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We studied the stochastic dynamics of coupled map lattices for small local popula-
tions. Quasi-deterministic dynamics is lost when considering one isolated population or
two populations linked by dispersal. In a one-dimensional ring linked by closest neighbors

some intermittent synchronization is observed. Finally we show that in two-dimensional
lattices long-term synchronization take place above a critical value of the dispersal prob-
ability and the system displays a quasi-deterministic dynamics.

1. Introduction

Discrete time population models are used to describe populations with discrete

(non-continuous) generations. The simplest and most studied model is the classi-

cal logistic map in which the population in generation t + 1 is obtained from the

population in generation t by

x(t+ 1) = rx(t)

[
1− x(t)

K

]
= x(t)F [x(t)] ≡ g(x(t)) (1.1)

where r is the replacement rate at low densities and the carrying capacity K fix

the maximum population allowed. The per-capita replacement rate F captures, in a

fenomenological way, the density dependent intra-specific competition which is the

mechanism of population regulation.

This model became popular after the 1977’s paper by May17 and was vastly

used and studied since then. Simple models like the logistic map or many others

with a somewhat similar density dependence form for the per-capita replacement

rate are attractive because its solutions display a rich dynamics controlled by only

one parameter (r for the logistic map). For 1 < r < 3 there is a single stable point,

while for r > 3 exists a 2k period-doubling route to chaos.

Since the seminal works by Kaneko (see for example14,15) coupled map lattices

has been extensively studied (see for example3,13,22,23) and used to study theoretical

problems in spatial ecology,4,6, 11,16,18–20 statistical physics7 among other fields.
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Most work were done in the deterministic limit K 7→ ∞, and in few cases a

small additive noise were considered.9,10 However density-dependent competition

takes place at some spatial scale, where individuals share the resources. Therefore,

if we ignore spatiality, local populations (subject to 1.1) cannot be arbitrarily large.

Surprisingly the realistic case of small populations were not considereda.

For small populations demographic stochasticity plays a significant role with

stochastic fluctuations of the order of the square root of the population.2 Larger

populations are then considered as spatial distributed collection of local populations

linked by dispersal.

In this work we explore the consequences of stochastic demography and dispersal

in the emergence of quasi-deterministic dynamics at different spatial scales using

coupled map lattices.

2. Modelling Demographic Stochasticity and Dispersal

2.1. Deterministic Models

2.1.1. Local dynamics

In this work we will consider a theoretical population with non overlapping genera-

tions. For an insolated population we assume that the dynamics is governed by the

logistic map 1.1.

For x > K, g(x) < 0 and therefore the constraint x ≥ 0 must be enforced

separately. The carrying capacity K provides a ceiling for the population. When

x is allowed to take continuous values in (0,K) the solutions of the equation 1.1

include (depending on the value of the reproduction rate r) fixed points, cycles of

period 2k and chaos.

In this work we considered only discrete, integer, values for the populations,

This is achieved by considering a new map f which is the integer part of g, and

therefore

x(t+ 1) = f(x(t)). (2.1)

The fact that only integer values of the population are allowed imposes new

constrains and chaos is no longer possible. For K 7→ ∞ solutions of (2.1) converge

to the solutions of (1.1).

2.1.2. Dispersal

Spatiality is modelled using a metapopulation approach. We assume that new re-

cruited individuals (R) from the previous generation t in population xi(t) is given

by the integer logistic map f , that is

Ri(t+ 1) = f(xi(t))

aAt our best knowledge.
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after recruitment individuals may disperse. We assume a constant probability of

dispersion per individual D and therefore we expect DRi(t+1) individuals leaving

population i to other populations. After dispersal, the population i is obtained as

the balance equation

xi(t+ 1) = (1−D)Ri(t+ 1) +
∑
j

DfijRj(t+ 1)

where fij is the fraction of the dispersers from population j who moved to popula-

tion i. We may write the evolution equation in terms of x alone as

xi(t+ 1) = (1−D)f(xi(t)) +
∑
j

Dfijf(xj(t)). (2.2)

Two Patch Model. The most simple setting with some spatiality is two connected

populations. In this case model (2.2) reads:

x1(t+ 1) = (1−D)f(x1(t)) +Df(x2(t)), (2.3)

x2(t+ 1) = (1−D)f(x2(t)) +Df(x1(t)). (2.4)

One dimensional ring. A more realistic case is a linear arrangement of patches

connected by first neighbors. We considered periodic boundary conditions, or in

other words, a ring. If the total number of patches is N and dispersal is symmetric

(fi,i−1 = fi,i+1 = 1/2), model (2.2) becomes

xi(t+ 1) = (1−D)f(xi(t)) +
D

2
[f(xi−1(t)) + f(xi+1(t))] (2.5)

Two dimensional lattice. Finally we considered two dimensional arrays of pop-

ulations connected by the four closest neighbors in a torus (periodic boundary

conditions). Thus, if the population in the patch (i, j) is xij the dynamics of the

system is governed by the difference equation:

xij(t+ 1) = (1−D)f(xij(t)) (2.6)

+
D

4
[f(xi−1,j(t)) + f(xi+1,j(t)) + f(xi,j−1(t)) + f(xi,j+i(t))]

2.2. Stochastic demography and dispersal

Density dependent processes take place during finite periods of time and involve

many events like birth and death at different stages. Here we simplified the situa-

tion by considering only one event, recruitment of new individuals from those in the

patch in the previous generation. Therefore if the expected number of new recruits

in generation t+1 is f(x(t)) the actual number is a random variable with (approxi-

mate) Poisson distribution with parameter f(x(t)). Realizations of this process are

obtained then as

x(t+ 1) = Poisson(f(x(t))) (2.7)
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where Poisson(λ) is a (positive integer) number drawn from a Poisson distribution

of parameter λ. For λ > 5 Poisson distribution is approximately normal with mean

and variance equal to λ. In such a case (2.7) becomes approximately

x(t+ 1) = f(x(t)) + η
√
f(x(t))

where η is a random variable normally distributed with zero mean and unitary

variance.2 As K increases the additive noise term becomes less significant and the

dynamics becomes quasi-deterministic.

On the other hand, we considered a per-individual probability of dispersal D

independent of the density. Therefore the number of individuals dispersing from a

population of size x is a random variable with binomial distribution with probability

of success D and x trials. This number is further divided among the j recipient

populations according to a multinomial distribution with probabilities Dfij (where

fij are the fractions of the dispersers from population i what move to populations

j).

3. Results

Period two cycle is the more robust non-trivial dynamics and therefore in this work

we considered r = 3.2 for all the populations. We also considered a small value for

the carrying capacity (K = 250) as we are interested in cases where stochasticity

has a significant effect on the dynamics.

In this case realizations of model (2.7) do not show a clear two period behavior

with the population taking almost all allowed values (see Fig.1).

The two-patch model 2.3 is the most simple setting with some spatiality. The

deterministic case was extensively studied by Hasting10 who found a complex dy-

namics including fractal basin boundaries. In our case (r = 3.2) the dynamics is

very simple. For low values of the dispersal both patches are almost uncoupled and

the solutions for each patch are in phase or out of phase depending on initial condi-

tions. Eventually, as we increase the value of the dispersal parameter D, the patches

synchronize for any initial condition. However the stochastic counterpart does not

show any clear period two solution at any spatial scale: one single patch behaves

in the same way as the total population. The deterministic dynamics is completely

blurred by the intrinsic stochasticity of the demography and dispersal processes.

Can we recover the period two cycle for larger populations? When considering

N = 100 patches in a linear arrangement like in model 2.5 stochasticity still prevents

long term synchronization. This results are markedly different to the obtained in

the deterministic case7

In the figure 2 we show the dynamics observed in one patch together with the

evolution of the total population for two values of the dispersal D. For low disper-

sion, each patch follows its own dynamics which is determined by the (randomly

chosen) initial conditions. Total population averages to the (unstable) equilibrium

of the logistic map x∗ = NK(1 − 1/r). For large values of the dispersal (D = 0.5)



February 6, 2015 22:51 WSPC/INSTRUCTION FILE aparicio

5

there some intermittent and weak synchronization. For some periods of time the to-

tal population oscillates in a somewhat clear way, but far from the values expected

for a full synchronized population (see Fig. 2). To understand the dynamics better

we consider the state of the system mod 2 (i.e. only for even values of t). In a typical

realization the total population stay above the equilibrium value x∗ for some period

of time, then approaches to the equilibrium value to stabilize for some other period

of time below the equilibrium value.

The extra connections provided by the two-dimensional lattice where each patch

interacts with its closest four neighbors is enough to produce long term synchro-

nization (see Fig. 3). For low values of the dispersal dynamics of each patch is

independent of the dynamics of its neighbors and the total population fluctuates

around the equilibrium value x∗ = NK(1 − 1/r). As the value of D increases we

observed a sharp transition to a state where most of the patches are synchronized.

In Fig. 3 we show a typical realization for a high value of the dispersal D = 0.5.

Total population values are close to the deterministic solution corresponding to full

synchronization (solid lines in Fig. 3). However, even in this case we may observe a

destabilization of the system with a (relatively abrupt) transition to the other state

(for example from above x∗ to below it, as displayed in fig 4).

For high values of dispersal (D = 0.5 for example) total population displays a

quasi-deterministic dynamics with a well defined two-period cycle and small fluctu-

ations. However local dynamics observed at a single patch is still greatly dominated

by stochasticity (see Fig. 3). Distribution of population values, however, show a

bimodal distribution as opposed to the case of low diffusion (see Fig. 1 top panel).

In order to characterize the transition to (long-term) synchronization as we

increase the dispersal probability D we proceeded as follow. For low values of D the

total population fluctuates around the equilibrium value x∗ = NK(1 − 1/r). We

defined a diffusion region as the interval (x∗−
√
x∗, x∗+

√
x∗). For a given realization

we computed each pair of consecutive values of the total population and checked if

the difference of them was greater than 2
√
x∗. We then computed the proportion of

those pairs to the total number of pairs in the simulation. For each value of D we

repeated this numerical experiment 10 times and computed the average proportion

P . The results displayed in Fig. 5 show that the transition to high synchronization

takes place about the critical value Dc ∼ 0.35.

4. Discussion and Conclusions

Models for spatially extended populations play a key role in the development of

ecological theory. Levins21 metatapopulation theory provided a simple explanation

for population persistence and species coexistence. While small and isolated pop-

ulations are prone to extinction a collection of such population may persist by a

process of local extinction and recolonization from other patches. Low levels of dis-

persal contributes to stability while higher dispersal promotes synchronization, and

therefore may increase the probability of global extinction (see1,24 for a review, but
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see also20).

Coupled map lattices has been studied for many decades but the great majority

of the works considered the deterministic case. Among the few works in which

stochasticity was included we can mention the paper by Hastings.10 If well most of

the results were obtained for the deterministic case, Hastings included an additive

white noise of variance 10−3 (he considered the normalized logistic map xt+1 =

rxt[1−xt]). Stochastic demography produce fluctuations with Poisson distribution,

and therefore variance is of the same order of the mean. Hastings choice imply that

the population is of the order of 106. However competition is a local process and

therefore we should not to expect such large populations in local competition. In

this work we focused in the more realistic, but surprisingly almost not studied, case

of small local populations where stochasticity almost dominates the dynamics.

When considering an isolated local population, and for the population sizes con-

sidered in this work, stochasticity blurred the deterministic dynamics. The same is

observed in a two-patch model. All the complexity described in the work of Hastings

is lost. Quasi-deterministic dynamics is recovered only for larger population but the

connectivity of the metapopulation plays a fundamental role. For 100 patches ar-

ranged in a ring and linked by the two closest neighbors there is no an appreciable

synchronization and quasi-deterministic dynamics appear in an intermittent, not

well defined, way. Periods of partial synchronization may be followed for long peri-

ods of lack of synchronization what may last hundreds of generations (see Fig. 2, see

also5,11,18,19 for a discussion of long transients in spatially extended populations).

In a two dimensional lattice where each patch is in contact with its four closest

neighbors a sharp transition to synchronization is observed for dispersal D above

the critical value Dc ∼ 0.35. In this case a clear period-two cycle is observed with

relatively small fluctuations. The values of the total population oscillates close to

the values expected for a fully synchronized deterministic coupled map lattice, an

indication of the high level of synchronization. However, even in this case deter-

ministic dynamics is not apparent at local level. In Fig. 3 (bottom panel) we show

the dynamics for the total population together with the dynamics observed in one

random chose patch. While the total population oscillates between two quite well

defined values, local population wander over a wide range in phase space. However

the dynamics is qualitatively different from the observed in an isolated population.

In this last case the distribution of the frequency of population values presents only

one peak close to the upper deterministic value of the period two cycle (see Fig. 1,

top panel). On the other hand, the distribution observed in a local population of

a two-dimensional synchronized lattice is (slightly) bi-modal. Although period two

cycle is not clearly apparent at local level, the synchronization among populations

produce a well defined bimodal distribution for the total population.

Here we want to remark that in all cases presented in this work detection of

density dependent regulation is out of question. However the details vary from case

to case. For low dispersal, the oscillatory deterministic skeleton may be detected at
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local level but not a global level (see Fig. fig-lattice, top panel) where the system

behaves as having a growth rate at low densities r < 3.

For dispersal above the critical value, synchronization of populations, changes

the picture. Local populations oscillate in an irregular way while populations at

larger scales display a clear quasi-deterministic two-period cycle (see Fig. 3, bottom

panel). In this case our results are in the opposite direction of the Hastings:10

Density dependence is more detectable at larger spatial scales.
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Fig. 1. Distribution in the phase space obtained with model 2.7 (top panel) and with the two-
dimensional coupled map lattice (bottom panel, D = 0.5) for one randomly chose patch. After

transients we run the model for 104 time steps and computed the frequency of occurrence of
different population values (expressed as proportions x/K). Normalized deterministic solutions of
model 2.1 (x/K) oscillates between 0.516 and 0.796. For the one patch model distribution does
not show any sign of the two period cycle. Dynamics in a typical patch in the 2D lattice shows a

bi-modal distribution with peaks around the deterministic values . In all cases r = 3.2 and K=250.
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Fig. 2. Local and global dynamics in a ring of 100 patches for high dispersal. Total population

(solid dots) presents some intermittent oscillations. Local populations (open circles) show large
fluctuations in the available range (0,K). Continuous lines are the deterministic values between
the fully synchronized metapopulation oscillates. (D = 0.5, r = 3.2, K=250, D = 0.5.)
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Fig. 3. Local and global dynamics in a lattice of 10 × 10 patches for low (D = 0.05, top panel)
and high dispersal (D = 0.5, bottom panel). For high dispersal the total population (black dots)
oscillates close to the deterministic values for a fully synchronized lattice. r = 3.2, K=250, D = 0.5.
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Fig. 4. Total population (mod 2) in a lattice of 10 × 10 patches. Around t ∼ 6900 the system

change its state in a relatively short window of time of approximately 150 time steps (see bottom
panel). r = 3.2, K=250, D = 0.4
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Fig. 5. Transition to synchronization in a lattice of 10 × 10 patches. For each value of D we
computed the average proportion of consecutive pairs (P ) above and below the diffusion region

using ten replicas.


