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Abstract

In this paper we give new characterizations of Riesz and conditional Riesz frames in terms
properties of the nullspace of their synthesis operators. On the other hand, we also study the
dual frames whose coefficients in the reconstruction formula minimize different weighted norm
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1. Introduction

Frames were introduced by Duffin and Schaeffer [16] in the context of nonharm
Fourier series, and they have been intensively applied in wavelet and frequency a
theories since the work of Daubechies et al. [14]. Today, frame-like expansions ar
damental in a wide range of disciplines (see, for example, [16,17] or [25]), includin
analysis and design of oversampled filter banks and error corrections codes.
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A frame is a redundant set of vectors in a Hilbert space that leads to expansi
vectors (signals) in terms of the frame elements. More precisely, a sequence of v
F = {fn}n∈N in a (separable) Hilbert spaceH is a frame (for H) if there exist numbers
A,B > 0 such that, for everyf ∈H,

A‖f ‖2 �
∑
n∈N

∣∣〈f,fn〉
∣∣2 � B‖f ‖2. (1)

Associated with each frame there exists an operatorT :�2 → H defined byT (en) = fn,
whereB = {en}n∈N denotes the canonical basis of�2; T is called the synthesis operat
of F .

The results of this paper can be divided in two parts. The main results of the first p
devoted to the study of Riesz frames and conditional Riesz frames through the str
and geometric properties of the nullspace of their synthesis operators. Riesz and
tional Riesz frames were introduced by Christensen in [9] (see definitions in Secti
These frames are important because they behave well with respect to the projection m
In general, frame theory describes how to choose the corresponding coefficients to
a given vector in terms of the frame vectors. However, in applications, to obtain the
efficient requires the inversion of an operator onH. The projection method was introduc
by Christensen in [7] to avoid this problem. We refer the interested reader to [6], [7
[9] or [10] for more information about the projection method. In [1] we found a cha
terization of Riesz frames by studying the nullspace of the synthesis operator. Nam
the nullspaceN(T ) has a certain geometric property of compatibility with the closed s
spaces spanned by subsets ofB, thenF is a Riesz frame, and conversely. In Section 3,
extend these results for conditional Riesz frames and give some new characteriza
terms of angles.

Throughout the second part of this work we study the so-called oblique dual fra
Let {fn}n∈N be a frame for the closed subspaceW ⊆ H, and letM ⊆ H be another close
subspace such thatH = W +̇M⊥ ( +̇ means a nonnecessarily orthogonal direct sum).
sequence{gn}n∈N in M is an oblique dual frame of{fn}n∈N (see Li [21] or Li and Ogawa
[22,23]) if

f =
∞∑

n=1

〈f,gn〉fn ∀f ∈ W .

Among the oblique dual frames, there exists a particular class with the minimal
property. Recall that a dual frame{gn}n∈N has the minimal norm property if the coefficien
{〈f,gn〉}n∈N that appear in the reconstruction formula have minimal�2 norm.

If B = {en}n∈N denotes the canonical orthonormal basis for�2 andT is the synthesis
operator of{fn}n∈N, then Christensen and Eldar [11] proved that the minimal norm obl
dual frames have the form

{gn}n∈N = {
B(T ∗B)†en

}
n∈N

,

whereB is any bounded operator withR(B) = M. From the point of view of samplin
theory, the operatorB can be interpreted as the synthesis operator associated to the

used to sample the signals.
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In this work, we are interested in duals frames which lead to reconstruction coeffi
that have minimal norm, but with respect to some weighted norms. Recall that we
norms in�2 arise from inner products obtained by perturbing the original one with
vertible positive operators which are diagonal in the canonical basis. In Section 4 w
explicit formulae for dual frames which minimize a given weighted norm, and we p
that in the case of Riesz frames, if the sampling frame is fixed, then the norms of th
thesis operators corresponding to the dual frames which minimize the different we
norms are uniformly bounded from above.

We thank Ole Christensen for his useful comments.

2. Preliminaries

Let H be a separable Hilbert space andL(H) the algebra of bounded linear operato
onH. Gl(H) denotes the group of invertible operators inL(H), andGl(H)+ the set of pos-
itive definite invertible operators onH. For an operatorA ∈ L(H), R(A) denotes the rang
of A, N(A) the nullspace ofA, σ(A) the spectrum ofA, A∗ the adjoint ofA, ρ(A) the
spectral radius ofA and‖A‖ the operator norm ofA; if R(A) is closed,A† is the Moore–
Penrose pseudoinverse ofA. We use the fact thatA is an isometry (respectively coisometr
if A∗A = I (respectivelyAA∗ = I ). Given a closed subspaceM of H, PM denotes the
orthogonal (i.e., selfadjoint) projection ontoM. If B ∈ L(H) satisfiesPMBPM = B, we
consider the compression ofB to M (i.e., the restriction ofB to M, which is an operato
onM), and we say that we considerB asactingonM. Given a subspaceM of H, its unit
ball is denoted byM1, and its closure byM̄ or cl(M). If N is another subspace ofH, we
denoteM�N := M ∩N⊥. If M ∩N = {0}, we denote byM +̇N the (direct) sum of
the two subspaces. If the sum is orthogonal, we writeM⊕N . The distance between tw
subsetsM andN of H is d(M,N ) = inf{‖x − y‖: x ∈ M, y ∈N }.

2.1. Angle between closed subspaces

We shall recall the definition of angle between closed subspaces ofH. We refer the
reader to the nice survey of Deutsch [15] and the books by Kato [19] and Havin and J
[18] for details and proofs.

Definition 2.1. Given two closed subspacesM andN , let Ñ = N � (M∩N ) andM̃ =
M� (M∩N ). TheanglebetweenM andN is the angle in[0,π/2] whose cosine is

c[M,N ] = sup
{∣∣〈x, y〉∣∣: x ∈ M̃, y ∈ Ñ and‖x‖ = ‖y‖ = 1

}
.

Thesineof this angle is denoted bys[M,N ].

Now, we state some known results concerning angles and closed range operato
[15]).
Proposition 2.2. LetM andN be two closed subspaces ofH. Then
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(1) c[M,N ] = c[N ,M] = c[M̃,N ] = c[M, Ñ ].
(2) c[M,N ] < 1 if and only ifM+N is closed.
(3) c[M,N ] = c[M⊥,N⊥].
(4) c[M,N ] = ‖PMPÑ ‖ = ‖PM̃PN ‖ = ‖PMPNP(M∩N )⊥‖ = ‖PMPN − PM∩N ‖.

Proposition 2.3 (Bouldin [2]; see also [15]).Let A,B ∈ L(H) such thatR(A) andR(B)

are closed. Then,AB has closed range if and only ifc[R(B),N(A)] < 1.

Proposition 2.4 (Kayalar and Weinert [20]; see also [15]).LetP andQ be two orthogona
projections defined onH. Then,∥∥(PQ)k − P ∧ Q

∥∥ = c
[
R(P ),R(Q)

]2k−1
,

whereP ∧ Q is the orthogonal projection ontoR(P ) ∩ R(Q).

Finally, we give a characterization ofs[M,N ] in terms of distances.

Proposition 2.5. LetM andN be to closed subspaces ofH. DenoteÑ = N � (M∩N )

andM̃ = M� (M∩N ). Then,

s[M,N ] = d(M̃1,N ) = d(Ñ1,M).

Proof. By Proposition 2.2, we can suppose thatM ∩ N = {0}, i.e., M = M̃. By the
definition of the sine and Proposition 2.2,s[M,N ]2 = 1−‖PMPN ‖2. On the other hand
as d(x,N ) = ‖PN⊥x‖ for everyx ∈H, we have that

d(M1,N )2 = inf
{‖PN⊥x‖2: x ∈M1

} = inf
{
1− ‖PN x‖2: x ∈M1

}
= 1− sup

{‖PN x‖2: x ∈M1
} = 1− ‖PNPM‖2

= 1− ‖PMPN ‖2. �
2.2. The reduced minimum modulus

Definition 2.6. The reduced minimum modulusγ (T ) of an operatorT ∈ L(H) is defined
by

γ (T ) = inf
{‖T x‖: ‖x‖ = 1, x ∈ N(T )⊥

}
. (2)

It is well known thatγ (T ) = γ (T ∗) = γ (T ∗T )1/2. Also, it can be shown that an operat
T has closed range if and only ifγ (T ) > 0. In this case,γ (T ) = ‖T †‖−1.

The following result is an easy consequence of Eq. (2).

Lemma 2.7. LetB ∈ L(H) with B invertible. Then,

‖B−1‖−1γ (T ) � γ (BT ) � ‖B‖γ (T ).

Moreover, the same formula follows, replacing‖B−1‖−1 by γ (B), if R(B) is closed and

R(T ) ⊆ N(B)⊥.
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Lemma 2.8. Let T ∈ L(H) be a partial isometry(i.e., T T ∗ is a projection), M a closed
subspace ofH andPM the orthogonal projection ontoM. Then

γ (T PM) = s
[
N(T ),M

]
.

Proof. DenoteN = N(T ) andR = N⊥. SinceT acts isometrically onR, it is clear by
Eq. (2) that

γ (T PM) = γ (T PRPM) = γ (PRPM).

SinceN(PRPM) = M⊥ ⊕ (M ∩ N ), it follows thatN(PRPM)⊥ = M ∩ (M ∩ N )⊥
= M̃. Then, by Proposition 2.5,

γ (PRPM) = inf
x∈M̃1

‖PRx‖ = inf
x∈M̃1

d(x,N ) = d(M̃1,N ) = s[N ,M]. �

The next result was proved in [1]. We include a short proof for the sake of complete

Proposition 2.9. If T ∈ L(H) has closed range andM is a closed subspace ofH such that
c[N(T ),M] < 1 (so thatT PM has closed range), then

γ (T )s
[
N(T ),M

]
� γ (T PM) � ‖T ‖s[N(T ),M

]
. (3)

Proof. TakeB = |T ∗| = (T T ∗)1/2. It is well known thatR(B) = R(T ) which is closed by
hypothesis. It is easy to see thatγ (T ) = γ (B) and‖B‖ = ‖T ‖. Also,B†T is a coisometry
with the same nullspace asT . So, by Lemma 2.8,γ (B†T PM) = s[N(T ),M]. Now, using
Lemma 2.7 forB andB†T PM and the fact thatBB†T PM = PR(T )T PM = T PM, we
get

γ (T )s
[
N(T ),M

]
� γ (T PM) � ‖T ‖s[N(T ),M

]
,

becauseR(B) = R(B†), so thatR(B†T PM) ⊆ R(B) = N(B)⊥. �
Remark 2.10. With the same ideas, the following formulae generalizing Lemma 2.8
Proposition 2.9, can be proved.

(1) LetU,V ∈ L(H) be partial isometries. Then,γ (UV ) = s[N(U),R(V )].
(2) If A,B ∈ L(H) have closed ranges, then

γ (A)γ (B)s
[
N(A),R(B)

]
� γ (AB) � ‖A‖‖B‖s[N(A),R(B)

]
.

Note that the first inequality implies Proposition 2.3.

In particular, this gives the following formula for the sine of an angle: givenM andN two
closed subspaces ofH, it holds
s[N ,M] = γ (PN⊥PM).
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2.3. Frames

We introduce some basic facts about frames in Hilbert spaces. For complete desc
of frame theory and applications, the reader is referred to the survey by Heil and W
[17] or the books by Young [25] and Christensen [10].

Definition 2.11. Let H be a separable Hilbert space, andF = {fn}n∈N a sequence inH.

(1) F is called aframeif there exist numbersA,B > 0 such that, for everyf ∈H,

A‖f ‖2 �
∑
n∈N

∣∣〈f,fn〉
∣∣2 � B‖f ‖2. (4)

(2) The optimal constantsA,B for Eq. (4) are called theframe boundsfor F .
(3) The frameF is calledtight if A = B, andParsevalif A = B = 1.
(4) Associated withF there exist an operatorT :�2 → H such thatT (en) = fn, where

{en}n∈N denotes the canonical basis of�2. This operator is called thesynthesisoperator
of F . For finite frames we assume that the domain of the synthesis operator iC

m,
wherem is the number of vectors of the frame.

Remark 2.12. Let F = {fn}n∈N be a frame inH andT its synthesis operator.

(1) The frame bounds ofF can be computed in terms of the synthesis operator

A = γ (T )2 and B = ‖T ‖2. (5)

(2) The adjointT ∗ ∈ L(H, �2) of T , is given byT ∗(x) = ∑
n∈N

〈x, fn〉en, x ∈ H. It is
called theanalysis operatorfor F .

(3) The operatorS = T T ∗ is usually called frame operator and it is easy to see that

Sf =
∑
n∈N

〈f,fn〉fn, f ∈ H. (6)

It follows from (4) thatA.I � S � B.I , so thatS ∈ Gl(H)+. Moreover, the optima
constantsA,B for Eq. (4) are

B = ‖S‖ = ρ(S) and A = γ (S) = ‖S−1‖−1 = min
{
λ: λ ∈ σ(S)

}
.

Finally, from (6) we get

f =
∑
n∈N

〈f,S−1fn〉fn ∀f ∈ H.

(4) The numbers{〈f,S−1fn〉} are called theframe coefficientsof f . They have the fol-
lowing optimal property: iff = ∑

n∈N
cnfn, for a sequence(cn)n∈N, then∑

n∈N

∣∣〈f,S−1fn〉
∣∣2 �

∑
n∈N

|cn|2.

The frame{S−1fn}n∈N is called canonical dual frame. We shall return to dual fram

in Section 4.
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3. Riesz frames and conditional Riesz frames

It was remarked by Christensen [10, p. 65], that given a frameF = {fn}n∈N, in practice
it can be difficult to use the frame decompositionf = ∑〈f,S−1fn〉fn because it require
the calculation ofS−1 or, at least, the frame coefficients〈f,S−1fn〉. In order to get some
of the advantages of Riesz bases, Christensen introduced in [7] theprojection method,
approximatingS and S−1 by finite rank operators, acting on certain finite dimensio
spacesHn approachingH. Later on, Christensen [9] introduced two special classe
frames, namelyRiesz framesandconditional Riesz frames, which are well adapted to som
of these problems (see also [3–5]).

We need to fix some notations: LetB = {en}n∈N be the canonical orthonormal basis
�2 andI ⊆ N.

(1) We denoteMI = span{en: n ∈ I } andPI = PMI
, the orthogonal projection ontoMI .

(2) If I = In := {1,2, . . . , n}, we putMn for MI .
(3) GivenN a closed subspace of�2, we denoteNn = N ∩Mn, n ∈ N.
(4) If F = {fn}n∈N is a frame forH, we denote byFI = {fn}n∈I .
(5) We say thatFI is aframe sequenceif it is a frame forspan{FI }.
(6) FI is called asubframeof F if it is itself a frame forH.

Recall the definitions of Riesz frames and conditional Riesz frames.

Definition 3.1. A frame F = {fn}n∈N is called aRiesz frameif there existsA,B > 0
such that, for everyI ⊂ N, the subfamilyFI is a frame sequence with boundsA,B (not
necessarily optimal).

The sequenceF is called aconditional Riesz frameif there are common bounds for th
frame sequencesFIn , where{In}∞n=1 is a sequence of finite subsets ofN such thatIn ⊆ In+1

for everyn ∈ N and
⋃

n∈N
In = N.

Remark 3.2. Let F be a frame, andT its synthesis operator. GivenI ⊆ N, thenFI is
a frame sequence if and only ifR(T PI ) is closed, andFI is a subframe if and only
ifR(T PI ) = H. In both cases the frame bounds forFI areA = γ (T PI )

2 andB = ‖T PI‖2.
Using these facts we get an equivalent definition of Riesz frames:F is a Riesz frame if
there existsε > 0 such thatγ (T PI ) � ε for everyI ⊆ N.

Proposition 2.9 can be used to characterize Riesz frames in terms of the angles b
the nullspace of the synthesis operatorT and the closed subspaces of�2 which are spanne
by subsets ofB.

Proposition 3.3. Let F = {fn}n∈N be a frame, andT be its synthesis operator. LetN =
N(T ). ThenF is a Riesz frame if and only if

c = supc[N ,MI ] < 1. (7)

I⊆N
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Proof. By Proposition 2.3,T PI has closed range iffc[N ,MI ] < 1. By Proposition 2.9
γ (T PI ) has an uniform lower bound if and only ifthere exists a constantc < 1 such that,
for everyI ⊆ N, c[N ,MI ] � c. �
Remark 3.4. Let N be a closed subspace of�2 andB = {en}n∈N be the canonical ortho
normal basis of�2. If Eq. (7) holds, following the terminology of [1], we say thatN is
B-compatible.

In the following proposition, we state a characterization ofB-compatible subspace
of H, proved in [1].

Proposition 3.5. LetN be a closed subspace of�2 and letB = {ek}k∈N be the canonica
orthonormal basis of�2. For n ∈ N, denote bycn = supJ⊆In

c[Nn,MJ ]. Then the follow-
ing conditions are equivalent:

(1) N is B-compatible.
(2) c = supn∈N c[N ,Mn] < 1, andsupn∈N cn < 1.
(3) cl(

⋃
n∈N

Nn) = N and supn∈N cn < 1.
(4) There exists a constantc < 1 such thatc[N ,HI ] � c for every finite subsetI of N

with N ∩MI = {0}.

Proposition 3.5 can be “translated” to frame language to get a characterization of
frames, similar to the one obtained by Christensen and Lindner in [13]:

Theorem 3.6. Let F = {fn}n∈N be a frame andT its synthesis operator. DenoteN =
N(T ). Then the following conditions are equivalent:

(1) F is a Riesz frame.
(2) N is B-compatible.
(3) There exists an uniform lower frame bound for every finite linearly independent f

sequenceFJ , J ⊂ N.
(4) There existsd > 0 such thatγ (T PJ ) � d , for everyJ ∈ N finite such thatN ∩ MJ

= {0}.

Proof. If I is a finite subset ofN thenMI ∩ N = {0} if and only if FI is linearly inde-
pendent. Then, conditions (3) and (4) are equivalent. By Propositions 2.9 and 3.5, th
also equivalent to theB-compatibility ofN .

Suppose that there exists a constantd such that 0< d � γ (T PMI
) for every finite

subsetI ⊆ N such thatMI ∩N = {0}. This is equivalent to saying that there is a cons
c < 1 such thatc[N ,MI ] � c for such kind of setsI . Using Propositions 3.3 and 3.5, w
conclude thatF is a Riesz frame. The converse is clear.�

Now, we consider conditional Riesz frames. First of all, we state a result for this cla
frames which is similar to Proposition 3.3, and whose proof follows essentially the

lines.
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Proposition 3.7. LetF = {fn}n∈N andN the nullspace of its synthesis operator. ThenF
is a conditional Riesz frame if and only ifthere exists a sequence{In} of finite subsets ofN
such thatIn ⊆ In+1,⋃

n∈N

In = N and c = sup
n∈N

c[N ,MIn] < 1, n ∈ N. (8)

As a corollary of this proposition we get the following result.

Proposition 3.8. LetF be a conditional Riesz frame, andT its synthesis operator forF .
DenoteN = N(T ). Then

cl

( ∞⋃
n=1

Nn

)
= N . (9)

In order to prove this proposition, we need the following technical lemma.

Lemma 3.9. Let N be a closed subspace of�2, a constantc < 1 and a sequence{In} of
finite subsets ofN such thatIn ⊆ In+1,

⋃
n∈N

In = N andc[N ,MIn] � c, for everyn ∈ N.
Then

cl

( ⋃
n∈N

N ∩MIn

)
= N .

Proof. DenoteQn = PIn , n ∈ N. The assertion of the lemma is equivalent to

PN ∧ Qn

SOT↗
n→∞

PN .

Let x ∈ �2 be a unit vector and letε > 0. Let k ∈ N such thatc2k−1 � ε/2. By Proposi-
tion 2.4, for everyn � 1 it holds that∥∥(PNQn)

k − PN ∧ Qn

∥∥ � ε

2
.

On the other hand, sinceQnPN
SOT−→

n→∞PN and the functionf (x) = xk is SOT-continuous

on bounded sets (see, for example, 2.3.2 of [24]), there existsn0 � 1 such that, for every
n � n0,∥∥[

(QnPN )k − PN
]
x
∥∥ <

ε

2
.

Then, for everyn � n0,∥∥(PN − PN ∧ Qn)x
∥∥

�
∥∥[

PN − (PNQn)
k
]
x
∥∥ + ∥∥(

(PNQn)
k − PN ∧ Qn

)
x
∥∥ < ε. �

Proof of Proposition 3.8. SinceF is a conditional Riesz frame, there existc < 1 and a
sequence{In} of finite subsets ofN such thatIn ⊆ In+1,

⋃
n∈N

In = N andc[N ,MIn]⋃

� c, for everyn ∈ N. By Lemma 3.9, n∈N

N ∩ MIn is dense inN . Finally, for every
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n ∈ N, there existsm ∈ N such thatIn ⊆ Im = {1,2, . . . ,m}. Thus,
⋃

n∈N
N ∩ MIn ⊆⋃

m∈N
Nm. �

As a consequence of Proposition 3.8 we obtain the following corollaries.

Corollary 3.10. LetF be a conditional Riesz frame with synthesis operatorT and suppose
that dimN(T ) < ∞. ThenF is a Riesz frame. Moreover, there existsm ∈ N such that
N(T ) ⊆ Mm.

Proof. Denote byN = N(T ). By Proposition 3.8,N satisfies Eq. (9). Since dimN
< ∞, then there existsm ∈ N such thatN = N(T ) ⊆ Mm. Thus, in the terminology
of Proposition 3.5, ifcn = supJ⊆In

c[Nn,MJ ], thencn = cm for everyn � m. Therefore,
by Proposition 3.5,F is a Riesz frame. �
Corollary 3.11. LetF = {fn}n∈N be a conditional Riesz frame. Givenn ∈ N, denote bySn

the frame operator of{fk}nk=1 and letAn be the minimum of the lower frame bounds of

frame subsequences of{S−1/2
n fk}nk=1. If infn An > 0, thenF is a Riesz frame.

Proof. Let T be the synthesis operator ofF andN = N(T ). For eachn ∈ N, denoteFn =
{fk}nk=1, Bn = {e1, . . . , en} andPn = PMn

. Note thatT Pn :Mn → span{fk: k = 1, . . . , n}
can be considered, modulo an unitary operator, as the synthesis operator ofFn. In this way,
it holds thatSn = T PnT

∗. Also note that{S−1/2
n fk}nk=1 is a Parseval frame, andN(T Pn) =

N(S
−1/2
n T Pn) = N ∩ Mn = Nn. So, by Lemma 2.8, ifJ ⊂ {1, . . . , n}, the lower frame

boundAJ of {S−1/2
n fk}k∈J satisfiesAJ = 1 − c[Nn,MJ ]2. Using Propositions 3.8 an

3.5, the corollary follows. �
3.1. A counterexample

The nullspaceN of the synthesis operator of a conditional Riesz frame has the pro
of “density”: cl(

⋃∞
n=1Nn) = N , whereNn is N ∩ Mn. In the following example we

show that the converse is not true, i.e., we construct a frame which is not a cond
Riesz frame such that its synthesis nullspaceN satisfies cl(

⋃∞
n=1Nn) = N .

We shall prove the assertion in an indirect way, by using Proposition 3.7 and the fo
ing fact: if N is a closed subspace of�2 such that dimN⊥ = ∞, then there exists a fram
F with synthesis operatorT such thatN = N(T ).

Example 3.12. Givenr > 1, if B = {en}n∈N denotes the canonical basis of�2, let us define
the following orthogonal system:

x1 = e1 − re2 + 1

r
e3 + 1

r2
e4 + 1

r3
e5 + 1

r4
e6,

x2 = e5 − re6 + 1

r5
e7 + 1

r6
e8 + 1

r7e9 + 1

r8
e10,

.
..
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xn = e4n−3 − re4n−2 + 1

r4n−3
e4n−1 + 1

r4n−2
e4n + 1

r4n−1
e4n+1 + 1

r4n
e4n+2.

Let N be the closed subspace generated by{xn}n∈N. By construction, cl(
⋃∞

n=1Nn) = N .
Moreover{e4n−1 − re4n: n ∈ N} ⊂ N⊥, so dimN⊥ = ∞. By the remarks above, the
exists a frameF such that the nullspace of its synthesis operator isN . We claim that this
frame is not a conditional Riesz frame. By Proposition 3.7, it suffices to verify tha
every sequenceJ1 ⊆ J2 ⊆ J3 ⊆ · · · ⊆ Jn ↗ N, it holds thatc[N ,MJk

]−→
k→∞1. Hence, fix

such a sequence{Jk}k∈N and take 0< ε < 1.
Since‖xn‖2 � 1+ r2 + 4/r8n−6 for everyn ∈ N, there existsn0 ∈ N such that

1− ε <
1+ r2

‖xn‖2
∀n � n0.

Note that, fory ∈N andi ∈ N, if Mi = span{e4i−3, e4i−2}, then

〈y, xi〉 = 0 ⇔ PMi
y = 0, (10)

becausePMi
xj �= 0 if and only if j = i. Let k ∈ N be such that

j = max
{
i ∈ N: PMi

(N ∩MJk
) �= 0

}
� n0.

By Eq. (10),xh ∈ (N ∩MJk
)⊥ for everyh > j . In particular,xj+1 ∈ N � (N ∩MJk

) and

1− ε <
1+ r2

‖xj+1‖2
� ‖PJk

xj+1‖2

‖xj+1‖2
�

〈
xj+1

‖xj+1‖ ,
PJk

xj+1

‖PJk
xj+1‖

〉
� c[N ,MJk

].

A similar argument shows that 1− ε � c[N ,MJm], for everym � k. This implies that
lim infn→∞ c[N ,MJn] � 1− ε. Finally, asε is arbitrary, we getc[N ,MJk

]−→
k→∞1.

4. Weighted dual frames

Let F = {fn}n∈N be a fixed frame for a closed subspaceW of H and letM ⊆ H be
another closed subspace such thatH = W +̇M⊥. As we have mentioned in the introdu
tion, an oblique dual frame ofF in M is a frameG = {gn}n∈N for M such that for every
f ∈W it holds that

f =
∞∑

n=1

〈f,gn〉fn ∀f ∈ W . (11)

Such a dual frame has the minimal norm property if for everyf ∈ W the coefficients
{〈f,gn〉}n∈N have minimal�2 norm. Christensen and Eldar proved in [12] that the du
frames with the minimal norm property have the form

{gn}n∈N = {
B(T ∗B)†en

}
n∈N

, (12)

where{en}n∈N denote the canonical orthonormal basis of�2, andB is a bounded operato

with R(B) = M.
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On the other hand, letD(�2) be the set of allD ∈ Gl(�2)+ which are diagonal in the
canonical basis{en}n∈N. EachD ∈ D(�2) defines an inner product〈·, ·〉D by means of

〈x, y〉D = 〈Dx,y〉, x, y ∈ �2.

This inner product induces aweightednorm‖ · ‖D which is equivalent to the original on
In this section, we are interested in dual frames such that their coefficients in the

struction formula (11) minimize different weighted norms. We shall give explicit form
for this class of dual frames that we call weighted dual frames. We also consider th
ticular case of weighted dual frames associated to a Riesz frame.

First of all, let us recall some preliminary facts on generalized inverses.

Definition 4.1. Given two Hilbert spacesH andK, let A ∈ L(H,K) be an operator with
closed range. We say thatB ∈ L(K,H) is a generalized inverse ofA if ABA = A and
BAB = B.

Remarks 4.2. Let A ∈ L(H,K) with closed range, and letB ∈ L(K,H) be a generalized
inverse ofA. Then

(1) BothAB andBA are oblique projections, i.e., idempotent operators.
(2) R(B) is also closed.
(3) The idempotentAB andBA induce decompositions of the Hilbert spacesH andK:

H = N(A) +̇R(B) andK = R(A) +̇N(B).
(4) If (AB)∗ = AB and (BA)∗ = BA, thenB is called the Moore–Penrose generaliz

inverse forA. It is usually denoted byA†. In this case,AA† is the orthogonal projectio
ontoR(A) andA†A is the orthogonal projection ontoN(A)⊥.

Among the generalized inverses of an operatorA ∈ L(�2,H), the following ones will
be particularly important for us. In order to clarify the next statement, given a subspT
of �2 andD ∈ D(�2), the orthogonal complement ofT with respect to the inner produ
〈· , ·〉D will be denoted byT ⊥D .

Lemma 4.3. LetA ∈ L(�2,H) be an operator with closed range, andD ∈D(�2). Then, the
operatorχD(A) = D−1/2(AD−1/2)† is a generalized inverse ofA such thatχD(A)A is
the orthogonal projection with respect to the weighted inner product〈· , ·〉D ontoN(A)⊥D .

Proof. SinceR(AD1/2) = R(A) it follows that

AχD(A)A = PR(AD1/2)A = A.

On the other hand,

χD(A)AχD(A) = D−1/2(AD−1/2)†AD−1/2(AD−1/2)† = D−1/2(AD−1/2)†

= χD(A).

Finally, some easy computation shows that an oblique projectionQ is D-orthogonal if and

only if DQ is selfadjoint. In our case
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(
χD(A)A

) = D1/2(AD−1/2)†A = D1/2(D−1/2A∗(AD−1A∗)†)A
= A∗(AD−1A∗)†A,

which is clearly selfadjoint. Therefore,χD(A)A is aD-orthogonal projection and clear
N(χD(A)A) = N(A). �

Now, we are ready to give the explicit form of weighted dual frames.

Proposition 4.4. LetF = {fn}n∈N be a fixed frame for a closed subspaceW of H, T its
synthesis operator and letM be another closed subspace ofH such thatH = W +̇M⊥.
Then, givenD ∈ D(�2), the oblique dual frames such that for everyf ∈ W their coefficient
in the reconstruction formula minimize the weighted norm‖ · ‖D have the form

G = {gn}n∈N = {
B(D−1/2T ∗B)†D−1/2en

}
n∈N

,

where{en}n∈N denotes the canonical orthonormal basis of�2 and B ∈ L(�2,H) is any
operator withR(B) = M.

Proof. Fix B ∈ L(�2,H) with rangeM and letT̂ = B(D−1/2T ∗B)†D−1/2. First of all,
note thatN(D−1/2T ∗B) = N(B). So,R(T̂ ) = R(B) = M and thereforeG is a frame.

In order to prove thatG is an oblique dual frame it is enough to prove thatT T̂ ∗ is
an oblique projection ontoW . Actually, T T̂ ∗ is the projection ontoW parallel toM⊥.
Indeed, on one hand

(T T̂ ∗)2 = (
T D−1/2(B∗T D−1/2)†B∗)2

= T D−1/2((B∗T D−1/2)†(B∗T D−1/2)(B∗T D−1/2)†)B∗

= T
(
D−1/2(B∗T D−1/2)†B∗) = (T T̂ ∗),

which shows thatT T̂ ∗ is a projection. On the other hand, sinceN(D−1/2(B∗T D−1/2)†B∗)
= M⊥ andR(D−1/2(B∗T D−1/2)†B∗) = N(T )⊥, it holds thatT T̂ ∗ is the projection onto
W with nullspaceM⊥.

Finally, in order to prove that the reconstruction coefficients minimize the weig
norm ‖ · ‖D we have to prove thatR(T̂ ∗) ⊆ N(T )⊥D . But, using the notation o
Lemma 4.3, we get̂T ∗T = χD(B∗T )B∗T and, therefore, using the same lemma,R(T̂ ∗) =
N(B∗T )⊥D = N(T )⊥D . �

As we have already mentioned in the previous section,{fn}n∈N is a Riesz frames if an
only if N(T ) is compatible with the canonical base (see Remark 3.4). IfPD,N denote the
(unique) orthogonal projection onto the closed subspaceN of �2 with respect to the inne
product〈· , ·〉D , it was proved in [1] thatN is compatible if and only if

sup
D∈D(�2)

‖PD,N ‖ < ∞.
As a consequence of this result we obtain the following
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Theorem 4.5. LetF = {fn}n∈N be a frame for a closed subspaceW of H, T its synthesis
operator,M another closed subspace ofH such thatH = W +̇M⊥ andG = {gn}n∈N a
fixed (sampling) frame forM with synthesis operatorB. Then, the following condition
are equivalent:

(1) F is a Riesz frame onW .
(2) The oblique dual frames ofT with respect toB that minimize the different weighte

norms are bounded from above. In other words

sup
D∈D(�2)

∥∥B(D−1/2T ∗B)†D−1/2
∥∥ < ∞.

Proof. Fix D ∈D(�2). We have already proved in Lemma 4.3 that(
B(D−1/2T ∗B)†D−1/2)∗

T = T ∗B(D−1/2T ∗B)†D−1/2 = T ∗BχD(T ∗B)

= 1− PD,N(T ).

Hence∥∥B(D−1/2T ∗B)†D−1/2
∥∥ � ‖B‖∥∥(D−1/2T ∗B)†D−1/2

∥∥
= ‖B‖∥∥(T ∗B)†(T ∗B)(D−1/2T ∗B)†D−1/2

∥∥
� ‖B‖∥∥(T ∗B)†

∥∥∥∥(T ∗B)(D−1/2T ∗B)†D−1/2
∥∥

= ‖B‖∥∥(T ∗B)†
∥∥∥∥1− P ∗

D,N(T )

∥∥,

and

‖1− PD,N(T )‖ = ∥∥T ∗B(D−1/2T ∗B)†D−1/2
∥∥ � ‖T ∗‖∥∥B(D−1/2T ∗B)†D−1/2

∥∥.

Therefore

sup
D∈D(�2)

∥∥B(D−1/2T ∗B)†D−1/2
∥∥ < ∞ ⇔ sup

D∈D(�2)

‖1− PD,N(T )‖ < ∞,

which proves the proposition.�
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