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The influence of grain size in the magnetic properties of phase separated manganites is an

important issue evidenced more than a decade ago. The formation of long range ordered phases is

suppressed as the grain size decreases giving place to a metastable state instead of the ground state.

In this work, we present a study of the magnetocaloric effect in the prototypical manganite

La0.5Ca0.5MnO3 as a function of the grain size. The differences obtained using direct and indirect

methods are discussed in the framework of domain walls in the ferromagnetic phase of the system.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4898129]

The discovery in 1997 of giant magnetocaloric effect

(MCE) near room temperature in Gd based compounds1 trig-

gered a constant growth in the number of scientific publica-

tions dedicated to the study of the mentioned effect. The

main motivation is the high cost of production of Gd which

difficult the production of magnetic refrigeration systems in

commercial scale. A large number of compounds has been

proposed to replace Gd such as As based compounds,2 heus-

ler alloys,3 and manganites.4

The MCE in solid materials is produced by the magnetic

entropy change induced when an external magnetic field is

applied. In standard ferromagnetic systems, an increase in

the magnetic field reduces the magnetic entropy and if the

field is applied adiabatically, the lattice thermal entropy

increases, giving rise in the sample temperature change.

In more complex systems, the above simplified scenario

may not be enough to describe the behavior of the entropy

change. A strong coupling between different degrees of free-

dom (magnetic, electronic, etc.) is usually responsible for

such a mixed change of the state of the system by the appli-

cation of a magnetic field. Depending on the characteristics

of the different degrees of freedom the corresponding terms

in the first law of thermodynamic may increase the heat

change. But it can also be compensated, leading in a reduc-

tion, the suppression, or even the inversion of the tempera-

ture change (the so called inverse magnetocaloric effect

(IMCE) (Ref. 5)). Because of this reason, a large number of

scientific works has been devoted to the understanding of the

MCE in cases beyond the standard ferromagnetic systems.6

The most commonly used methods to study MCE can be

divided in two well distinguished groups, according to the

physical quantity that is measured to take account the effect.

The direct methods are those where the temperature

change or the heat exchanged with the environment is

directly measured. Once determined any of these magni-

tudes, the total entropy change can be estimated in non adia-

batic conditions.

In the indirect methods, MCE is obtained through ther-

modynamic relations between the entropy and other

measured magnitude such as magnetization or resistivity.7

The most accepted way to obtain the entropy change is using

a Maxwell’s relation (MR)

@S

@H
¼ @M

@T
:

Then, the entropy change can be estimated performing a nu-

merical integration of a set of magnetization loops at differ-

ent temperatures as

DS T;Hð Þ ¼ 1

DT

ðH

0

M T þ DT;H0ð Þ �M T;H0ð Þ½ �dH0:

The main advantage of this approach is the use of a standard

experimental technique to reach the entropy values, instead

of a specific setup designed to measure the sample tempera-

ture change.8

During early years a lot of work was devoted to demo-

strate that, under certain circumstances, the results obtained

by MR were in good agree with those extracted from direct

methods.8 But the use of the MR in cases where the system

is out of equilibrium can lead to an overestimation of

MCE.6,9 In the last few years, due to the increase of the com-

plexity of the studied compounds, the validity of the MR

approach has been revised by a growing part of the scientific

community.6,10–12

The continuous search for materials with large MCE

stimulated further research in complex magnetic oxides,4,13

including mixed valence manganese based compounds, com-

monly named as manganites. One of the most interesting

properties of manganites is the spatial coexistence of regions

with different magnetic ordering, the so called phase separa-

tion phenomena.14 In systems with phase separation (PS), it

is possible to tune the magnetic and structural properties by a

variety of parameters such as electric and magnetic field,

strain, doping, confinement, and grain size.15–17

In most of the cases of phase separation coexists an

insulating antiferromagnetic (AFM) charge ordered phase
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(CO) and a metallic ferromagnetic one (FM).18 One of the

most studied systems with phase separation is La0.5Ca0.5

MnO3.19,20 In this system, the coexistence between the dif-

ferent magnetic phases can be controlled by external stimuli

(radiation, electric field) or by the modification of synthesis

parameters, particularly modifying the grains size (GS) in ce-

ramic samples.17 The increase in the GS favor the long range

ordering of the CO state over the FM. The low temperature

CO ground state of the system is strongly suppressed for

small GS, and when it is increased the system can reach the

CO state. The influence of GS in the MCE was recently stud-

ied in phase separated systems revealing a complex scenario,

where the validity of the methods used to estimate the mag-

nitude of the effect must be carefully revised.21,22

In this work, we present a study of MCE in the manganite

La0.5Ca0.5MnO3 which presents phase separation. The study

will be performed as a function of GS. We will compare the

results obtained from differential thermal analysis (DTA) and

from indirect measurements with particular focus on the use

of the MR relation. The hysteresis of the magnetization loops

will be also analyzed and described in the framework of do-

main walls displacement and related with the differences

observed between direct and indirect methods.

It has to be noted that the understanding of the phase

separation in the La0.5Ca0.5MnO3 system escapes to the

aim of this work. We will assume the phase separated sce-

nario accepted and widely discussed in previous works,17,23

and we will not deal neither with the origin of the phase

separation nor with the possibilities of any alternative

description.

Polycrystalline samples of La0.5Ca0.5MnO3 were synthe-

sized following a citrate/nitrate decomposition method using

99.9% purity reactants. To increase grain size, sub sequential

thermal treatments have been performed to the samples as is

decrypted in Levy et al.16 The grain size of the samples was

estimated from SEM microphotographs.

Magnetization measurements were made in a Quantum

Design VersaLab with the VSM and the heat capacity acces-

sories. For the DTA measurements, we used a home made

system formed by two Cernox CX-1080-SD thermometers

(manufactured by Lake Shore Cryotronics) on a Teflon piece

to ensure thermal insulation between the sample and the ref-

erence thermometers. The reference used was a piece of

alumina.

The whole system was mounted in a VersaLab’s trans-

port puck, allowing us to perform magnetization, Cp and

DTA measurements in the same range of magnetic field and

temperature.

As it was previously reported, the change of the GS of

the samples induces important changes in the magnetic

behavior. We can see those changes in Figure 1, where we

show magnetization measurements of the entire set of sam-

ples with an applied field of 1 T on cooling. The grain size of

the samples goes from 180 nm in sample A to 1300 nm in

sample E (see table in Figure 1 for details).

All the samples present an FM ordering at around the

same temperature Tc¼ 250 K but, while the sample with

smallest GS (A) remains FM in all the temperature range

below Tc, a clear FM to anti ferromagnetic transition is

observed in the rest of the samples at T¼ 150 K.

Measurements are performed with H¼ 1, which is

enough to saturate the FM phase but not strong enough to

induce a ferromagnetic fraction enlargement.24

Because of that the FM fraction at low temperature can

be estimated as the ratio between the magnetization at 50 K

of the sample and the same value on the sample A (fully

FM).

In the inset of Figure 1, we show the FM fraction at low

temperature as a function of the GS, being close to 20% in

the sample with the largest GS. This change in the magnetic

behavior can be interpreted as an evidence of the frustration

of the CO state (associated with the AFM ordering) due to

small GS. The localization of the charges implies the pres-

ence of a long range Jahn-Teller distortion that is suppressed

by the disruptive change in the lattice due to the grain bound-

ary.17 Similar behavior has been reported in other com-

pounds,23,25,26 indicating that the GS is an extra ingredient to

take into account when the magnetic properties are studied.

To analyze how GS affects the MCE, we used two inde-

pendent methods to estimate the magnitude of DS and DT.

In the first method, we used isothermal magnetization

curves and the above mentioned Maxwell’s relation to obtain

the adiabatic entropy change due to the application of the

magnetic field. In Figure 2, we present the temperature de-

pendence of the entropy change for the different samples

with an applied magnetic field of 3 T.

In all the samples, we observe a negative peak close to

Tc that can be associated to the paramagnetic (PM) to FM

transition. The maximum entropy change remains almost

constant at 2–3 J/kg-K for the entire series of samples.

An additional (positive) peak is observed at a lower tem-

perature, around 150 K. The maximum entropy change in

this peak increases as the grain size became larger.

According with the magnetization data, this peak can be

associated with the FM to CO transition.

The obtained value of DS for the sample E (largest GS)

for H¼ 3 T is 10 J/kg-K, similar to the obtained for pure Gd

around room temperature27 and in other half doped mangan-

ites such as Pr0.5Sr0.5MnO3 (Ref. 28) and Nd0.5Sr0.5MnO3

(Ref. 29) measured using the same method.

FIG. 1. Magnetization as a function of temperature with an applied magnetic

field of 1 T for samples with different grain size. Inset: ferromagnetic frac-

tion at 50 K as a function of grain size. Table: grain size for each sample.

152411-2 Quintero et al. Appl. Phys. Lett. 105, 152411 (2014)
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According with the presented data, we can conclude that

the MCE has been enhanced increasing the grain size, since

an additional peak in the entropy change is observed and its

magnitude is controlled by the GS.

To complete the picture we performed differential ther-

mal analysis measurements, allowing us to determine the sam-

ple temperature change during the application of the magnetic

field. In all the cases, the sample was zero field cooled to the

target temperature and then the field was applied with a con-

stant rate of 200 Oe/s and the heat exchanged with the envi-

ronment has been taken into account.30

In Figure 3, we present the adiabatic temperature change

(DTAD) extracted from DTA measurements for samples A, C,

and E. A positive peak can be observed around 225 K. This

is consistent with the expected behavior from the entropy

change associated with the PM to FM transition.

Surprisingly, we do not observe any peak related with the

FM to CO transition. It has to be noted that according to the

entropy change values obtained from magnetization, the

expected temperature change should be three times larger

than the observed from the PM/FM transition.

Another important aspect to consider is the presence of

hysteresis in the magnetization as a function of magnetic

field curves. To examine these feature in depth, we calcu-

lated the magnetic work (W) defined as the area enclosed

between the curves obtained increasing and decreasing the

magnetic field (between 0 and 3 T). In Figure 4, we present

W as a function of temperature for all the measured samples.

FIG. 2. Entropy change as a function of temperature for all the samples with

a magnetic field of 3 T. Inset: Intensity of both peaks in the entropy change

as a function of GS.

FIG. 3. Adiabatic temperature change (DTAD) for samples A, C, and E as a

function of temperature when the magnetic filed is increased from 0 to 3 T.

The values of DTAD where extracted from DTA measurements taking into

account the heat exchange between the sample and the sample holder.

FIG. 4. Magnetic work defined as the area enclosed by the increasing and

decreasing magnetic field curves as a function of temperature for different

samples. In the insets we show magnetization loops at 250 K (black), 170 K

(red), and 60 K (blue).

152411-3 Quintero et al. Appl. Phys. Lett. 105, 152411 (2014)
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In all the samples, W is almost zero above the Curie

temperature, indicating the absence of hysteresis in the para-

magnetic phase. But when the FM phase is present we

observe a strong relation between the temperature depend-

ence of W and grain size.

For smaller grain size (samples A, B, and C), the mag-

netic work presents an increase on cooling giving rise to a

constant value below 175 K. Samples D and E present a

maximum at 175 K, decreasing its value and keeping con-

stant below 75 K. It is interesting to note that in the tempera-

ture range in which W peak occurs coincides with the range

where the CO phase appears.

The temperature behavior of W can be explained consid-

ering the Jiles-Atherton model31 to describe the magnetiza-

tion curves. In this model, the hysteresis is produced by

impedances to domain wall motion caused by pinning sites

encountered by the domain walls as the move. Because of

that the system at a given field H cannot reach the global

minimum energy state, giving place to a hysteretic magnet-

ization loop.

The pinning sites could be grain boundary or any kind

of inhomogeneities within a grain, for example, tangles of

dislocation and precipitates or nonmagnetic inclusions.

The model consider that the domain walls are flexible so

that they not only can move but also can bend. When the do-

main walls bend while being held by a pinning site, it results

initially in a reversible change in the magnetization.

In our case, the formation of the CO phase increase the

amount of pinning centers in the sample, enhancing the re-

versible change in the magnetization.

On cooling, at 200 K, the CO phase start a nucleation

process, increasing the density of pinning sites in the mate-

rial which is reflected in the increase of W. Once the CO

phase is nucleated, the nuclei start to grow in size, decreas-

ing the amount of FM phase present. As a consequence, W is

reduced as the magnetic signal decreases.

The origin of the peak in the DS is the presence of a re-

versible component to the magnetization in this temperature

region.

The energy associated with the magnetization difference

is not exchanged with the environment because is used inter-

nally to bend the wall domain and recovered when the mag-

netic field is turned off. Because of that we did not observe a

temperature change in the sample in this temperature region.

The reversible nature of the bending of domain walls makes

the entropy change calculated by Maxwell’s relation con-

vertible in magnetic work and not in heat exchanged with

the environment.

In summary, we presented a study about the influence of

grain size in the magnetic and magnetocaloric properties of

La0.5Ca0.5MnO3. The system is characterized by two well

distinguished magnetic transitions, a PM to FM one at 225 K

and a FM to a phase separated COþ FM at 150 K. The MCE

associated with the first transition do not present a significant

dependence with grain size, and results extracted from mag-

netization measurements are in good agreement with those

obtained from DTA measurements.

The second transition, related with the formation of the

CO phase, presents a strong dependence with grain size. The

entropy change obtained from magnetization measurements

is not consistent with the temperature change extracted from

DTA measurements.

The hysteretic behavior in the magnetization loops

which was explained using a Jiles and Atherton model of

domain walls in the FM phase. In this framework, the for-

mation of the CO phase modifies the density of pinning

sites increasing the hysteresis in the magnetization loops.

This additional pinning site increases the magnetic en-

tropy calculated by Maxwell relation, but this entropy

cannot be used for applications since it is not converted in

heat and is related with the reversible bending of the do-

main walls.

It is just an example of how the inadequate use of the

Maxwell’s relation can lead to a fake conclusion. Even

when the entropy change observed was larger than the

observed in Gd based compound it is not possible to use

this change in applications. The presence of hysteresis in

the magnetization vs magnetic field curves is indicative of

the presence of an additional term in the first law of thermo-

dynamics that must be considered before any conclusion. In

the studied case, this feature was observed in the FM to PS

transition; meanwhile, it is not present in the FM transition,

where the entropy change is converted in a temperature

change as expected.
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