Canad. Math. Bull. Vol. **XX** (Y), ZZZZ pp. 1–15

Short Geodesics of Unitaries in the *L* 2 Metric

Esteban Andruchow

Abstract. Let M be a type II₁ von Neumann algebra, τ a trace in M, and $L^2(\mathcal{M}, \tau)$ the GNS Hilbert space of τ . We regard the unitary group $U_{\mathcal{M}}$ as a subset of $L^2(\mathcal{M}, \tau)$ and characterize the shortest smooth curves joining two fixed unitaries in the *L* ² metric. As a consequence of this we obtain that $U_{\mathcal{M}}$, though a complete (metric) topological group, is not an embedded riemannian submanifold of $L^2(\mathcal{M}, \tau)$

1 Introduction

Let M be a type II_1 von Neumann algebra with a faithful and normal tracial state τ . Let $L^2(\mathcal{M}, \tau)$ be the Hilbert space obtained by completion of M with the norm $\|x\|_2 = \tau (x^*x)^{1/2}.$ Denote by $U_{\mathcal{M}}$ the group of unitaries of M. Then $U_{\mathcal{M}}$, as a subset of $L^2(\mathcal{M}, \tau)$, is a complete metric space and a topological group. The Hilbert space norm induces on $U_{\mathcal{M}}$ the strong operator topology. These are well-known facts (see [10]). In a previous note [1], we showed that $U_{\mathcal{M}}$ cannot be embedded as a differentiable submanifold in a way which makes the product of unitaries a differentiable map. Here we show that the same question, dropping the requirement for the product, again has a negative answer: $U_{\mathcal{M}} \subset L^2(\mathcal{M}, \tau)$ is not an embedded riemannian submanifold.

Hence, it makes sense to study the following: are there curves of unitaries of M which have minimal length measured in the *L* ² metric? We measure the length of a curve of unitaries in the following way: let $\mu(t)$ be a curve in U_M , with $\mu(0) = \nu$ and $\mu(1) = u$, which is piecewise C^1 as a curve in $L^2(\mathcal{M}, \tau)$, then the length of μ is

$$
\ell(\mu) = \int_0^1 \|\dot{\mu}(t)\|_2 \, dt,
$$

where, as is the usual notation, $||x||_2 = \tau (x^*x)^{1/2}$. The usual norm of M is denoted by $\| \cdot \|$.

Suppose that we fix *u* and *v*. Is there a shortest curve joining *u* and *v* inside $U_{\mathcal{M}}$? We obtain the following answer (Theorem 3.4):

There exists $x = x^* \in M$ *with* $||x|| \leq \pi$ *such that* $v^*u = e^{ix}$ *. The curve*

 $\delta(t) = v e^{itx}$

*has minimal length among piecewise C*¹ *curves of unitaries joining u and v.*

Received by the editors August 22, 2003.

AMS subject classification: 46L51, 58B10, 58B25.

Keywords: unitary group, short geodesics, infinite dimensional riemannian manifolds.

c Canadian Mathematical Society ZZZZ.

- 1. If $||x|| < \pi$, then such x is uniquely determined and the curve δ is unique *among piecewise C*[∞] *minimizing curves.*
- 2. Otherwise ($||x|| = \pi$), δ is non unique. Other minimizing piecewise C^2 curves *are of the form* $\gamma(t) = ve^{itL_{\xi}}$, with $\xi = J\xi \in L^4(\mathcal{M}, \tau)$ *.*

In both cases, the shortest (piecewise C^1) curve has length $||x||_2$.

The first condition defines a set of unitaries, namely:

$$
\{u \in U_{\mathcal{M}} : v^*u = e^{ix} \text{ for } x^* = x \text{ with } ||x|| < \pi\},\
$$

which is an open neighbourhood of *v* in the norm topology, but not in the *strong operator* topology. In [7] Popa and Takesaki found what E. Michael [6] calls a geodesic structure for the unitary group of certain type $II₁$ factors. Such a structure has strong topological implications, leading for example to a complete elucidation of the homotopy type of the unitary group for such factors, in the strong operator topology. We wanted to know if the naive "geodesic" curves, of the form $\delta(t) = v e^{itx}$, could be used to obtain a geodesic structure for all type $II₁$ von Neumann algebras in the strong operator topology, as is the case in the norm topology for arbitrary C^{*}-algebras [2]. The result above proves that one cannot.

We call these curves δ geodesics, because they are the geodesics of a covariant derivative defined in $U_{\mathcal{M}}$ in a natural way. If $U_{\mathcal{M}}$ were an embedded submanifold of $L^2(\mathcal{M}, \tau)$, this covariant derivative would be the Levi-Civita derivative. Therefore the result above also shows that $U_{\mathcal{M}}$ is not a submanifold of $L^2(\mathcal{M}, \tau)$.

This study was inspired by the paper by Durán, Mata-Lorenzo and Recht $[4]$ which studied minimal curves of projections for the *p*-norms.

2 Geodesics in $U_{\mathcal{M}}$

Let us first define the tangent spaces of $U_{\mathcal{M}}$ in the L^2 topology. Let $J: L^2(\mathcal{M}, \tau) \to$ $L^2(\mathcal{M}, \tau)$ be the involution, *i.e.*, the extension to $L^2(\mathcal{M}, \tau)$ of the usual involution $*$ of M. Clearly $J^2 = I$. Let $L^2(\mathcal{M}, \tau)_+ = {\{\xi \in L^2(\mathcal{M}, \tau) : J\xi = \xi\}}$ and $L^2(\mathcal{M}, \tau)_- =$ $\{\xi \in L^2(\mathcal{M}, \tau) : J\xi = -\xi\}$, which are *real* Hilbert spaces. $L^2(\mathcal{M}, \tau)$ is the completion in the L^2 norm of the set of antihermitian elements of M ($x^* = -x$), which is the tangent space of $U_{\mathcal{M}}$ at the identity 1 in the norm topology. Let us postulate $T(U_{\mathcal{M}})_1 := L^2(\mathcal{M}, \tau)_-.$ For $u \in U_{\mathcal{M}}$, the map $L_u: L^2(\mathcal{M}, \tau) \to L^2(\mathcal{M}, \tau)$, defined on $\mathcal{M} \subset L^2(\mathcal{M}, \tau)$ as $L_u(x) = ux$ (*i.e.*, the GNS representation of *u* as an operator in $L^2(\mathcal{M}, \tau)$) is a unitary operator. Then we choose $T(U_{\mathcal{M}})_u = L_u(L^2(\mathcal{M}, \tau)_-)$. Also, right multiplication $R_u(x) = xu$ extends to a unitary operator in $L^2(\mathcal{M}, \tau)$. For brevity, we shall write $u\xi$ and $u(L^2(\mathcal{M}, \tau))$ (resp. ξu and $(L^2(\mathcal{M}, \tau)_-)u$) instead of $L_u \xi$ and $L_u(L^2(\mathcal{M}, \tau)_-)$ (resp. $R_u(\xi)$ and $R_u(L^2(\mathcal{M}, \tau)_-)$).

Let μ be a curve of unitaries which is C^1 as a curve in the Hilbert space $L^2(\mathcal{M}, \tau)$, and let *X* be a differentiable vector field in a neighbourhood of $\{\mu(t): t \in [0,1]\},\$ which takes values in $TU_{\mathcal{M}}$ when restricted to $U_{\mathcal{M}}$, *i.e.*, $X_{\mu(t)} \in \mu(t)L^2(\mathcal{M}, \tau)$. For obvious reasons, such a field will be called a *tangent* vector field along µ. The covariant derivative of *X* along μ is given by:

$$
\frac{DX}{dt} = \frac{1}{2}\{\dot{X} - \mu J(\dot{X})\mu\},\,
$$

where \dot{X} denotes the usual derivative with respect to *t* in the Hilbert space $L^2(\mathcal{M}, \tau)$. This formula is obtained simply by projecting *X*˙ orthogonally (with respect to the inner product given by the real part of τ) onto $T(U_{\mathcal{M}})_{\mu}$. Note that if $\mu(t)$ is a C^2 curve in $U_{\mathcal{M}}$, then μ is a tangent vector field along μ as usual. In particular, μ is a geodesic if

$$
0 \equiv \frac{D\dot{\mu}}{dt}
$$

or equivalently

(1) $\ddot{\mu} = \mu \dot{I}(\ddot{\mu}) \mu.$

It is straightforward to verify that if $x \in M$ with $x^* = x$, and $v \in U_M$, then $\mu(t) =$ ve^{itx} is a C^{∞} curve with $\dot{\mu}(t) = i v x e^{itx}$.

There are other exponentials which give curves in $U_{\mathcal{M}}$. If $\xi \in L^2(\mathcal{M}, \tau)_+$, then ξ induces a possibly unbounded selfadjoint operator L_{ξ} on $L^2(\mathcal{M},\tau)$, affiliated to $\mathcal M$ (see [3, 9]). Namely, L_{ξ} is the closure of the linear map L_{ξ} : $\mathcal{M} \subset L^2(\mathcal{M}, \tau) \to$ $L^2(\mathcal{M}, \tau)$ given by $L_{\xi}(m) = Jm^* J \xi$. Therefore $\mu(t) = e^{itL_{\xi}}$ is a continuous curve in the L^2 topology, which is differentiable in $L^2(\mathcal{M}, \tau)$. Indeed, the topological embedding $U_{\mathcal{M}} \subset L^2(\mathcal{M}, \tau)$ can be regarded as evaluation at the vector $1 \in L^2(\mathcal{M}, \tau)$. Strictly speaking, one should write $\mu(t) = e^{itL_{\xi}}1$. Since 1 lies in the domain of the operator L_{ξ} [9], by Stone's theorem $\mu(t)$ can be differentiated, and the derivative equals (see [8])

$$
\dot{\mu}(t)=ie^{itL_{\xi}}\xi.
$$

However, this curve $\dot{\mu}(t)$ cannot be differentiated again (in $L^2(\mathcal{M}, \tau)$) if ξ^2 does not belong to $L^2(\mathcal{M}, \tau)$. It could be differentiated in $L^1(\mathcal{M}, \tau)$. Clearly it is not in general a C^{∞} curve of $L^2(\mathcal{M}, \tau)$.

Lemma 2.1 Let $\xi \in L^2(\mathcal{M}, \tau)_+$, then the curve $\mu(t) = e^{itL_{\xi}}$ is C^{∞} if and only if L_{ξ} is *bounded*, i.e., $\xi \in M$.

Proof The "if" part is clear. Suppose that μ has derivatives of any order. This implies that all the powers L_{ξ}^{k} , $k \geq 1$ lie in $L^{2}(\mathcal{M}, \tau)$. Denote by *m* the probability measure on $\mathbb R$ given by the trace of the spectral measure of L_{ξ} . Then

$$
\infty > \|L_{\xi}^{k}\mathbf{1}\|_{2}^{2} = \int_{\mathbb{R}} \lambda^{2k} dm(\lambda), \quad \text{for all } k \geq 1.
$$

The above statement means that the map $\mathbb{R} \to \mathbb{R}$, $\lambda \mapsto \lambda$ lies in $L^{\infty}(\mathbb{R}, m)$, *i.e.*, *m* has support contained in a bounded interval $[-K, K]$. This implies that L_{ξ} is bounded by *K*, and therefore lies in M.

Note that if ξ lies in $L^2(\mathcal{M}, \tau)$ but not in $L^4(\mathcal{M}, \tau)$, then $\mu(t) = v e^{itL_{\xi}}$ is C^1 but not C^2 , *etc.* Indeed, $\mu(t) = iL_{\xi}e^{itL_{\xi}}$ is continuous in the L^2 norm: if $t \to t_0$, then

$$
\|\dot{\mu}(t) - \dot{\mu}(t_0)\|_2 = \|e^{i(t-t_0)L_{\xi}}\xi - \xi\|_2 \to 0.
$$

Let us call a C^2 curve a *geodesic* in $U_{\mathcal{M}}$ if it is a solution of the differential equation (1).

Proposition 2.2 The C^{∞} *geodesics in* $U_{\mathcal{M}}$ *are of the form* $\delta(t) = ve^{itx}$ *, for* $x^* =$ *x* ∈ M*.*

Proof First note that if $x^* = x$, then $\delta(t) = ve^{itx}$ satisfies (1). Let μ be a C^{∞} curve in $L^2(\mathcal{M}, \tau)$ with values in $U_{\mathcal{M}}$, which is a solution of (1), parametrized in the interval [0, 1], with $\mu(0) = \nu$. Let $i\xi = \mu(0)$ and $\xi' = \mu(0)$, which lie in $L^2(\mathcal{M}, \tau)$ because μ is *C*∞.

If ν is a solution of (1), then $\nu^*\nu$ is another solution. Since $J(\nu^*\nu) = J(\nu)\nu$,

$$
v^* \nu J(v^* \ddot{\nu}) v^* \nu = v^* \nu J(\ddot{\nu}) \nu = v^* \ddot{\nu} = v^* \nu.
$$

Therefore we may suppose $v = 1$ without loss of generality.

Differentiating the identity $\mu(t)\mu^*(t) = 1$, one obtains (we omit the parameter *t*)

$$
\dot{\mu}\mu^* + \mu J(\dot{\mu}) = 0
$$

(μ may lie outside M, so we find more appropriate to write $J(\mu)$ instead of μ^*). Differentiating again,

$$
\ddot{\mu}\mu^* + 2\dot{\mu}J(\dot{\mu}) + \mu J(\ddot{\mu}) = 0.
$$

At $t = 0$ one obtains the relations

$$
i\xi + J(i\xi) = 0
$$
, i.e. $\xi \in L^2(\mathcal{M}, \tau)_+$

and

$$
2\xi' + 2i\xi J(i\xi) = 0, \quad \text{i.e. } \xi' = -\xi J(\xi) = -\xi^2.
$$

Consider the curve $\gamma(t) = e^{itL_{\xi}}$. Then $\dot{\gamma}(t) = ie^{itL_{\xi}}\xi$ and $\ddot{\gamma}(t) = e^{itL_{\xi}}\xi'$. Therefore γ is C^2 ($\xi' \in L^2(\mathcal{M}, \tau)$), and the relations above show that it is a solution of (1), satisfying

$$
\dot{\gamma}(0) = i\xi = \dot{\mu}(0)
$$
 and $\ddot{\gamma}(0) = \xi' = \ddot{\mu}(0)$.

We claim that these facts imply that $\mu = \gamma$. To prove this claim, one needs a result on uniqueness of solutions of second order differential equations on Banach spaces. Let us first obtain a new form for equation (1). Consider again the identity $\ddot{\mu}\mu^*$ + $2\mu J(\mu) + \mu J(\mu) = 0$ and multiply it on the right by μ

$$
\ddot{\mu} + 2\dot{\mu} J(\dot{\mu})\mu + \mu J(\ddot{\mu})\mu = 0.
$$

Then the identity (1) $\ddot{\mu} = \mu J(\ddot{\mu})\mu$, replaced above gives

(2) ¨µ = −µ˙ *J*(˙µ)µ,

which we shall adopt. We need a Banach space on which this equation will be considered. Our $L^2(\mathcal{M}, \tau)$ is not appropriate, since the right-hand side of the equation does not make sense for arbitrary $\mu(t)$ with derivatives in $L^2(\mathcal{M}, \tau)$, because $\mu J(\mu)$ may lie outside $L^2(\mathcal{M}, \tau)$. We are not worried about existence—we already know

the solutions—we need a uniqueness result. Let us consider $L^4(\mathcal{M}, \tau)$. The map $L^4(\mathcal{M},\tau) \to L^2(\mathcal{M},\tau), \xi \mapsto \xi J(\xi)$ is differentiable. It follows that the function

$$
F(x,\xi) = -\xi J(\xi)x
$$

with variables $x \in \mathcal{M}$ and $\xi \in L^4(\mathcal{M}, \tau)$ and values in $L^2(\mathcal{M}, \tau)$, satisfies a Lipschitz condition. Therefore the differential equation (2), $\ddot{\mu} = F(\mu, \dot{\mu})$ has unique local solutions for any given set of initial conditions. Note that any solution μ of (2) should satisfy $\mu \in L^4(\mathcal{M}, \tau)$ anyway.

Therefore $\mu(t) = e^{itL_{\xi}}$. The fact that μ is C^{∞} implies, by the lemma above, that $\xi = x$ is a selfadjoint element of M. \blacksquare

Remark 2.3 The same argument can be used to prove that the $C²$ geodesics are of the form $\delta(t) = v e^{itL_{\xi}}$, with $\xi \in L^4(\mathcal{M}, \tau)$.

Our next result is borrowed and adapted from [4]. There it is stated for variations of geodesics of the grassmannian manifold (*i.e.,* manifold of selfadjoint projections) of a *C* ∗ -algebra with trace. Also, there the *p*-length functionals are considered (induced by the *p*-norms $||x||_p = \tau((x^*x)^{p/2})^{\frac{1}{p}}$, for $p = 2n$. We are interested only in the case $p = 2$. Our exposition in the rest of this section follows [4] with slight modifications. We want to compute the extremals of the functional

$$
\ell(\mu) = \int_0^1 \|\dot{\mu}(t)\|_2 \, dt.
$$

Let *U*(*t*, *s*): [0, 1] × (− ϵ , ϵ) → *U*_M be a variation of a curve μ : [0, 1] → *U*_M, with fixed endpoints, *i.e.,*

$$
U(t,0) = \mu(t) \quad \text{for all } t \in [0,1],
$$

and

$$
U(0,s) = \mu(0), \quad U(1,s) = \mu(1) \quad \text{for all } s \in [0,1].
$$

The variation is through piecewise C^2 curves, *i.e.*, for each fixed *s*, the curve $U(t, s)$ is piecewise C^2 in the parameter *t*, and vice versa. Denote by $\delta\ell(s)$ the *variation*

$$
\delta\ell(s) = \frac{\partial}{\partial s} \int_0^1 \left\| \frac{\partial U}{\partial t} \right\|_2 dt.
$$

The extremals of ℓ are the curves μ such that $\delta\ell(0) = 0$ for any $U(t, s)$ as above. Denote $V = \frac{\partial U}{\partial t}$ and $W = \frac{\partial U}{\partial s}$. Let us compute

$$
\delta\ell(s) = \frac{\partial}{\partial s} \int_0^1 \left\| \frac{\partial U}{\partial t} \right\|_2 dt = \int_0^1 \frac{\partial}{\partial s} \tau \left(J \left(\frac{\partial U}{\partial t} \right) \frac{\partial U}{\partial t} \right)^{1/2} dt.
$$

An easy computation shows that if $\xi(s) \neq 0$ is differentiable in $L^2(\mathcal{M}, \tau)$, then

$$
\frac{d}{ds}\tau\big(\,J(\xi(s))\xi(s)\big)^{1/2}=\frac{1}{2\|\xi(s)\|_2}\tau\big(\,J\big(\,\frac{dx(s)}{ds}\big)\,x(s)+J(x(s))\frac{dx(s)}{ds}\big)\,.
$$

In our case this gives

$$
\delta \ell(s) = \int_0^1 \frac{1}{2||V||_2} \tau \left(\left[\frac{\partial}{\partial s} J(V) \right] V + J(V) \frac{\partial}{\partial s} V \right) dt.
$$

We shall assume that the curve μ is parametrized by a multiple of arc length. In other words, $||V||_2$ is constant for $s = 0$. One should make the further assumption that *V* does not vanish for all *s*,*t*, in order that the above expression makes sense. Let us point out that at the final stages of this computation we put $s = 0$. Therefore it suffices to have that $V(t, s)$ does not vanish for all t and small s (which is attained if we suppose μ with constant speed).

Since *U* is (piecewise) *C* ² we may interchange

$$
\frac{\partial}{\partial s}V = \frac{\partial}{\partial s}\left(\frac{\partial U}{\partial t}\right) = \frac{\partial}{\partial t}\left(\frac{\partial U}{\partial s}\right) = \frac{\partial}{\partial t}W.
$$

Therefore the variation formula equals

$$
\frac{1}{2}\int_0^1 \tau\left(J\left(\frac{\partial}{\partial t}W\right)\frac{V}{\|V\|_2}+J\left(\frac{V}{\|V\|_2}\right)\frac{\partial}{\partial t}W\right) dt.
$$

Fix *s*, and let $0 = t_0 < t_1 < \cdots < t_n = 1$ be a partition of [0, 1] such that $U(t, s)$ is $C²$ in the interior of the smaller intervals. We may integrate the above formula by parts in each interval [*ti*−1,*ti*] to obtain

$$
\frac{1}{2} \int_{t_{i-1}}^{t_i} \tau \left(J\left(\frac{\partial}{\partial t} W\right) \frac{V}{\|V\|_2} + J\left(\frac{V}{\|V\|_2}\right) \frac{\partial}{\partial t} W \right) dt =
$$
\n
$$
\frac{1}{2} \left\{ \tau \left(J(W) \frac{V}{\|V\|_2} + W J\left(\frac{V}{\|V\|_2}\right) \right) \right\} \Big|_{t_{i-1}}^{t_i}
$$
\n
$$
- \frac{1}{2} \int_{t_{i-1}}^{t_i} \tau \left(J(W) \frac{\partial}{\partial t} \left(\frac{V}{\|V\|_2} \right) + W \frac{\partial}{\partial t} J\left(\frac{V}{\|V\|_2}\right) \right) dt.
$$

Recall from the beginning of this section the definition of the covariant derivative of a tangent vector field X along a curve μ of unitaries:

$$
\frac{DX}{dt} = \frac{1}{2}\{\dot{X} - \mu J(\dot{X})\mu\}.
$$

In our case, for each fixed *s*, the field $\frac{V}{\|V\|_2}$ is tangent along the curve $U(t, s)$, so we have

$$
\frac{D}{dt}\frac{V}{\|V\|_2} = \frac{1}{2}\left\{\frac{\partial}{\partial t}\frac{V}{\|V\|_2} - UJ\left(\frac{\partial}{\partial t}\frac{V}{\|V\|_2}\right)U\right\}.
$$

Now we differentiate the identity $U^*U = 1$ with respect to *t*. It was pointed out in the introduction that the product of unitaries is not a differentiable map of the arguments in the L^2 topology. However a product $u(t)v(t)$ of C^2 curves of unitaries

 $u(t)$ and $v(t)$ can be differentiated twice with respect to *t*. Indeed, the first derivative yields $\dot{u}v + u\dot{v}$. Since *u* and *v* are C^2 , the norms $\|\dot{v}(t)\|_2$ and $\|\dot{u}(t)\|_2$ are uniformly bounded, and the second derivative can be computed. In our case, the derivative of the identity $U^*U = 1$ gives

$$
V = -U J(V)U,
$$

i.e.,

$$
\frac{V}{\|V\|_2} = -U J\left(\frac{V}{\|V\|_2}\right) U.
$$

Before computing the second derivative we put $s = 0$

$$
\frac{\dot{\mu}}{\|\dot{\mu}\|_2} = -\mu J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_2}\right)\mu.
$$

Differentiating this expression with respect to t (recall that we assume that μ is parametrized proportionally to arc length, *i.e.*, $\|\mu\|_2$ is constant)

$$
\frac{\partial}{\partial t}\frac{\dot{\mu}}{\|\dot{\mu}\|_2} = -\dot{\mu}J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_2}\right)\mu - \mu J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_2}\right)\dot{\mu} - \mu J\left(\frac{\partial}{\partial t}\frac{\dot{\mu}}{\|\dot{\mu}\|_2}\right)\mu.
$$

Combining these one obtains

$$
2\frac{\partial}{\partial t}\frac{\dot{\mu}}{\|\dot{\mu}\|_2} = 2\frac{D}{dt}\frac{\dot{\mu}}{\|\dot{\mu}\|_2} - \frac{\dot{\mu}J(\dot{\mu})}{\|\dot{\mu}\|_2}\mu - \mu\frac{J(\dot{\mu})\dot{\mu}}{\|\dot{\mu}\|_2},
$$

with an analogous expression for 2 *J*($\frac{\partial}{\partial t}\frac{\dot{\mu}}{\|\dot{\mu}\|_2}$). We add the integrals over the intervals [*ti*−1,*ti*], and use these relations to obtain,

$$
\delta \ell(s) = \frac{1}{2} \sum_{i=1}^{n} \left\{ \tau \left(J(W) \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}} + W J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \right) \right\} \Big|_{t_{i-1}}^{t_{i}}
$$

+
$$
\frac{1}{2} \int_{0}^{1} \tau \left(J(W)(\mu \dot{\mu} J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) - 2 J(W) \frac{D}{dt} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}
$$

+
$$
W(\mu^{*} \dot{\mu} J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) + J\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}} \dot{\mu} \mu^{*}\right) - 2 J\left(\frac{D}{dt} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}\right) \right) dt.
$$

We can deal better with this expression if we relate it to the second differential of the map $x \mapsto \tau(x^*x)$, which is the (real) bilinear form

$$
H: L^{2}(\mathcal{M}, \tau) \times L^{2}(\mathcal{M}, \tau) \to \mathbb{R}, \quad H(\xi, \eta) = \tau(\xi J(\eta) + J(\xi)\eta).
$$

Then the expression for the variation of ℓ becomes

$$
\delta\ell(0) = \frac{1}{2} \sum_{i=1}^{n} H\left(\frac{\mu}{\|\mu\|_{2}}, W\right) \Big|_{t_{i-1}}^{t_{i}} + \int_{0}^{1} H\left(\mu^* W, \frac{1}{2\|\mu\|_{2}} (J(\mu)\mu - \mu J(\mu))\right) - H\left(\frac{D}{dt} \frac{\mu}{\|\mu\|_{2}}, W\right) dt.
$$

A fact used here is that the field *W* satisfies relations analogous as *V*, *i.e.*, $U^*W =$ $-I(W)U$. A remark is in order. The element $\mu J(\mu)$ (resp. $\mu J(\mu)$) lies in $L^2(\mathcal{M}, \tau)$. This is a consequence of μ being (piecewise) C^2 , namely, its second derivatives, which involve such terms, lie in $L^2(\mathcal{M}, \tau)$.

Note that $\frac{1}{\|\mu\|_2} (J(\mu)\mu - \mu J(\mu))$ lies in $L^2(\mathcal{M}, \tau)_+$ (is "hermitian") and μ^*W lies in $L^2(\mathcal{M}, \tau)$ ₋ ("antihermitian"). Indeed, the latter has just been remarked. The former holds because μ can be approximated by elements x of \mathcal{M} , and therefore $J(\mu)\mu - \mu J(\mu)$ can be approximated by $x^*x - xx^*$. Now if $\xi \in L^2(\mathcal{M}, \tau)$ and $\eta \in L^2(\mathcal{M}, \tau)_+$, it is clear that $H(\xi, \eta) = 0$. Therefore we arrive at our final expression for the variation

(3)
$$
\delta \ell(0) = -\frac{1}{2} \sum_{i=1}^{n} H\left(\frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right) \Big|_{t_{i-1}}^{t_{i}} - \int_{0}^{1} H\left(\frac{D}{dt} \frac{\dot{\mu}}{\|\dot{\mu}\|_{2}}, W\right) dt.
$$

Let us transcribe Theorem 3.3 by Durán, Mata-Lorenzo and Recht $[4]$, which applies to our situation, with minor adaptations, once we have (3) analogous to their expression for the variation.

If a piecewise C^2 curve μ has minimal length among all the piecewise C^2 curves of unitaries joining the same endpoints, then clearly $\delta\ell(0)$ vanishes for any variation *U* of μ . As is standard use, let us call a curve for which all variations make $\delta\ell(0)$ vanish, an extremal of ℓ .

Theorem 2.4 The extremals of ℓ (among piecewise C^2 -curves) are precisely the geo*desics of* $U_{\mathcal{M}}$ *.*

Proof Clearly a geodesic is an extremal of ℓ . Suppose now that μ is a piecewise C^2 curve of unitaries. The converse is proven as in [4], by means of the following facts: 1. If μ is an extremal of ℓ , then for all $t \in [0, 1]$ and every vector field W along μ

$$
H\Big(W(t),\frac{D}{dt}\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}\Big)=0.
$$

- 2. If μ is an extremal of ℓ , then μ is C^2 .
- 3. If μ is C^2 and satisfies that for any vector field W along μ

$$
H\left(W(t),\frac{D}{dt}\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}\right)=0
$$

then μ is a geodesic.

For the first assertion, suppose that for some t_0 (a point where μ is C^2) one has

$$
H\Big(W(t_0),\frac{D}{dt}\frac{\dot{\mu}(t_0)}{\|\dot{\mu}(t_0)\|_2}\Big) > 0
$$

for some variation *U*. Let us consider another variation

$$
\tilde{U}(t,s)=U(t,\varphi(t)s),
$$

where φ is a scalar function satisfying

- 1. $0 \leq \varphi(t) \leq 1$, with $\varphi(0) = 1$ and $\varphi(1) = 1$.
- 2. $\varphi(t_0) = 1$ and φ vanishes on small intervals around the points t_1, \ldots, t_n where the derivative of μ is not continuous.

Note that $\tilde{U}(t, 0) = U(t, 0) = \mu(t)$. Also the first condition above implies that $\tilde{U}(0, s) = U(s, 0) = \mu(0)$ and $\tilde{U}(1, s) = U(1, s) = \mu(1)$. In other words, \tilde{U} is another variation of μ with fixed endpoints. Moreover

$$
\tilde{W}(t,s) = \frac{\partial \tilde{U}}{\partial s} = \frac{\partial U}{\partial s}(t,\varphi(t)s) = \varphi(t)W(t,\varphi(t)s),
$$

and therefore $\tilde{W}(t) = \tilde{W}(t, 0) = \varphi(t)W(t)$. Note that since $\varphi(t_0) = 1$,

$$
H\Big(\,\frac{D}{dt}\frac{\dot{\mu}(t_0)}{\|\dot{\mu}(t_0)\|_2},\tilde{W}(t_0)\Big)\,>0.
$$

We can further choose φ in order that

$$
H\left(\frac{D}{dt}\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}, \tilde{W}(t)\right) = \varphi(t)H\left(\frac{D}{dt}\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}, W(t)\right) \geq 0.
$$

Since $\tilde{W}(t) = \varphi(t)W(t)$ vanishes at the points t_1, \ldots, t_n , it follows that for \tilde{U} the variation is

$$
\delta\ell(0) = -\frac{1}{2} \int_0^1 H\left(\frac{D}{dt} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}, \tilde{W}(t)\right) dt > 0,
$$

and therefore μ is not an extremal.

To prove the second assertion, suppose that μ is an extremal of ℓ , and that t_0 is a point where μ is not continuous. Denote by V_0^+ and V_0^- the lateral limits of $\frac{D}{dt} \frac{\mu(t)}{\|\mu(t)\|_2}$ at $t = t_0$. Note that V_0^+ and V_0^- are unit vectors. Put

$$
U(t,s)=e^{is\varphi(t)V_0^+},
$$

where $\varphi(t)$ is a smooth scalar function, which satisfies that $0 \leq \varphi(t) \leq 1$, $\varphi(t_0) = 1$ and φ vanishes on the other points where μ is not continuous. By the first assertion, the integral term in the expression of the variation of μ vanishes. Moreover, by the choice of φ , one has

$$
\delta\ell(0) = H(W(t_0), V_0^+) - H(W(t_0), V_0^-) = H(V_0^+, V_0^+) - H(V_0^+, V_0^-).
$$

Now

$$
H(V_0^+, V_0^+) = \tau(V_0^+ J(V_0^+) + J(V_0^+)V_0^+) = 2||V_0^+||_2^2 = 2.
$$

On the other hand, the fact that $\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}$ has a jump at $t = t_0$ implies that the unit vectors V_0^+ and V_0^- do not point in the same direction, *i.e.*, the Cauchy–Schwarz inequality is strict:

$$
\tau(V_0^+J(V_0^-)) < ||V_0^+||_2||V_0^-||_2 = 1,
$$

and analogously $\tau(J(V_0^+)V_0^-) < 1$. It follows that

$$
\delta\ell(0)>0
$$

for this U , and μ is not an extremal.

The third assertion is straightforward. Since in our case, the form *H* is nondegenerate, the identity

$$
H\left(W(t),\frac{D}{dt}\frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2}\right) = 0
$$

for any field *W* implies that

$$
\frac{D}{dt} \frac{\dot{\mu}(t)}{\|\dot{\mu}(t)\|_2} = 0
$$

i.e., μ is a geodesic.

3 Short Curves

The key to our main result is the following:

Lemma 3.1 Let x be a selfadjoint element of M *with finite spectrum and* $||x|| < \pi$ *. Then* $\delta(t) = e^{itx}$ *has minimal length amongst piecewise* C^1 *curves joining* 1 *and* e^{ix} *, in the L*² *metric.*

Proof The element *x* is of the form $x = \sum_{i=1}^{k} \alpha_i p_i$, where p_1, \ldots, p_k are pairwise orthogonal projections and α_1,\ldots,α_k are real numbers with $|\alpha_i|<\pi.$ The length of the geodesic δ is $||x||_2 = (\sum_{i=1}^k \alpha_i^2 r_i)^{1/2}$, where $r_i = \tau(p_i)$. Suppose that μ is another piecewise C¹ curve of unitaries with $\mu(0) = 1$ and $\mu(1) = e^{ix}$. Then

$$
\ell(\mu) = \int_0^1 \left(\tau(J(\mu)\mu)\right)^{1/2} dt = \int_0^1 \left(\sum_{i=1}^k \tau(p_i J(\mu)\mu p_i)\right)^{1/2} dt.
$$

For each $1 \leq i \leq k$ denote by $S_{r_i^{1/2}}$ the sphere of radius $r_i^{1/2}$ $i^{1/2}$ in $L^2(\mathcal{M}, \tau)$,

$$
S_{r_i^{1/2}} = \{ \xi \in L^2(\mathcal{M}, \tau) : \langle \xi, \xi \rangle = r_i \}.
$$

Note that the curves $p_i \delta$ and $p_i \mu$ are curves in $S_{r_i^{1/2}}$. Indeed, for example

$$
\langle p_i \mu, p_i \mu \rangle = \tau((p_i \mu)^* p_i \mu) = \tau(p_i) = r_i.
$$

Moreover, $p_i\delta$ is a geodesic of $S_{r_i^{1/2}}$ with length strictly less than $\pi r_i^{1/2}$ $i^{1/2}$. An elementary spectral argument shows that

$$
p_i\delta(t)=p_ie^{itx}=p_ie^{it\alpha_i},
$$

 \blacksquare

Short Geodesics of Unitaries in the L² Metric 11

which is clearly a geodesic of the sphere $S_{r_i^{1/2}}$. The length of $p_i \delta$ is

$$
\ell(p_i\delta) = \|\alpha_i p_i\|_2 = |\alpha_i|r_i^{1/2} < r_i^{1/2}\pi.
$$

In other words, $p_i \delta$ is the shortest curve in $S_{r_i^{1/2}}$ joining its endpoints.

Consider the riemannian submanifold of $L^2(\mathcal{M}, \tau)^k$

$$
\vartheta = S_{r_1^{1/2}} \times \cdots \times S_{r_k^{1/2}}
$$

with its Levi–Civita connection. The curve $\Delta(t) = (p_1 \delta(t), \dots, p_k \delta(t))$ is a geodesic of S, since it is a *k*-tuple of geodesics of the coordinates. Moreover, it is the shortest curve of S joining its endpoints. Indeed, none of its coordinates could be replaced by a shorter curve. Therefore it is shorter than the curve $M(t) = (p_1\mu(t), \dots, p_k\mu(t)).$ Now the length of *M* in *S* is measured as follows:

$$
\int_0^1 \langle \dot{M}(t), \dot{M}(t) \rangle^{1/2} dt = \int_0^1 \left(\sum_{i=1}^k \tau(p_i J(\dot{\mu}(t)) \dot{\mu}(t)) \right)^{1/2} dt = \ell(\mu).
$$

Analogously, the length of Δ coincides with $\ell(\delta)$. It follows that

$$
\ell(\mu) \geq \ell(\delta).
$$

Lemma 3.2 Let $x \in M$ *be a selfadjoint element with* $||x|| < \pi$ *, and* $v \in U_M$ *. Then the geodesic* δ(*t*) = *veitx has minimal length among piecewise C*¹ *curves of unitaries joining its endpoints. It is unique among piecewise* C^{∞} *curves with this property.*

Proof There is no loss in generality if we suppose $v = 1$. Indeed, for any curve μ of unitaries, $\ell(\mu) = \ell(\nu^*\mu)$. Suppose that there exists a piecewise C^1 curve of unitaries μ which is strictly shorter than δ , $\ell(\mu) < \ell(\delta) - \epsilon = ||x||_2 - \epsilon$. The element *x* can be approximated in the norm topology of M by selfadjoint elements of M, say *z*, with finite spectrum and the following conditions:

1. $||z|| \leq ||x|| < \pi$. 2. $||x||_2 - \epsilon/2 < ||z||_2 \le ||x||_2$. 3. $\|e^{ix} - e^{iz}\| < 2.$ 4. There exists a C^{∞} curve of unitaries joining e^{ix} and e^{iz} of length less than $\epsilon/2$.

The first three are clear. The fourth condition can be obtained as follows. By the third condition $e^{-ix}e^{iz} = e^{iy}$, with $y^* = y \in M$. Moreover *z* can be adjusted so as to obtain *y* of arbitrarily small norm. Then the curve of unitaries $\gamma(t) = e^{ix}e^{ity}$ is C^{∞} , joins e^{ix} and e^{iz} , with length $||y||_2 \le ||y|| < \epsilon/2$.

Consider now the curve μ' , which is the curve μ followed by the curve $e^{ix}e^{ity}$ above. Then clearly

$$
\ell(\mu') \le \ell(\mu) + ||y||_2 < \ell(\mu) + \epsilon/2.
$$

 \blacksquare

Therefore $\ell(\mu') < ||x||_2 - \epsilon/2$. On the other hand, since μ' joins 1 and e^{iz} , by the lemma above, it must have length greater than or equal to $||z||_2$. It follows that

$$
||z||_2 \leq ||x||_2 - \epsilon/2,
$$

a contradiction.

Let us now show that δ is unique. Let δ' be another piecewise C^{∞} curve joining the same endpoints, parametrized proportional to arc length, with $\ell(\delta) = \ell(\delta')$. The minimality of δ' implies, by Theorem 2.4, that it is a C^{∞} geodesic. Then $\delta'(t) = e^{itx'}$ for some $x'^* = x' \in M$. We claim that $x' = x$.

Since $||x|| < \pi$, *ix* can be obtained as an analytic logarithm of $e^{ix} = e^{ix'}$. It follows that *x* and *x*['] commute. Then $e^{i(x-x')} = 1$ and therefore $x - x'$ is a selfadjoint element with finite spectrum, contained in the discrete set $\{2n\pi : n \in \mathbb{Z}\}\.$ Then $x' = x + \sum_{i=1}^{k} 2n_i \pi p_i$ with $n_i \in \mathbb{Z}$ and p_i pairwise orthogonal projections in M, $i = 1, \ldots, k$. Note that $xp_i = 0$. Therefore

$$
||x'||_2^2 = ||x||_2^2 + \sum_{i=1}^k 4n_i^2 \pi^2 \tau(p_i).
$$

Now, since $||x||_2 = \ell(\delta) = \ell(\delta') = ||x'||_2$, it follows that $\tau(p_i) = 0$, for each $i =$ $1, \ldots, k$, *i.e.*, $x = x'$.

Lemma 3.3 Let x be a selfadjoint element of M *with* $||x|| = \pi$. Then $\delta = ve^{itx}$ *is the shortest curve joining its endpoints.*

Proof The proof is the same as the first part of the above lemma, approximating *x* with *z* of finite spectrum and $||z|| < \pi$. Note that any unitary $u \in U_{\mathcal{M}}$ is of the form $u = e^{ix}$ with $x^* = x$ and $||x|| \leq \pi$. This element *x* is non unique.

We may summarize these lemmas in our main result.

Theorem 3.4 Let u, *v* be unitaries in M, and $x = x^* \in M$ with $||x|| \leq \pi$, such that $v^*u = e^{ix}$.

- 1. If $\|x\| < \pi$, then there exists a geodesic joining u and v, which has minimal length *among piecewise C*¹ *curves with these endpoints. It is unique with this property among piecewise C*[∞] *curves.*
- 2. If $||x|| = \pi$, there exist many minimal C^{∞} geodesics joining u and v.

Remark 3.5 In case 2, the multiple C^{∞} geodesics are of the form $\delta(t) = v e^{itx}$ for diverse $x = x^* \in M$ with $||x|| = \pi$ such that $v^*u = e^{ix}$. If one only requires that the curves be C^2 , other minimizing curves appear. Namely, by Remark 2.3 they are of the form $\gamma(t) = ve^{itL_{\xi}}$, where ξ lies in $L^4(\mathcal{M}, \tau)$, and satisfies $J\xi = \xi$ and $v^*u = e^{iL_{\xi}}$.

The following corollary might be obtained in a more straightforward way.

Short Geodesics of Unitaries in the L² Metric 13

Corollary 3.6 Let $x, y \in M$ *be selfadjoint elements of norm less than or equal to* π *such that* $e^{ix} = e^{iy}$. *Then* $\tau(x^2) = \tau(y^2)$.

Proof Both $\delta(t) = e^{itx}$ and $\gamma(t) = e^{ity}$ are minimizing geodesics joining 1 and e^{ix} , therefore $\ell(\delta) = \ell(\gamma)$, *i.e.*, $\tau(x^2) = \tau(y^2)$.

4 Non Embeddability of $U_{\mathcal{M}}$ in $L^2(\mathcal{M}, \tau)$

In this section we show that $U_{\mathcal{M}}$ is not a riemannian submanifold of $L^2(\mathcal{M}, \tau)$. By this we mean that $U_{\mathcal{M}}$ is not a riemannian manifold with the inner product of $L^2(\mathcal{M}, \tau)$ at each tangent space. We also consider other aspects of the local structure of U_M .

Lemma 4.1 There exists a sequence of selfadjoint elements $a_n \in \mathcal{M}$ *such that* $||a_n||_2 =$ ϵ for a given $\epsilon > 0$ and $\|e^{ia_n} - 1\|_2$ tends to zero.

Proof For each $n \geq 1$ pick a projection p_n in M such that $\tau(p_n) = \frac{\epsilon^2}{n^2}$ $\frac{\epsilon^2}{n^2}$. Put $a_n =$ *np_n*. Note that $||a_n||_2 = n\tau (p_n)^{1/2} = \epsilon$. On the other hand

$$
||e^{ia_n}-1||_2^2=2-\tau(e^{ia_n})-\tau(e^{-ia_n}).
$$

Clearly

$$
\tau(e^{ia_n}) = 1 + \frac{\epsilon^2}{n^2}(e^{in} - 1),
$$

which tends to 1. Analogously for $\tau(e^{-ia_n})$.

Corollary 4.2 $U_{\mathcal{M}}$ *is not a riemannian submanifold of* $L^2(\mathcal{M}, \tau)$ *.*

Proof Consider $u_n = e^{ia_n} \in U_{\mathcal{M}}$ as above. Then the sequence u_n tends to 1 in the L^2 metric. If $U_{\mathcal{M}}$ were a riemannian submanifold, then $\delta_n(t) = e^{ita_n}$ would be a geodesic. If one adjusts ϵ smaller than the radius of a normal neighbourhood around $1 \in U_{\mathcal{M}}$, then δ_n would be a minimizing geodesic. It follows that the geodesic distance between 1 and e^{ia_n} equals ϵ for all n . This leads to contradiction: in a riemannian manifold the topology given by the geodesic distance and the underlying topology are equivalent. \blacksquare

Note that δ_n above is in fact not a minimizing geodesic, according to our discussion of the previous section. Indeed, $||a_n|| = n$. If one tries to compute minimizing geodesics joining 1 and e^{ia_n} , one must replace the exponent $a_n = np_n$ by $x_n = (n - 2k_n \pi)p_n$, where k_n is an integer such that $|n - 2k_n \pi| \leq \pi$ (in this case it will be strictly smaller than π). Such x_n satisfy

$$
||x_n||_2^2 = (n - 2k_n\pi)^2 \frac{\epsilon^2}{n^2} \to 0 \text{ as } n \to \infty.
$$

In other words, these minimizing geodesics have lengths which tend to 0.

Let us denote by d_g the geodesic distance in $U_{\mathcal{M}}$, *i.e.*,

$$
d_g(u, v) = \inf \{ \ell(\mu) : \mu \text{ piecewise } C^1 \text{ curve of unitaries with } \mu(0) = u, \mu(1) = v \}.
$$

Since $U_{\mathcal{M}}$ is not a riemannian manifold, we must prove the following:

Proposition 4.3 *d*_g is a metric in $U_{\mathcal{M}}$.

Proof Clearly $d_g(u, v) \ge 0$ and $d_g(u, v) = 0$ imply $u = v$. Also it is clear that $d_g(u, v) = d_g(v, u)$. Let us verify that the triangle inequality holds. Let $u, v, w \in U_M$. We need to show that

$$
d_g(u,v) \leq d_g(u,w) + d_g(w,v).
$$

By Theorem 3.4, *u* and *w* are joined by a minimizing geodesic δ and *w* and *u* are joined by a minimizing geodesic δ' , with both curves realizing the geodesic distance. The curve δ followed by the curve δ' is a piecewise C^1 curve of unitaries joining *u* and v, with length $d_g(u, w) + d_g(w, v)$. Therefore $d_g(u, v) \leq d_g(u, w) + d_g(w, v)$. \blacksquare

Proposition 4.4 *The metrics* d_g *and* $\| \cdot \|_2$ *are equivalent in* $U_{\mathcal{M}}$ *.*

Proof Both metrics are invariant by left translation with elements of U_M , *i.e.*, $d_g(u, v) = d_g(v^*u, 1)$ and $||u - v||_2 = ||v^*u - 1||_2$. Therefore it suffices to compare $d_g(u, 1)$ and $||u - 1||_2$, for $u \in U_{\mathcal{M}}$. Let $x = x^* \in \mathcal{M}$ with $||x|| \leq \pi$ and $u = e^{ix}$. Then by Theorem 3.4

$$
d_g(u,1) = ||x||_2 = \tau(x^2)^{1/2}.
$$

On the other hand

$$
||u-1||_2^2 = 2 - \tau(e^{ix} + e^{-ix}) = 2\left[\frac{\tau(x^2)}{2} - \frac{\tau(x^4)}{4!} + \frac{\tau(x^6)}{6!} - \cdots\right].
$$

Note that for all $n \geq 1$,

$$
\frac{\tau(x^{2n})}{(2n)!} - \frac{\tau(x^{2n+2})}{(2n+2)!} \ge 0.
$$

Indeed, it is apparent that this inequality is equivalent to $(2n + 2)(2n + 1) \ge \frac{\tau(x^{2n+2})}{\tau(x^{2n})}$ $\frac{(x^{\cdots})}{\tau(x^{2n})}$. Since $x^2 \leq \pi^2$,

$$
\frac{\tau(x^{2n+2})}{\tau(x^{2n})} = \frac{\tau(x^nx^2x^n)}{\tau(x^{2n})} \leq \frac{\tau(x^n\pi^2x^n)}{\tau(x^{2n})} = \pi^2,
$$

and the above claim holds. First, note that with this inequality one has

$$
||u-1||_2^2 = 2\left[\frac{1}{2}\tau(x^2) - \left(\frac{\tau(x^4)}{4!} - \frac{\tau(x^6)}{6!}\right) - \cdots\right] \le \tau(x^2),
$$

i.e., $||u - 1||_2 \le d_g(u, 1)$.

On the other hand, the same inequality proves that

$$
||u-1||_2^2 = 2\left[\frac{1}{2}\tau(x^2) - \frac{1}{4!}\tau(x^4) + \left(\frac{\tau(x^6)}{6!} - \frac{\tau(x^8)}{8!}\right) + \cdots\right] \ge 2\left[\frac{1}{2}\tau(x^2) - \frac{1}{4!}\tau(x^4)\right].
$$

Since
$$
1 - \frac{x^2}{12} \ge 1 - \frac{\pi^2}{12} > 0
$$
, it follows that

$$
\frac{1}{2}\tau(x^2) - \frac{1}{4!}\tau(x^4) = \frac{1}{2}\tau(x^2(1 - \frac{1}{12}x^2)) \ge \frac{1}{2}\left(1 - \frac{\pi^2}{12}\right)\tau(x^2).
$$

In other words,

$$
||u-1||_2 \geq C d_g(u,1),
$$

for
$$
C = \sqrt{1 - \frac{\pi^2}{12}}
$$
.

Further properties of this metric d_g will be studied elsewhere.

References

- [1] E. Andruchow, *A non smooth exponential.* Studia Math. **155**(2003), 265–271.
- [2] C. J. Atkin, *The Finsler geometry of groups of isometries of Hilbert space.* J. Austral. Math. Soc. Ser. A **42**(1987), 196–222.
- [3] E. Christensen, *Universally bounded operators on von Neumann algebras of type* II₁. In: Algebraic methods in operator theory, Birkäuser Boston, Boston, MA, 1994, 195-204.
- [4] C. E. Duran, L. E. Mata-Lorenzo, and L. Recht, ´ *Natural variational problems in the Grassmann manifold of a C*∗*-algebra with trace.* Adv. Math. **154**(2000), 196–228.
- [5] L. Mata-Lorenzo and L. Recht, *Convexity properties of* Tr[(*a* [∗]*a*) *n*]*.* Linear Algebra Appl. **315**(2000), 25–38.
- [6] E. Michael, *Convex structures and continuous selections.* Canadian J. Math. **11**(1959), 556–575.
- [7] S. Popa and M. Takesaki, *The topological structure of the unitary and automorphism groups of a factor.* Commun. Math. Phys. **155**(1993), 93–101.
- [8] M. Read and B. Simon, *Methods of Modern Mathematical Physics, I: Functional Analysis.* 2nd ed. Academic Press, New York, 1980.
- [9] I. E. Segal, *A non commutative extension of abstract integration.* Ann. of Math. **57**(1953), 401–457.
- [10] M. Takesaki, *Theory of Operator Algebras. I.* Springer-Verlag, New York, 1979.

Instituto de Ciencias Universidad Nacional de Gral. Sarmiento J. M. Gutierrez entre J.L. Suarez y Verdi (1613) Los Polvorines Argentina e-mail: eandruch@ungs.edu.ar

Ē