2 (sPLA2-IIA) that mediates the release of 

AA in patients with prostate cancer [52]. Moreover, the specific up-regulation of sPLA2-IIA 

in the highest-grade prostate cancer samples highlights the importance of AA metabolites 

for tumor progression [53]. Our present results provide evidence supporting the hypothesis 

that inhibition of the synthesis of 20-HETE or the antagonism of GPR75 receptor are 

antitumoral approaches that might be considered promising for further evaluation in the 

management of the castration resistant prostate cancer in the future.
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19-HEDE amide sodium 19(R)-hydroxyeicosa-5(Z), 14(Z)-dienoyl-L-

aspartate

20-HETE 20-hydroxyeicosatetraenoic acid

AA Arachidonic acid

AAA Sodium ((6Z,15Z)-N-(20-hydroxyeicosa-6(Z),15(Z)-

dienoyl)aspartate)

AKT Protein Kinase B

COX Cyclooxygenase

CRPC Castration-resistant prostate cancer

CYP Cytochrome P450

DAPI 4′,6′-diamidino-2-phenylindole

DMSO Dimethylsulfoxide

EGFR Epidermal growth factor receptor

EMT Epithelial-mesenchymal transition

FAK Focal adhesion kinase

GPCR G-protein coupled receptor

GRKs G protein-coupled receptor kinases

HET0016 hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine

HIC-5 Hydrogen Peroxide Inducible Clone-5

HPR Horseradish peroxidase

IGF-1 Insulin-like growth factor-1

LOXs Lipoxygenase

MAPK Mitogen-activated protein kinases

MMP-2 Metalloproteinase-2

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide

NF-κB Nuclear factor-κB

PI3K Phosphoinositide 3-kinase

PLC Phospholipase C

PKC Protein kinase C
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RTKs Receptor tyrosine kinases

sPLA2 Secreted form of phospholipase A2

TGF-β Transforming Growth Factor-beta1

TNF-α Tumor Necrosis Factor-alpha
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Highlights

• Androgen-insensitive prostate cancer cells (PC-3) express the 20-HETE 

receptor, GPR75.

• Stimulation of GPR75 by 20-HETE increases metastatic features of PC-3 

cells.

• The inhibition of 20-HETE synthesis diminished metastatic features of PC-3 

cells.

• 20-HETE-GPR75 triggered signaling pathways involved in cell malignant 

transformation.
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Fig 1. Expression of GPR75 in PC-3 cells.
A. Cells grown in RPMI medium supplemented with fetal bovine serum (10%) (complete 

medium, CM) (control) or in 24 h-serum deprived medium (DM) (n=3). B. Cells grown for 

24 h in serum deprived medium in the presence of vehicle only (control), or 20-HETE (0.1 

nM, 12 h) with or without the addition of the antagonist sodium ((6Z,15Z)-20-

hydroxyeicosa-6,15-dienoyl)aspartate (AAA, 5 or 10 μM) (n=4-5).

A representative western blot of whole cell homogenates is presented. The quantitation of 

the receptor expression is shown as the ratio GPR75/GAPDH. Densitometry data were 

normalized to that of control condition and are expressed as the means ± SE. (*p<0.05, 

**p<0.01, ****p<0.0001 vs. Control; ##p<0.01 vs. 20-HETE alone)

Cárdenas et al. Page 21

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 2. HIC-5 expression in PC-3 cells.
Cells grown for 24 h in serum deprived medium were incubated for 12 h with vehicle only 

(control) or: A. the indicated concentrations of 20-HETE (n=3). B. 20-HETE (0.1 nM) in the 

presence or absence of AAA (5 or 10 μM) (n=5).

A representative western blot of whole cell homogenates is presented. The quantitation of 

the receptor expression is shown as the ratio HIC-5/GAPDH. Densitometry data were 

normalized to that of control condition and are expressed as the means ± SE (*p<0.05, 

****p<0.0001 vs. Control; ####p<0.0001 vs. 20-HETE alone)
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Fig 3. Protein phosphorylation.
Cells grown for 24 h in serum deprived medium were incubated for 2 h with vehicle 

(control) or 20-HETE (0.1 nM) in the presence or absence of AAA (5 or 10 μM). 

Phosphospecific antibodies against p-EGFR (Tyr 1092), p-NFκB p65 (Ser 536), p-AKT (p-

AKTl and p-AKT2) (Ser 473), p-p38 (Tyr 182) were used. A representative western blot of 

whole cell homogenates is presented. The quantitation of protein phosphorylation is shown 

as the ratio p-protein/GAPDH. Densitometry data were normalized to that of control 

condition, and are expressed as the means ± SE. (n=3-4) (**p<0.01, ***p<0.001, 

****p<0.0001 vs. Control; #p<0.05, ##p<0.01, ###p<0.001.####p<0.0001 vs. 20-HETE 

alone)
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Fig 4. Intracellular protein distribution.
Cells grown for 24 h in serum deprived media were incubated with vehicle only (control) or 

20-HETE (0.1 nM) in the presence or absence of AAA (5 μM) for 60 min (total AKT, p-

AKT and NF-κB) or 10 min (PKCα) and prepared for immunofluorescence imaging or 

subjected to subcellular fractionation. A.-D. Representative immunofluorescence 

micrographs and quantification of intracellular distribution of total AKT (A), p-AKT (B), 
NF-kB (C), or PKCα (D) (n=3). E. Representative western blot of the expression of PKCα 
in membrane and cytosolic fractions. The expression of PKCα in membrane and cytosolic 
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fraction was normalized to the one of E-cadherin and GAPDH, respectively. The 

quantitation is shown as the ratio between membrane-bound and cytosolic PKCα (n=2).

Data were normalized to that of control condition, and are expressed as the means ± SE. 

(*p<0.05, **p<0.01 ***p<0.001 vs. Control; #p<0.05 ##p<0.01 vs. 20-HETE alone)
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Fig 5. Epithelial-Mesenchymal transition markers.
Cells grown for 24 h in: A. serum deprived medium or B. complete medium were incubated 

for 24 h with vehicle only (control) or in the presence of: A. 20-HETE (0.1 nM) with or 

without the addition of AAA (5 or 10 μM) (n=4), or B. HET0016 (1 or 10 μM) (n=4).

A representative western blot of whole cell homogenates is presented. The quantitation of 

protein expression is shown as the ratio of Protein/GAPDH or Protein/β-actin. Densitometry 

data were normalized to that of control condition and are expressed as the means ± SE 

(*p<0.05, **p<0.01, ****p<0.0001 vs. Control; #p<0.05, ###p<0.001, ####p<0.0001 vs. 

20-HETE alone)
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Fig 6. 20-HETE/GPR75 and cell migration.
PC-3 cells were grown up to 90-100% confluency, and were serum deprived for 24 h. After 

the wound was made, cells were incubated for another 16 h in the presence of vehicle only 

(control) or the following conditions: 20-HETE (0.1 nM) with or without the addition of the 

GPR75 antagonists, A. AAA (5 μM) (n=3), B. Sodimn 19(R)-hydroxyeicosa-5(Z), 14(Z)-

dienoyl-L-aspartate (19-HEDE, 5 μM) (n=3). C. Wild type cells (control) or cells transfected 

with control siRNA (siControl) or GPR75 siRNA (siGPR75) incubated with 20-HETE (0.1 

nM) (n=3). D. HET0016 (1 or 10 μM) (n=2-4)
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Images were acquired at 0 and 16 h. Representative wound assay brightfield images are 

shown. The dotted lines define the areas lacking cells. Quantification of wound assay is 

represented as % migration rate after 16 h compared to a 0 h control (9-12 photographs per 

condition were analyzed). Values are presented as the mean± SEM. (*p<0.05, **p<0.01, 

****p<0.0001 vs. control; #p<0.05, #### p<0.0001 vs. 20-HETE; &&&& p<0.0001 vs. 

siControl; ++++p<0.0001 vs siControl+20-HETE).
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Fig 7. 20-HETE-activated cell pathways and cell migration.
PC-3 cells were grown up to 90-100% confluency, and were serum deprived for 24 h. After 

the wound was made, cells were incubated for another 16 h in the presence of vehicle only 

(control) or the following conditions: 20-HETE (0.1 nM) with or without the addition of the 

following inhibitors: A. RO318220 (PKC pathway, 100 μM) (n=3), B. LY294002 

(PI3K/AKT pathway, 25 μM) (n=3), C. sulfasalazine (NF-κB pathway, 500 μM) (n=3).

Images were acquired at 0 and 16 h. Representative wound assay brightfield images are 

shown. The dotted lines define the areas lacking cells. Quantification of wound assay is 

represented as % migration rate after 16 h compared to a 0 h control (9-12 photographs per 

condition were analyzed). Values are presented as the mean ± SEM. (**p<0.01, ***p<0.001, 

****p<0.0001 vs. control; ###p<0.001, #### p<0.0001 vs. 20-HETE).
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Fig 8. MMP-2 activity.
Cells grown for 24 h in: A. serum deprived medium or, B. complete medium, were incubated 

for 24 h with vehicle only (control) or in the presence of: A. 20-HETE (0.1 nM) with or 

without the addition of AAA (5 or 10 μM), or B. HET0016 (1 or 10 μM). A representative 

image of the zymography assay is presented. Quantitative values are presented as fold 

change of the control condition and are expressed as the means ± SE (n=2 in duplicates). 

(*p<0.05, **p<0.01 vs. control; ## p<0.01, ###p<0.001 vs. 20-HETE alone).
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Fig 9. Cell Invasion.
A. Wild type cells or B. cells transfected with control siRNA (siControl) or GPR75 siRNA 

(siGPR75), grown for 24 h in serum free medium, were seeded in serum free medium in the 

upper chamber of matrigel coated trans-well plates and were incubated with vehicle only 

(control) or with 20-HETE (0.1 nM) with or without the addition of the GPR75 antagonist 

19-HEDE (5 μM) (n=2). After 16 h invasive cells attached to the bottom surface of the 

membrane were stained and quantified. Representative transwell assay images are shown. 

The number of invasive cells was normalized to that of control condition and is expressed as 

a percentage. Values are presented as the means ± SEM. ****p<0.0001 vs. control; #### 

p<0.0001 vs. 20-HETE; &&&& p<0.0001 vs. siControl; ++++p<0.0001 vs siControl+20-

HETE).
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Fig 10. Cell cytoskeleton polymerization.
A. and C. PC-3 cells grown for 24 h in serum free medium were further incubated for 24 h 

with vehicle only (control) or 20-HETE (0.1 nM) in the presence or absence of AAA (10 

μM). B. PC-3 cells grown in complete medium were incubated for 24 h with vehicle only 

(control) or HET0016 1 or 10 μM. A. and B. Representative cell images of α-tubulin (upper 

panel) or F-actin (lower panel) are presented. Immunofluorescent staining of F-actin with 

phalloidin was assessed for stress fibers (arrowheads), and focal adhesions (arrows). C. 
Western blot image of the expression of phospho (p-) (Tyr397) or total focal adhesion kinase 

(FAK) in cell homogenates. The quantitation of FAR phosphorylation is shown as p-

FAK/FAK ratio and that of total FAK expression as FAK/β-actin ratio. Densitometry data 

were normalized to that of the control condition and are expressed as the means ± SE. 

(****p<0.0001 vs control; ###p<0.001 vs. 20-HETE alone).

Cárdenas et al. Page 32

Biochim Biophys Acta Mol Cell Biol Lipids. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 11. Colony formation in soft agar.
PC-3 cells were plated at a density of 5×103 cells/plate and were grown for 21 days in the 

presence of vehicle only (control) or N-(20-hydroxyeicosa-5[Z],14[Z]-dienoyl)glycine 

(5,14-HEDGE, 0.1 nM) with or without the addition of the GPR75 antagonists, A. AAA (5 

μM), B. 19-HEDE (5 μM). C. Cells were plated in complete media in the presence of vehicle 

only (control) or HET0016 (1 or 10 μM) and grown for 14 days. Representative brightfield 

images are shown. Only colonies larger than 10 cells were scored as positive. Quantification 

of soft agar assay is presented as colony number (n = 2 in duplicates,). Values are presented 

as the means ± SEM. (*p<0.05, **p<0.01. ***p<0.001 vs. control; #p<0.05, ####p<0.0001 

vs. 5,14-HEDGE alone).
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