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Abstract

In this paper we give new characterizations of Riesz and conditional Riesz frames in terms of the
properties of the nullspace of their synthesis operators. On the other hand, we also study the oblique
dual frames whose coefficients in the reconstruction formula minimize different weighted norms.
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1. Introduction

Frames were introduced by Duffin and Schaeffer [16] in the context of nonharmonic
Fourier series, and they have been intensively applied in wavelet and frequency analysis
theories since the work of Daubechies et al. [14]. Today, frame-like expansions are fun-
damental in a wide range of disciplines (see, for example, [16,17] or [25]), including the
analysis and design of oversampled filter banks and error corrections codes.
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A frame is a redundant set of vectors in a Hilbert space that leads to expansions of
vectors (signals) in terms of the frame elements. More precisely, a sequence of vectors
F ={fulnen in a (separable) Hilbert spadé is aframe (for H) if there exist numbers
A, B > 0 such that, for every € H,

AIFIZ<Y I S P < BIFIZ (1)

neN

Associated with each frame there exists an operatot? — H defined byT (e,) = f,,
whereB = {e,},en denotes the canonical basis & T is called the synthesis operator
of F.

The results of this paper can be divided in two parts. The main results of the first part are
devoted to the study of Riesz frames and conditional Riesz frames through the structure
and geometric properties of the nullspace of their synthesis operators. Riesz and condi-
tional Riesz frames were introduced by Christensen in [9] (see definitions in Section 3).
These frames are important because they behave well with respect to the projection method.
In general, frame theory describes how to choose the corresponding coefficients to expand
a given vector in terms of the frame vectors. However, in applications, to obtain these co-
efficient requires the inversion of an operatori@nThe projection method was introduced
by Christensen in [7] to avoid this problem. We refer the interested reader to [6], [7], [8],
[9] or [10] for more information about the projection method. In [1] we found a charac-
terization of Riesz frames by studying the nullspace of the synthesis operator. Namely, if
the nullspaceV (T) has a certain geometric property of compatibility with the closed sub-
spaces spanned by subset®pthenF is a Riesz frame, and conversely. In Section 3, we
extend these results for conditional Riesz frames and give some new characterizations in
terms of angles.

Throughout the second part of this work we study the so-called oblique dual frames.
Let { f,}nen be a frame for the closed subspatecC H, and letM C H be another closed
subspace such that =V + ML (4 means a nonnecessarily orthogonal direct sum). The
sequencég, },en in M is an oblique dual frame dff; },en (see Li [21] or Li and Ogawa
[22,23)) if

F=) At galfu VFEW.
n=1

Among the oblique dual frames, there exists a particular class with the minimal norm
property. Recall that a dual franjg, },,cn has the minimal norm property if the coefficients
{(f, gn)}nen that appear in the reconstruction formula have minitdaiorm.

If B ={e,}nen denotes the canonical orthonormal basis#and T is the synthesis
operator of f,,},.en, then Christensen and Eldar [11] proved that the minimal norm oblique
dual frames have the form

{gntnen = {B(T*B)Ten }neN’

where B is any bounded operator witR(B) = M. From the point of view of sampling
theory, the operatoB can be interpreted as the synthesis operator associated to the frame
used to sample the signals.
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In this work, we are interested in duals frames which lead to reconstruction coefficients
that have minimal norm, but with respect to some weighted norms. Recall that weighted
norms in¢2 arise from inner products obtained by perturbing the original one with in-
vertible positive operators which are diagonal in the canonical basis. In Section 4 we give
explicit formulae for dual frames which minimize a given weighted norm, and we prove
that in the case of Riesz frames, if the sampling frame is fixed, then the norms of the syn-
thesis operators corresponding to the dual frames which minimize the different weighted
norms are uniformly bounded from above.

We thank Ole Christensen for his useful comments.

2. Preliminaries

Let H be a separable Hilbert space ah@H) the algebra of bounded linear operators
onH. GI(H) denotes the group of invertible operatordif#), andGI(H) ™ the set of pos-
itive definite invertible operators oH. For an operatoA € L(H), R(A) denotes the range
of A, N(A) the nullspace ofA, o (A) the spectrum ofd, A* the adjoint ofA, p(A) the
spectral radius oft and||A|| the operator norm of\; if R(A) is closedAT is the Moore—
Penrose pseudoinverseAfWe use the fact that is an isometry (respectively coisometry)
if A*A =1 (respectivelyAA* = I). Given a closed subspacgel of H, Py, denotes the
orthogonal (i.e., selfadjoint) projection ontel. If B € L(H) satisfiesPr(BPrq = B, we
consider the compression 8fto M (i.e., the restriction oB to M, which is an operator
on M), and we say that we considBrasactingon M. Given a subspac#1 of H, its unit
ball is denoted by\1, and its closure byM or cl(M). If A is another subspace f, we
denoteM 6 N := M NN If M NN = {0}, we denote by + A the (direct) sum of
the two subspaces. If the sum is orthogonal, we wkitep . The distance between two
subsetsM and . of H is d(M, N) =inf{||lx —y|l: x e M, y e N}

2.1. Angle between closed subspaces

We shall recall the definition of angle between closed subspacet dfe refer the
reader to the nice survey of Deutsch [15] and the books by Kato [19] and Havin and Jéricke
[18] for details and proofs.

Definition 2.1. Given two closed subspacdd and\, let N =N © (M NN) and M =

M S (MNN). TheanglebetweenM andN is the angle if0, /2] whose cosine is
M, N1=sup{|(x, )|: x e M, ye N and|x| = [yl =1}.

Thesineof this angle is denoted by M, V1.

Now, we state some known results concerning angles and closed range operators (see
[15)]).

Proposition 2.2. Let M and A\ be two closed subspaces7f Then
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(1) M, N1=c[N, M]=c[M,N]=c[M,N].

(2) c[M,N]<1ifand only if M + A is closed.

(3) ¢[M,N]=c[ME+, N1

(4) M NT=I1PMm PN = 1Py Pall = 1 PPN Pty |l = 1PAMPA — Prae |-

Proposition 2.3 (Bouldin [2]; see also [15])Let A, B € L(H) such thatR(A) and R(B)
are closed. Themd B has closed range if and onlydfR(B), N(A)] < 1.

Proposition 2.4 (Kayalar and Weinert [20]; see also [19]et P and O be two orthogonal
projections defined oft. Then,

(PO — P A Q| =c[R(P). RGQT* ™,
whereP A Q is the orthogonal projection ont& (P) N R(Q).
Finally, we give a characterization of M, AV] in terms of distances.
Proposition 2.5. Let M and AV be to closed subspacest DenoteN' =N © (M NN)
andM = Mo MNN). Then,
SIM, N =d(M1, V) = d(N1, M).
Proof. By Proposition 2.2, we can suppose thiet N A" = {0}, i.e., M = M. By the

definition of the sine and Proposition 2s2M, N2 = 1— || Po4 Px7||%. On the other hand,
as dx, N) = || Pyr.x|| for everyx € H, we have that

dMa1, M) =inf{[| Pyrix]|®: x € M1} =inf{1— || Pyxl: x € My}
=1—sug{[IPyx]|% x € M1} =1— | Py Pyl
=1-|PuPyI®>. O
2.2. The reduced minimum modulus
Definition 2.6. The reduced minimum modulys(T) of an operatofl” € L(H) is defined
by
y(T):inf{||Tx||: lxll =1, xEN(T)l}- 2)
It is well known thaty (T) = y (T*) = y(T*T)¥/2. Also, it can be shown that an operator
T has closed range if and onlyf(7") > 0. In this casey (T) = |71t

The following result is an easy consequence of Eq. (2).

Lemma2.7. Let B € L(H) with B invertible. Then,
1B~y (T) <y (BT) < ||Blly(T).

Moreover, the same formula follows, replacifng 1| ~1 by y (B), if R(B) is closed and
R(T) C N(B)*.
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Lemma 2.8. LetT € L(H) be a partial isometrfi.e., TT* is a projection, M a closed
subspace of{ and P, the orthogonal projection ontdA. Then
y(T Ppg) = s[N(T), M].
Proof. DenoteN = N(T) andR = N*. SinceT acts isometrically orR, it is clear by
Eq. (2) that
Y (T Pp) =y (T PRPM) =y (PRPM).

Since N(Pgr Prg) = M+ & (M NN), it follows that N (Pg Pyt = M N (M NN)*
= M. Then, by Proposition 2.5,

Y(PRPyp) = inf ||Prx|l= inf d(x,N)=d(Mj, N)=s[N, M]. O

xeMi xeMy

The next result was proved in [1]. We include a short proof for the sake of completeness.

Proposition 2.9. If T € L(H) has closed range ani is a closed subspace #f such that
¢[N(T), M] < 1 (so thatT P, has closed rangethen

)/(T)S[N(T), M] Sy(TPpm) < ||T||S[N(T),M]- 3)
Proof. TakeB = |T*| = (T'T*)Y2. Itis well known thatR(B) = R(T) which is closed by
hypothesis. Itis easy to see thatl') = y (B) and||B|| = ||T||. Also, BTT is a coisometry,
with the same nullspace &s So, by Lemma 2.8/ (BT P,) = s[N(T), M]. Now, using

Lemma 2.7 forB and B'T P, and the fact thaBB'T Py = PriryT Ppq = T Py, We
get

Y (T)s[N(T), M] < y (T Pam) < IITIIs[N(T), M],

becauser(B) = R(BT), so thatR(BTT Py() CR(B)=N(B):. O

Remark 2.10. With the same ideas, the following formulae generalizing Lemma 2.8 and
Proposition 2.9, can be proved.

(1) LetU, V € L(H) be partial isometries. Thep(UV) =s[N(U), R(V)].
(2) If A, B € L(H) have closed ranges, then

y(A)y (B)s[N(A), R(B)] <y(AB) <I|A|IBIs[N(A), R(B)].

Note that the first inequality implies Proposition 2.3.

In particular, this gives the following formula for the sine of an angle: givérand A\ two
closed subspaces &f, it holds

SN, M1 =y (PpnrL Pr).
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2.3. Frames

We introduce some basic facts about frames in Hilbert spaces. For complete descriptions
of frame theory and applications, the reader is referred to the survey by Heil and Walnut
[17] or the books by Young [25] and Christensen [10].

Definition 2.11. Let H be a separable Hilbert space, ahd= { f,},cn @ Sequence ifi.

(1) Fis called aframeif there exist numberd, B > 0 such that, for every € H,
AIFIZ< Y I P < BIFIZ 4)
neN

(2) The optimal constants, B for Eq. (4) are called thame boundgor F.

(3) The frameF is calledtightif A = B, andParsevalif A= B = 1.

(4) Associated withF there exist an operatdf : ¢2 — H such thatT'(e,) = f,,, where
{ex}nen denotes the canonical basistéf This operator is called treynthesi®perator
of F. For finite frames we assume that the domain of the synthesis operé&idr, is
wherem is the number of vectors of the frame.

Remark 2.12. Let F = { f, }nen be a frame irf{ andT its synthesis operator.

(1) The frame bounds of can be computed in terms of the synthesis operator
A=y(T)? and B=|T|% (5)

(2) The adjointT* € L(H, ¢?) of T, is given byT*(x) = Y, (¥, fu)en, x € H. Itis
called theanalysis operatofor F.
(3) The operato = TT* is usually called frame operator and it is easy to see that

Sf=Y (f falfu, fEM. (6)
neN

It follows from (4) thatA.I < S < B.I, so thatS € GI(H)™. Moreover, the optimal
constantsA, B for Eq. (4) are

B=|Sll=p(S) and A=y(S)=|SHt=min{r: rea(S)}.
Finally, from (6) we get
F=Y (LS fa VfeH.
neN

(4) The numberg(f, S~1f,)} are called thdrame coefficientsf f. They have the fol-
lowing optimal property: iff =", . ca fn, fOr a sequencéc,),en, then

STEAS NP leal?.
neN neN

The frame{S~1 f,},en is called canonical dual frame. We shall return to dual frames
in Section 4.
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3. Riesz frames and conditional Riesz frames

It was remarked by Christensen [10, p. 65], that given a frédme{ 1, },<n, in practice
it can be difficult to use the frame decompositifr=>"(f, S~ f,) f, because it requires
the calculation ofs—1 or, at least, the frame coefficientg, S~1 /,,). In order to get some
of the advantages of Riesz bases, Christensen introduced in [Prdfertion method
approximatingS and S~ by finite rank operators, acting on certain finite dimensional
spacesH,, approachingH. Later on, Christensen [9] introduced two special classes of
frames, namelRiesz frameandconditional Riesz frameswvhich are well adapted to some
of these problems (see also [3-5]).

We need to fix some notations: LBt= {¢, },cn be the canonical orthonormal basis of
¢?andl C N.

(1) We denoteM = Sparfe,: n € I} andP; = Py,, the orthogonal projection ontb1;.
) If1=1,:=1{1,2,...,n}, we putM, for M.

(3) Given\ a closed subspace 6f, we denoteV,, = N’ N M,,, n € N.

(4) If F={fu}uen is a frame forH, we denote byF; = { f,,}ner-

(5) We say thatF; is aframe sequenciéit is a frame forSpanf;}.

(6) Fj is called asubframeof F if it is itself a frame forH.

Recall the definitions of Riesz frames and conditional Riesz frames.

Definition 3.1. A frame F = {f,},.en is called aRiesz framef there existsA, B > 0
such that, for every c N, the subfamilyF; is a frame sequence with bounds B (not
necessarily optimal).

The sequenc# is called aconditional Riesz frami there are common bounds for the
frame sequence’;, , where{/,}° ; is a sequence of finite subsetosuch thatl,, C 1,11
for everyn e NandJ,, . 7n =N.

Remark 3.2. Let F be a frame, and” its synthesis operator. GivehC N, then 7 is
a frame sequence if and only RB(T P;) is closed, andF; is a subframe if and only
if R(T P;) = H. In both cases the frame bounds 6rareA = y (T P;)? andB = || T P;||.
Using these facts we get an equivalent definition of Riesz fratfes: a Riesz frame if
there existg > 0 such that/ (T P;) > ¢ for everyl C N.

Proposition 2.9 can be used to characterize Riesz frames in terms of the angles between
the nullspace of the synthesis operafoand the closed subspacegéfwhich are spanned
by subsets of.

Proposition 3.3. Let F = { f,,}.en be a frame, and" be its synthesis operator. L&t =
N(T). ThenF is a Riesz frame if and only if

¢ = supc[N, M;] < 1. (7
ISN
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Proof. By Proposition 2.37 P; has closed range ifff\/, M;] < 1. By Proposition 2.9,
y (T Py) has an uniform lower bound if and only ifthere exists a constantl such that,
foreveryl CN, c[N, M;]1<c. O

Remark 3.4. Let A be a closed subspace ¢f and B = {e,,},cn be the canonical ortho-
normal basis of2. If Eq. (7) holds, following the terminology of [1], we say thAf is
B-compatible

In the following proposition, we state a characterizationS5e€ompatible subspaces
of H, proved in [1].

Proposition 3.5. Let A/ be a closed subspace 6f and letB = {ex}xen be the canonical
orthonormal basis of?. For n € N, denote by, = supycr, c[N,, M,]. Then the follow-
ing conditions are equivalent

(1) NV is B-compatible.

(2) ¢ =sup,en N, M, ] <1, andsup,cy ¢n < 1.

() cl(U, ey No) =N and sup,ey cn < 1.

(4) There exists a constamt< 1 such thatc[N, H;] < ¢ for every finite subset of N
with "N M = {0}.

Proposition 3.5 can be “translated” to frame language to get a characterization of Riesz
frames, similar to the one obtained by Christensen and Lindner in [13]:

Theorem 3.6. Let F = { f, }.en be a frame andr' its synthesis operator. Denot¥ =
N(T). Then the following conditions are equivalent

(1) Fis aRiesz frame.

(2) NV is B-compatible.

(3) There exists an uniform lower frame bound for every finite linearly independent frame
sequencery, J C N.

(4) There existsl > 0 such thaty (T Py) > d, for everyJ e N finite such that\" N M,
= {0}

Proof. If I is a finite subset oN then M; N A = {0} if and only if ; is linearly inde-
pendent. Then, conditions (3) and (4) are equivalent. By Propositions 2.9 and 3.5, they are
also equivalent to th&8-compatibility of \V.

Suppose that there exists a constdrguch that O< d < y(T P,4,) for every finite
subset/ € N such thatM; NN = {0}. This is equivalent to saying that there is a constant
¢ < 1 such that[N, M;] < ¢ for such kind of setd. Using Propositions 3.3 and 3.5, we
conclude thatF is a Riesz frame. The converse is clean

Now, we consider conditional Riesz frames. First of all, we state a result for this class of
frames which is similar to Proposition 3.3, and whose proof follows essentially the same
lines.
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Proposition 3.7. Let F = { f,}nen and N the nullspace of its synthesis operator. THEN
is a conditional Riesz frame if and only ifthere exists a sequéhgef finite subsets oN
such thatl,, C I,,41,

=N and c=supcNV.M;]<1 neN. (8)
neN neN

As a corollary of this proposition we get the following result.

Proposition 3.8. Let F be a conditional Riesz frame, arfdits synthesis operator faf .
DenoteN = N(T). Then

cI(UNn)zN. ©)
n=1

In order to prove this proposition, we need the following technical lemma.

Lemma 3.9. Let V' be a closed subspace 6%, a constant: < 1 and a sequencgl,,} of
finite subsets df such thatl, € 11, U, ey In = N andc[N, M;,]1 < ¢, for everyn e N.
Then

cI(UNﬁM1n> =N.

neN

Proof. DenoteQ, = P;,, n € N. The assertion of the lemma is equivalent to
soT
Py AQn /Py

n—oo

Let x € £2 be a unit vector and let > 0. Letk € N such thatc®~* < ¢/2. By Proposi-
tion 2.4, for everyr > 1 it holds that

| (P Q) — Py A Qu] < g

On the other hand, sinc@,, PN —> PN and the functionf (x) = x¥ is SOT-continuous

on bounded sets (see, for example 2.3.2 of [24]), there exjists1 such that, for every
n = no,

[QnPa* = Pre] < 5.
Then, for every: > ny,

|(Px— Pn A Q)x ||
<|[[Pv = (Pv @) x| + [((PAr @) = P A Qu)x| <e. O
Proof of Proposition 3.8. SinceF is a conditional Riesz frame, there exisk 1 and a

sequencdl,} of finite subsets ofN such thatl,, € I,4+1, U,cy In = N andc[N, My, ]
< ¢, for everyn € N. By Lemma 3.9) J,.y N N M, is dense inV. Finally, for every
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n € N, there existsn € N such that/, C I, ={1,2,...,m}. Thus,|J,.yN N M, C
UmeNNm' d

As a consequence of Proposition 3.8 we obtain the following corollaries.

Corollary 3.10. Let F be a conditional Riesz frame with synthesis operdt@and suppose
that dimN(T) < co. ThenF is a Riesz frame. Moreover, there exisiss N such that
N(T) C M,,.

Proof. Denote by N = N(T). By Proposition 3.8, satisfies Eq. (9). Since diAf
< o0, then there exist&: € N such that\ = N(T) € M,,. Thus, in the terminology
of Proposition 3.5, ik, = sup,, ¢ Ny, My1, thenc, = ¢, for everyn > m. Therefore,
by Proposition 3.5F is a Riesz frame. O

Corollary 3.11. Let F = { f,, }en be a conditional Riesz frame. Givere N, denote bys,
the frame operator of f; };_; and letA, be the minimum of the lower frame bounds of all

frame subsequences{cﬁfn—l/sz};j:l. If inf, A, > 0, thenF is a Riesz frame.

Proof. Let T be the synthesis operator 8fand N\ = N(T). For each: € N, denoteF,, =
{fxYie1 Bo ={ea, ..., ey} @and P, = Ppy,. Note that?' P, : M, — Spaif fi: k=1,...,n}
can be considered, modulo an unitary operator, as the synthesis opetatotrothis way,
it holds thatS,, = T P, T*. Also note tha{S{l/sz Yi—1 is a Parseval frame, and(T P,,) =
N(S_l/ZTPn) =NNM,=N,.So, by Lemma 2.8, il C{1,...,n}, the lower frame

boundA; of {Sn_l/sz}kej satisfiesA; = 1 — ¢[N,, M]2. Using Propositions 3.8 and
3.5, the corollary follows. O

3.1. A counterexample

The nullspacéV of the synthesis operator of a conditional Riesz frame has the property
of “density”: cl(U,2 1 Nx) = N, whereN,, is NN M,. In the following example we
show that the converse is not true, i.e., we construct a frame which is not a conditional
Riesz frame such that its synthesis nuIIsp.aéeatlsfles AU Vo) =N

We shall prove the assertion in an indirect way, by using Proposition 3.7 and the follow-
ing fact: if A/ is a closed subspace 6f such that diraV- = oo, then there exists a frame
F with synthesis operatdf such that\' = N (T).

Example3.12. Givenr > 1, if B = {e,},en denotes the canonical basisédf let us define
the following orthogonal system:

1 1 1
xl_el—rez+—e3+ e4+ 6‘5+

1 1 1 1
X2—65—V€6+ €7+ 68+ 69+ —5¢10
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1 1 1
Xn = €43 —regm-—2+ meM—l + r4’172€4n + r4n7164n+1 + m€4n+2-

Let A be the closed subspace generatedhy, cn. By construction, cl J72; NV,) = N.
Moreover{es,_1 — res,: n € Ny ¢ N't, so dimNV+ = oo. By the remarks above, there
exists a frameF such that the nullspace of its synthesis operatgv'isNVe claim that this
frame is not a conditional Riesz frame. By Proposition 3.7, it suffices to verify that for
every sequencég; C Jo C J3C --- C J, /N, it holds thatc[ VN, M,k]kjgol. Hence, fix
such a sequenddy }xcny and take O< e < 1.

Sincel|x, |12 < 1+ r? +4/r% -5 for everyn € N, there existsig € N such that

1472
<
llx 12

Note that, fory e A" andi € N, if M; = sparfes;_3, e4;_2}, then

Vn > nog.

(v, xi)=0 & Ppry=0, (10)
becausePrq,x; # 0 ifand only if j =i. Letk € N be such that
j=max{i e N: Pyg, (N N My,) #0} > no.

By Eq. (10),x;, € (W N.M,)* for everyh > j. In particularx ;1 € N (M NM,,) and

l-e<

1472 |IPjxjzall® << Xj+1  Ppxjq
S S )
llxj41112 llxj+10? lxjrall” 1 Pgxjall

>< C[N7 MJ/(]-

A similar argument shows that-1 ¢ < c[N, M, ], for everym > k. This implies that
liminf,_ o c[N, M, 1> 1— e. Finally, ase is arbitrary, we get[N, Mjk]k—> 1.
—00

4. Weighted dual frames

Let F = {fu}nen be a fixed frame for a closed subspaseof H and letM C H be
another closed subspace such tHat VW 4 M=*. As we have mentioned in the introduc-
tion, an oblique dual frame of in M is a frameG = {g,,},,en for M such that for every
f €W itholds that

f=)(frgn)fn VfEW. (11)
n=1

Such a dual frame has the minimal norm property if for evérg VW the coefficients
{(f, gn)}nen have minimal¢? norm. Christensen and Eldar proved in [12] that the duals
frames with the minimal norm property have the form

{8nlnen = {B(T*BY'en}, . (12)

where{e, },en denote the canonical orthonormal basigéfandB is a bounded operator
with R(B) = M.
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On the other hand, l&P(¢2) be the set of allD € GI(¢2)* which are diagonal in the
canonical basige, },en. EachD € D(¢2) defines an inner produ¢t, -)p by means of

(x,y)p=(Dx,y), x,yel?

This inner product induceswaeightednorm || - || p which is equivalent to the original one.

In this section, we are interested in dual frames such that their coefficients in the recon-
struction formula (11) minimize different weighted norms. We shall give explicit formulae
for this class of dual frames that we call weighted dual frames. We also consider the par-
ticular case of weighted dual frames associated to a Riesz frame.

First of all, let us recall some preliminary facts on generalized inverses.

Definition 4.1. Given two Hilbert space${ and/C, let A € L(H, K) be an operator with
closed range. We say th&t e L(K, H) is a generalized inverse of if ABA = A and
BAB=B.

Remarks4.2. Let A € L(H, K) with closed range, and & € L(K, H) be a generalized
inverse ofA. Then

(1) Both AB andBA are oblique projections, i.e., idempotent operators.

(2) R(B) is also closed.

(3) The idempotentA B and BA induce decompositions of the Hilbert spad¢ésand :
H = N(A)+ R(B) andk = R(A) + N(B).

(4) If (AB)* = AB and(BA)* = BA, thenB is called the Moore—Penrose generalized
inverse forA. Itis usually denoted byt ™. In this caseA AT is the orthogonal projection
ontoR(A) andATA is the orthogonal projection ontg(A)~.

Among the generalized inverses of an operatas L(¢2, H), the following ones will
be particularly important for us. In order to clarify the next statement, given a sub%pace
of ¢2 and D € D(¢?), the orthogonal complement GF with respect to the inner product
(-, -)p will be denoted by7 2.

Lemmad4.3. LetA € L(¢2, H) be an operator with closed range, afitle D(¢2). Then, the
operator X ,(A) = D~Y2(AD~Y/?) is a generalized inverse of such thaty ,,(A)A is
the orthogonal projection with respect to the weighted inner progucj p ontoN (A)1>.
Proof. SinceR(ADY/2) = R(A) it follows that
AX p(A)A = PraprzyA=A.
On the other hand,
= X p(A).

Finally, some easy computation shows that an oblique proje@ienD-orthogonal if and
only if DQ is selfadjoint. In our case
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D(X p(A)A) = DY2(AD™Y?)TA = DY2(D~Y24*(AD71A%)") A
= A*(AD71A%)TA,

which is clearly selfadjoint. Therefore ,,(A)A is a D-orthogonal projection and clearly
N(X p(A)A)=N(A). DO

Now, we are ready to give the explicit form of weighted dual frames.

Proposition 4.4. Let F = { f,, }.en be a fixed frame for a closed subspadeof H, T its
synthesis operator and le¥! be another closed subspacefsfsuch that = W + ML,
Then, giverD e D(¢?), the oblique dual frames such that for everg W their coefficient
in the reconstruction formula minimize the weighted ndrnfj p have the form

G ={gnlnen = {B(DY2T*BY'DV2,} ..

where{e, },eny denotes the canonical orthonormal basis¢éfand B € L(¢2, H) is any
operator withR(B) = M

Proof. Fix B € L(¢2,H) with rangeM and let? = B(D~Y27*B)TD~Y/2, First of all,
note thatN (D~Y2T*B) = N(B). So,R(T) = R(B) = M and therefore is a frame.

In order to prove thag is an oblique dual frame it is enough to prove thst* is
an oblique projection ontdV. Actually, T7* is the projection ontdV parallel to M.
Indeed, on one hand

(TT*? = (T D Y2(B*T D~ Y2 B*)?
=T (D" Y2B*T DY 'B*) = (TT™),

which shows thaT 7* is a projection. On the other hand, sinéeD~Y/2(B*T D~Y/2)T p*)
= M=+ andR(D~Y2(B*T D~Y2)TB*) = N(T)*, it holds that' 7* is the projection onto
W with nullspaceM .

Finally, in order to prove that the reconstruction coefficients minimize the weighted
norm | - lp we have to prove thalR (7*) € N(T)->. But, using the notation of
Lemma4.3, we geT T = X p(B*T)B*T and, therefore, using the same lemmRél *) =
N(B*T)*> = N(T)*2. O

As we have already mentioned in the previous secfigp,.cn is a Riesz frames if and
only if N(T) is compatible with the canonical base (see Remark 3.48plfy denote the
(unique) orthogonal projection onto the closed subspéasf £2 with respect to the inner
product{-, -) p, it was proved in [1] that\/ is compatible if and only if

sup [[Pp nIl < oo.
DeD(£2)

As a consequence of this result we obtain the following
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Theorem 4.5. Let F = { f,, },en be a frame for a closed subspar of H, T its synthesis
operator, M another closed subspace #f such that{ = W+ M+ andG = {g,}nen @
fixed (sampling frame for M with synthesis operatoB. Then, the following conditions
are equivalent

(1) Fis aRiesz frame o .
(2) The oblique dual frames df with respect toB that minimize the different weighted
norms are bounded from above. In other words

sup |B(D7Y21*B)'DY?| < 0.
DeD(¢?2)

Proof. Fix D € D(¢?). We have already proved in Lemma 4.3 that
(B(D™Y21*B)'D~YV2)* T = T*B(D~Y?T*B)' D" Y2 =T*B X [,(T*B)
=1— Pp.n).
Hence
” B(D_l/ZT*B)TD_l/ZH <|BI ” (D—l/zT*B)TD—l/ZH
= BIl||(T*B)T(T*B)(D~Y?T*B) D~1/2|
<IBI|*B)'||(T*B)Y(DY?T*B) D~ V/?|
=1BI|T*B|[1= P} yery

’

and
11— Pp.neryll = | T*BDY21*B) DYV2| < | 7% | B(D~Y2T*B) D72,
Therefore
sup |B(D7Y2T*B)'DY?| <00 & sup |1- Pp il < oo,
DeD(£?) DeD(£?)

which proves the proposition.O
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