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Abstract

The main purpose of this work is to study empirically by means of simulations, the
robustness of a set of proposals to estimate the parameters in the MA(1) time series
model. The non-normal populations are mixtures of normal distributions, defined
by g(x) = pN(0, k) + (1 − p)N(0, 1), where the proportion of contamination most
frequently used is p = 0.10 and k is the variance of the distribution used in the
contamination; α is taken to be 0.90, which is close to the region of non-invertibility.
Key results are that the estimation procedures used in the study provide good
results in terms of biases in the estimation of the parameters, and that the biases are
not changed when contaminated errors (mixtures) are considered. The estimation
of the variance of the contaminated errors is also studied through simulations.

Key Words: Maximum likelihood estimation, contaminated errors, robustness,
estimation of error variance, biases.

AMS subject classification: 62M10, 62F35

1 Introduction

Many estimation procedures used in time series analysis are deduced under
restrictive assumptions. For example to estimate the parameters in ARMA
models, frequently it is assumed that errors form a white noise process:
they are independent (or at least non-correlated), with constant expected
value (usually taken to be 0), and constant, finite variance. Under these
assumptions, or similar ones, they are used computationally and their basic
theoretical properties are studied; this applies, for example, to the method
of moments or similar procedures (Burg’s algorithm, for example), or some
version of the least squares procedure.
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With the additional assumption of normality, the method of maximum
likelihood is frequently considered. Experiences in the use and analysis
of this procedure are in general positive: asymptotic results are known
covering various types of investigations, and studies conducted through
simulations have frequently shown that the asymptotic results can be used
with moderate and even small samples. In general, simulation studies use
values generated by normal distributions.

The assumption of normality is often too demanding for applications.
Several approaches have been used in the literature to deal with departures
from this assumption in the case of ARMA models. We shall briefly review
some of them.

One possibility is to apply methods to deal with outliers. The pres-
ence of outliers is an indication of the normality of the series. Fox (1972)
discussed the idea of additive (AO, Type I) and innovations (IO, Type II)
outliers. The former are the effect of external or exogenous causes and
the latter of internal or endogenous causes. Chang et al. (1988) used the
technique of intervention analysis (Box and Tiao (1975)) to deal with both
kinds of outliers. Peña (1990) dealt with measuring the influence of outliers
(Cook and Weisberg (1982)); in this approach observations are deleted and
the effect of such deletions on the estimates is measured: a high influence
means that the deletion strongly affects the estimates.

The treatment of outliers can also be approached through the use of ro-
bust statistical procedures. An exposition is Martin (1980) who dealt with
autoregressive models. The basic idea is to replace the common weighting
schemes (quadratic or absolute value), by more elaborate ones. A collection
of these procedures is in Andrews et al. (1972), as will be discussed below.

Another approach is to use for the error term some non-normal distri-
bution. Tikku et al. (2000) considered autoregressive models with errors
terms modelled by a symmetric family of distributions, namely Student’s
t. These are known to have heavy tails for small degrees of freedom. These
authors derive a modified maximum likelihood estimation procedure and
show that it has good properties in estimation and testing problems.

An alternative related to the previous paragraph, is to use mixtures
of normal distributions as models for the error term. In the frequently-
quoted study Andrews et al. (1972), the behavior of a collection of as many
as 68 point estimators of location was studied, but not in the context of
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time series. These authors used simulation and considered a wide variety
of distributions. In particular, they used mixtures of normal distributions
with equal expected values and differing variances, which are known in the
literature as robustness models (Lindsay (1995), Section 1.3.12, Aitkin and
Tunnicliffe (1980)).

In the present study we consider the first order moving average model
with errors generated by robustness models. Through simulations we com-
pare an iterative estimation procedure presented in Anderson and Mentz
(1993b) with methods available in five well-known computer programs. Our
main objective is to evaluate whether the use of mixture in the error term,
affects the outcome of the procedures by introducing biases in the estima-
tion of the moving average parameter.

2 The first-order moving average model and mixtures of

two normal densities

The MA(1) (first-order moving average) model assumes that an observable
time series yt is generated by

yt = ut + αut−1, (2.1)

where the ut are Gaussian white noise, that is, independent N(0, σ2) ran-
dom variables. Instead of the parameters (α,σ2), often the pair (σ0, ρ)
is considered, where σ0 = σ2(1 + α2) = E(y2

t ) is the variance of yt, and
ρ = α/(1 + α2) = E(ytyt−1)/E(y2

t ) is the first-order autocorrelation co-
efficient. The relation between these parameters is ρ = α/(1 + α2) and
α =

{
1 − (1 − 4ρ2)1/2

}
/(2ρ). The invertibility regions are |α| < 1 and

|ρ| < 1/{2 cos[π/(T + 1)]} (Anderson and Takemura (1986)). In general r
is used to designate an estimator of ρ. The results are given in terms of ρ
and only by exception in terms of α.

Instead of normal errors we consider the mixture of two normal den-
sities, with the same expected values and different variances: N(θ, σ2) y
N(θ, kσ2), where k > 0. Following Lindsay (1995), we write the mixture as
pN(θ, kσ2) + (1 − p)N(θ, σ2), where 0 < p < 1. Without loss of generality
we take θ = 0 y σ = 1.

The simulation procedure consists in generating pseudorandom inde-
pendent numbers, uniformly distributed on [0, 1], and to consider this in-
terval divided by p. The experiment is interpreted as the selection of the
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N(0, k) density with relative expected proportion p, and density N(0, 1)
with relative expected proportion 1 − p. When p is small, this is a model
for the generation of a proportion p of outliers.

Hence, the model density can be written as

g(x; p, k) = p
1√
2πk

exp

{
−x

2

2k

}
+ (1 − p)

1√
2π

exp

{
−x

2

2

}
,

−∞ < x <∞ (2.2)

where p and k are the model parameters.

The central moments of this density are obtained by integrating over x,
so that they “may be expressed as weighted sums (using the same weights)
of the expectations calculated using fixed numbers” (Andrews et al. (1972),
Section 4D3). Hence, the density 2.1 has 0 expected value and variance

V ar(X) = E(X2) = pk + (1 − p) (2.3)

depending on the sampling fraction p and the scale factor k.

Given that the selection of the uniform random variables is done inde-
pendently, it follows that the random variables with the mixture distribu-
tion are also independent. In the time series terminology, if Xt denotes the
stochastic process generated in the indicated way, it constitutes a white
noise process: independent random variables with 0 expected value and
constant variance pk + (1 − p).

Following Andrews et al. (1972) (Section 5.4, Table 5-2), we take k =
1, 9 and 100: the first value gives random variables which are indepen-
dent and identically distributed N(0, 1), and the other two correspond to
standard deviations of 3 and 10, respectively.

In Figure 1 three densities are compared, namely: the standard normal
N(0, 1), the mixture 0.5N(0, 1) + 0.5N(0.9) (which has variance equal to
5, according to (2.3)), and the N(0, 5) density. The three densities are
symmetric with respect to 0, but while the first and third ones are normal,
the mixture is clearly non-normal, has “heavy tails”, that is to say, it assigns
high densities to values far from its 0 expected value.

Figures 2 and 3 compare de N(0, 1) density with mixtures having k = 9
and k = 100 respectively.
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Figure 1: Comparison of the densities N(0, 1) and N(0, 5) with the mixture

0.5 N(0, 1) + 0.5N(0, 9).
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Figure 2: Comparison of the mixtures used in Table 1. N(0, 1) and mixture

0.1 N(0, 9) + 0.9 N(0, 1)

3 Estimation procedures in time series analysis

In terms of the parameters of the MA(1) model, the likelihood function of
a vector of observations y = (y1, ..., yT )′ is

L(σ0, ρ) = (2πσ0)
−T/2 |R|−1/2 exp

{
−y′R−1y/(2σ0)

}
(3.1)

where R is the T ×T autocorrelation matrix: R = I + ρG, and G has 1’s
in its two diagonals adjacent to its main diagonal and 0’s elsewhere.
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Figure 3: Comparison of the mixtures used in Table 1. N(0, 1) and mixture

0.1 N(0, 100) + 0.9 N(0, 1)

One iterative estimation procedures, identified as FORM1, is written

FORM1 :
{
t
(i−1)
22 q

(i−1)
10 − t

(i−1)
21 q

(i−1)
11

}
= rit

(i−1)
20 q

(i−1)
11 −t(i−1)

21 q
(i−1)
10 , (3.2)

where
q
(i−1)
jk = y′R

−(j+1)
i−1 Gky, (3.3)

are quadratic forms, and

t
(i−1)
jk = trR−1

i−1G
k (3.4)

are traces. The computational details and other analyses of this proposal
can be found in Anderson and Mentz (1993a).

This iterative procedure is derived from the normal likelihood function
when the method of scoring is used in the expansion of the log-likelihood.
Other procedures are derived in Anderson and Mentz (1993b) by expanding
the log-likelihood by the Newton-Raphson method, and also by using the
two expansions with the concentrated likelihood functions. These proce-
dures are mathematically equivalent, but they lead to different estimating
equations, and hence often to different values of the estimates.

The estimation procedure defined by (3.2), (3.3), and (3.4) was com-
pared in a simulation study with the following five:

1. BMDPCls. (Cls stands for conditional least squares) This is a prelimi-
nary estimation procedure, a variant of the method of moments, available
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in BMDP (1990). The estimate of the main parameter minimizes the sum
of squares appearing in the exponent of the Gaussian likelihood function,
assuming certain initial values for the error terms. See Box and Jenkins
(1970)(Chapter 7).

2. BMDPBak. (Bak stands for backcasting) In the previous procedure,
the term corresponding to the Gaussian likelihood function is omitted. In
the present one the full expression is considered. The initial values are not
assumed to be fixed values, but they are “forecasted”: this originates the
expression backcasting (back-forecasting).

3. S-PLUS. Estimation procedure available in the package with this name.
The procedure minimizes a likelihood function conditional on a set of initial
values (Venables and Ripley (1997), Section 15.2). The program includes
a set of alternative computations for the case of missing observations.

4. ITSM. (Interactive Time Series Modelling, Brockwell and Davis (1991)).
This package includes two types of estimation procedures, preliminary and
final, and this in turn can be least squares or Gaussian maximum likelihood;
we only use the latter. The maximization is done by using the “innovations
algorithm”, which is a recursive procedure to compute the one-step ahead
predictors and their mean square errors.

5. MINITAB. Estimation procedure for time series that follow an ARIMA
model. MINITAB (1996).

The iterative procedure defined by (3.2)-(3.4) was studied by means of
simulations in Anderson et al. (1996). In this paper the procedures men-
tioned above, were compared with the preliminary estimator of ρ given
by the first-order sample autocorrelation r, and with the preliminary es-
timation procedure BMDPCls. Considering only pseudorandom normal
numbers, the study by simulations detected that (3.4) operates quite sat-
isfactorily for T = 100 when α = 0.30, a value not in the non-invertibility
region given by |α| > 1; in this case, (3.4) substantially improves the simple
estimator r, and BMDPCls provides results of a quality comparable with
(3.4). However, when α = 0.90, T = 100 was insufficient to justify the
use of the asymptotic approximations known for the estimators and their
standard errors. T = 250 was used and the fit to the asymptotic theory
improved considerably. In the analysis the use of standard errors coming
from the asymptotic theory was emphasized, as a means of evaluating the
statistical significance of the simulation results; n = 100 replicates were
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done in each case.

The present paper has a structure similar to that in the cited publica-
tion, but here non-normal errors in model (2.1), generated by mixtures of
normals as defined in (2.2) are used.

4 Description and analysis of the results

4.1 Simulation design

We consider samples sizes T = 100 or 250 and repetitions n = 100 or
500. We take the pair (T, n) = (100, 500) as an example.

To generate the MA(1) observations with errors defined by (2.1), for
each repetition the following steps produce the desired result:

1. Generate independent pseudorandomN(0, 1) numbers, by using Wol-
fram (1991). These are denoted u1, u2, . . . , u100.

2. Generate a value p̂ from the uniform distribution on (0, 1).

3. Transform by defining zci =
√
kui, if ui ≤ p̂, zci = ui, if ui > p̂.

4. Model: yi = zci + αzci−1, i = 1, 2, ..., 100.

5. Use the yi to estimate the parameters of the MA(1) model.

6. Repeat n = 500 times.

To approximate the idea of independence, between each set of T ob-
servations, 50 were discarded. With a given set of y’s, all the estimation
procedures were applied; this design tries to control variability, at least in
part: if the numbers were changed from the calculations for one method
to the next one, differences due to these numbers will be added to the
simulation process itself.

Calculations were done for three values of k, the variance of the contam-
inating distribution N(0, k). We choose k = 1, 9 and 100, as was indicated
in Section 2.

In the following subsection we describe the structure of Table 1, which
contains many of the basic findings of our simulation study.
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4.2 Structure of Table 1

Considering ri, i = 1, 2, ..., n, the values coming from the n repetitions,
Table 1 contains in its columns: (1)m = m(r) =

∑n
i=1 ri/n, the estimates

average, whose estimated standard error is s/
√
n, where s is in column (4);

(2) bi(r) = m−ρ, the average bias, whose standard error is also s/
√
n, and

is included in this column; (4)s = s(r) =
{∑n

i=1 (ri −m)2/(n− 1)
}1/2

,
the standard deviation of the ri, whose estimated asymptotic standard

error is s/ {2(n− 1)}1/2; (5) asm(r) =
{
T−1

[
1 − α2

]3
/
[
1 + α2

]4}1/2
, the

estimated asymptotic standard deviation of r; (6) rsρ(r) = s/asρ(r), the
empirical standard deviation of the ri divided into its asymptotic standard
deviation, whose estimated standard error is the standard error of r divided
by the value of (5); (7) mse(r) = s2(r)+bi2(r), the estimated mean squared
error. The average estimate of α m(α), is also reported.

In columns (2) and (3), dividing the average estimates by their esti-
mated standard errors, we obtain asymptotic tests of the null hypothe-
ses that the true values are 0. For example, in the case of FORM1 and
k = 1, bi(r)/ {s/√n} = −0.00093/0.00040 = −2.325 indicates that for this
sample of n = 100 replications, the bias is not significantly different from
0 at the 1% level. In column (6) we are interested in knowing if the sam-
ple quantities differ significantly from 1; for example, for BMDPBak and
k = 1, (1.01029 − 1)/0.00432 = 2.381, which means that the hypothesis
that the ratio does not differ from 1 is not rejected: the estimated standard
deviation does not differ significantly from its asymptotic value.

4.3 Numerical results

Numerical results coming from simulation experiments are summarized
in Table 1, which follows the structure described in Subsection 4.2.

The table has three parts, for k = 1, 9 and 100, respectively. In each
part the following elements remain constant: (1) The MA(1) parameters,
in particular α = 0.90, to which ρ = 0.49724 corresponds; (2) Sample size
T = 100; (3) The number of repetitions, n = 100, and (4) The contamina-
tion proportion p = 0.10 which is adequate for a robustness study, and is
frequently used as such in the literature.

Results are given as functions of ρ and its estimators (denoted in general
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Part a. k = 1
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,89739 FORM1 0,49631 -0,00093 -0,00187 0,00396 0,00264 1,56644 0,00303

0,00040 0,00080 0,00028 0,00670
0,91832 BMDP Bak 0,49749 0,00025 0,00050 0,00255 0,00183 1,01029 0,00280

0,00026 0,00051 0,00018 0,00432
0,88043 BMDP Cls 0,49451 -0,00273 -0,00548 0,00628 0,00338 2,48488 0,00356

0,00063 0,00126 0,00045 0,01063
0,90426 S-PLUS 0,49671 -0,00053 -0,00106 0,00292 0,00236 1,15699 0,00240

0,00029 0,00059 0,00021 0,00495
0,90410 ITSM 0,49671 -0,00053 -0,00107 0,00294 0,00236 1,16131 0,00240

0,00029 0,00059 0,00021 0,00497
0,91321 MINITAB 0,49727 0,00003 0,00006 0,00273 0,00201 1,07969 0,00276

0,00027 0,00055 0,00019 0,00462

Part b. k = 9
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,90829 FORM1 0,49705 -0,00019 -0,00038 0,00262 0,00220 1,03480 0,00243

0,00026 0,00053 0,00019 0,00443
0,92470 BMDP Bak 0,49780 0,00056 0,00113 0,00228 0,00160 0,90324 0,00285

0,00023 0,00046 0,00016 0,00387
0,88587 BMDP Cls 0,49492 -0,00232 -0,00467 0,00540 0,00313 2,13731 0,00308

0,00054 0,00109 0,00038 0,00915
0,91278 S-PLUS 0,49713 -0,00011 -0,00022 0,00266 0,00203 1,05136 0,00255

0,00027 0,00053 0,00019 0,00450
0,91228 ITSM 0,49712 -0,00012 -0,00024 0,00267 0,00205 1,05428 0,00254

0,00027 0,00054 0,00019 0,00451
0,92043 MINITAB 0,49758 0,00034 0,00069 0,00256 0,00175 1,01198 0,00290

0,00026 0,00051 0,00018 0,00433

Part c. k = 100
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,91111 FORM1 0,49708 -0,00016 -0,00032 0,00289 0,00209 1,14333 0,00273

0,00029 0,00058 0,00021 0,00489
0,93017 BMDP Bak 0,49790 0,00066 0,00133 0,00238 0,00142 0,94122 0,00304

0,00024 0,00048 0,00017 0,00403
0,89318 BMDP Cls 0,49394 -0,00330 -0,00665 0,01617 0,00281 6,39648 0,01287

0,00162 0,00325 0,00115 0,02737
0,91593 S-PLUS 0,49724 0,00000 0,00001 0,00284 0,00191 1,12333 0,00284

0,00028 0,00057 0,00020 0,00481
0,91562 ITSM 0,49723 -0,00001 -0,00001 0,00285 0,00192 1,12844 0,00285

0,00029 0,00057 0,00020 0,00483
0,92601 MINITAB 0,49772 0,00048 0,00097 0,00268 0,00156 1,05984 0,00316

0,00027 0,00054 0,00019 0,00454

Table 1: Simulation results with the MA(1) model with parameter α = 0.90,

(ρ = 0.49724), T = 100, contamination of p = 0.10, and 3 values of k

by r). Estimation results in terms of α are also presented to facilitate
understanding.

Each part has 6 rows corresponding to the estimation procedures. The
contents of each part was described in Subsection 4.2.

The main observations coming from the analysis of this information,
are the following:

1.Bias in the Estimation of ρ. Column (1) contains the estimates aver-
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age of ρ, column (2) the bias in the estimation of this parameter and (3) the
relative bias. In column (1) we observe that the 5 procedures, except for
BMDPCls, show non-significant biases, since these biases, divided by the
corresponding standard errors (printed in parenthesis) are (approximately)
less than 2. BMDPCls shows a significant bias, which is in agreement with
its condition of being a preliminary estimation procedure.

These remarks are valid even when errors contaminated with N(0, 9)
and N(0, 100) are used.

It is interesting to note the proximity of the results obtained by use of
the programs S-PLUS and ITSM. This is understandable, since maximum
likelihood estimation procedures to be used with ARMA models are widely
available in the current literature.

In conclusion, the 5 programs provide good results in terms of biases
in the estimation of ρ, and these biases do not change when we consider
contaminated errors (mixtures) in the MA(1) model.

2. Estimating the Variance of ρ’s Estimators. Column (4) contains the
estimates of Var(r) for the given methods. These values can be compared
with those coming from the asymptotic theory, as given in column (5).
There exists a clear similarity between these two values, except in the case
of BMDPCls (which was already discussed) and for FORM1 when k = 1.

The standard error of s(r) in column (4) is computed, as indicated in
Subsection 4.1, by means of the asymptotic expression s/

√
2(n− 1). For

k = 100 and FORM1, this ratio is 0.00021, which is exactly the value in
the table. In general, except for BMDPCls, the asymptotic approximations
work very satisfactorily, with or without contamination.

To complete this section, we now compare the results obtained in An-
derson et al. (1996) with those in the present paper. Table 2 summarizes
these results.

We observe that the estimates coming from FORM1 are, in general,
smaller than those of the other methods. This is due, in part at least, to
the fact that this procedure, being an exact maximum likelihood, forces the
estimates to be less than 1 in absolute value. This, in turn, comes from the
fact that the likelihood function takes the same values in a given value of
α and in its reciprocal. See, for example, Anderson and Mentz (1980).

Results in Table 2 show that the pairs of columns are quite similar,
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MA(1), α = 0, 90 (ρ = 0.49724), T = 100, n = 100, k = 1

Figures of Merit FORM 1 BMDP Bak
This Paper Anderson This Paper Anderson

M(r)=m 0.49631 0.49682 0.49749 0.49750
Bi(r) -0.00093 -0.00042 0.00025 0.00026

(0.00040) (0.0041) (0.00026)
Rbi(r) -0.00187 -0.00084 0.00050 0.00052

(0.00080) (0.00082) (0.00051)
S(r) 0.00396 0.00406 0.00255 0.00367

(0.00028) (0.00029) (0.00018)
Rsa(r) 0.00264 0.00282 0.00183 0.00234
Mse(r) 1.56644 1.605 1.01029 1.452

(0.00670) (0.115) (0.0432)

Table 2: Comparison between simulation results in the present paper and those

in Anderson et al. (1996)

except for the estimated mean square error for procedure BMDPBak. A
consequence of this similarity, is that in both works, biases and relative
biases in the estimation of ρ are not significantly different from 0. The
differences among estimated means square errors are due to the differences
among the estimates of variances, since the contributions of the squared
biases are small.

4.4 Other numerical results

Table 5 is similar to Table 1, except for the following: (1) Only 4 programs
were analyzed, since BMDPCls was excluded (its behavior was inferior to
that of BMDPBak), and ITSM (it was similar to S-PLUS, which is easier to
use computationally); (2) α = 0.90 (ρ = 0.49724) were used again, sample
size T = 100 and three values of k (1, 9 and 100); (3) n = 500 repetitions
were done and the contamination percentage was p = 0.50: this value is
not associated with the usual ideas in robustness studies, but it was used
as an extreme value to analyze its effects on the results.

A comparison of the results in Tables 1 and 5 is made in Table 7. The
main observations stemming from this table are the following.

1. Estimates coming from FORM1 are in general smaller than those of
the other methods. See Subsection 4.3.
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k = 1
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 1.0442 1.0081 1.0014

(0.1711) (0.1596) (0.1573)
2 500 100 0.90 0.10 1.0367 0.9964

(0.1508) (0.1384)
3 500 250 0.90 0.10 1.0139 0.9952

(0.0926) (0.0895)
4 100 100 0.40 0.10 0.9895 09864

(0.1337) (0.1336)
0.20 0.9946 0.9914

(0.1447) (0.1436)
0.30 1.0085 1.0055

(0.1421) (0.1415)
0.40 1.0051 0.9999

(0.1441) (0.1422)
0.50 0.9875 0.9841

(0.1466) (0.1461)
0.75 0.9634 0.9609

(0.1287) (0.1286)
5 100 100 0.40 0.05 1.0200 1.0163

(0.1486) (0.1484)
0.10 1.0203 1.0161

(0.1484) (0.1483)
0.20 0.9774 0.9743

(0.1342) (0.1335)
0.30 1.0055 1.0015

(0.1308) (0.1307)
0.40 1.0239 1.0180

(0.1482) (0.1460)
0.50 0.9683 0.9648

(0.1467) (0.1463)
0.75 1.0157 1.0107

(0.1582) (0.1570)

k = 9
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 1.9086 2.0092 1.8302

(0.5693) (1.7823) (0.5488)
2 500 100 0.90 0.10 1.8544 1.7844

(0.5038) (0.4838)
3 500 250 0.90 0.10 1.8267 1.7964

(0.3037) (0.2970)
4 100 100 0.40 0.10 1.8295 1.8249

(0.4508) (0.4500)
0.20 2.5811 2.5711

(0.6883) (0.6898)
0.30 3.4589 3.4450

(0.7483) (0.7468)
0.40 4.9258 4.9052

(1.0339) (1.0298)
0.50 5.0561 5.0444

(0.9219) (0.9170)
0.75 6.9365 6.8488

(1.1903) (1.1017)
Continued

Table 3: Simulation results with the MA(1) model, estimation of the variance of

the error term defined as a mixture: average and standard deviation.
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Table 3. Continued
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
5 100 100 0.40 0.05 1.4578 1.4535

(0.4370) (0.4377)
0.10 1.8581 1.8523

(0.5011) (0.5009)
0.20 2.5462 2.5383

(0.6137) (0.6130)
0.30 3.4686 3.4549

(0.7846) (0.7794)
0.40 4.3917 4.3681

(0.9300) (0.9200)
0.50 4.8003 4.7832

(1.0838) (1.0831)
0.75 6.9926 6.9545

(1.2268) (1.2180)

k = 100
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 11.6665 11.2929 11.2742

(6.2579) (6.1470) (6.0732)
2 500 100 0.90 0.10 11.1083 10.7577

(5.4224) (5.3152)
3 500 250 0.90 0.10 11.0699 10.9078

(3.2999) (3.2530)
4 100 100 0.40 0.05 6.4369 6.4230

(4.6777) (4.6791)
0.10 11.4051 11.3766

(5.4712) (5.4687)
0.20 20.4162 20.3548

(6.8408) (6.8412)
0.30 31.4441 31.3293

(8.9559) (8.8902)
0.40 42.6938 42.4690

(10.4204) (10.3216)
0.50 48.4238 48.2631

(12.2090) (12.2041)
0.75 74.9865 74.5799

(13.6208) (13.5185)
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k = 1
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 1.0442 1.0081 1.0014
2 500 100 0.90 0.10 1.0367 0.9964
3 500 250 0.90 0.10 1.0139 0.9952
4 100 100 0.40 0.10 0.9895 09864

0.20 0.9946 0.9914
0.30 1.0085 1.0055
0.40 1.0051 0.9999
0.50 0.9875 0.9841
0.75 0.9634 0.9609

5 100 100 0.40 0.05 1.0200 1.0163
0.10 1.0203 1.0161
0.20 0.9774 0.9743
0.30 1.0055 1.0015
0.40 1.0239 1.0180
0.50 0.9683 0.9648
0.75 1.0157 1.0107

k = 9
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 1.9086 2.0092 1.8302
2 500 100 0.90 0.10 1.8544 1.7844
3 500 250 0.90 0.10 1.8267 1.7964
4 100 100 0.40 0.10 1.8295 1.8295

0.20 2.5811 2.5811
0.30 3.4589 3.4450
0.40 4.9258 4.9052
0.50 5.0561 5.0444
0.75 6.9365 6.8488

5 100 100 0.40 0.05 1.4578 1.4535
0.10 1.8581 1.8523
0.20 2.5462 2.5383
0.30 3.4686 3.4549
0.40 4.3917 4.3681
0.50 4.8003 4.7832
0.75 6.9926 6.9545

k = 100
No Rep T α p BMDP (CLS) BMDP (BAK) ITSM
1 100 100 0.90 0.10 11.6665 11.2929 11.2742
2 500 100 0.90 0.10 11.1083 10.7577
3 500 250 0.90 0.10 11.0699 10.9078
44 100 100 0.40 0.05 6.4369 6.4230

0.10 11.4051 11.3766
0.20 20.4162 20.3548
0.30 31.4441 31.3293
0.40 42.6938 42.4690
0.50 48.4238 48.2631
0.75 74.9865 74.5799

Table 4: Simulation results with the MA(1) model, estimation of the variance of

the error term defined as a mixture: summary of average estimates.
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Part a. k = 1
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,90230 FORM1 0,49641 -0,00083 -0,00166 0,00457 0,00109 4,03951 0,00374

0,00020 0,00041 0,00014 0,00770
0,91847 BMDP Bak 0,49722 -0,00002 -0,00003 0,00411 0,00081 3,63660 0,00409

0,00018 0,00037 0,00013 0,00693
0,90767 S-PLUS 0,49648 -0,00076 -0,00153 0,00472 0,00099 4,17675 0,00396

0,00021 0,00042 0,00015 0,00796
0,91657 MINITAB 0,49709 -0,00015 -0,00029 0,00432 0,00084 3,81777 0,00417

0,00019 0,00039 0,00014 0,00325

Part b. k = 9
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,90505 FORM1 0,49661 -0,00063 -0,00126 0,00426 0,00104 3,76911 0,00364

0,00019 0,00038 0,00013 0,00718
0,92158 BMDP Bak 0,49740 0,00016 0,00033 0,00387 0,00076 3,42288 0,00403

0,00017 0,00035 0,00012 0,00652
0,90920 S-PLUS 0,49670 -0,00054 -0,00108 0,00426 0,00097 3,77224 0,00373

0,00019 0,00038 0,00013 0,00719
0,91869 MINITAB 0,49725 0,00001 0,00002 0,00412 0,00081 3,64629 0,00413

0,00018 0,00037 0,00013 0,00311

Part c. k = 100
(1) (2) (3) (4) (5) (6) (7)

m(a) m(r)=m bi(r) rbi(r) s(r) asm(r) rsa(r) mse(r)
0,90501 FORM1 0,49669 -0,00055 -0,00111 0,00378 0,00104 3,34737 0,00323

0,00017 0,00034 0,00012 0,00638
0,92423 BMDP Bak 0,49753 0,00029 0,00057 0,00335 0,00072 2,96039 0,00363

0,00015 0,00030 0,00011 0,00564
0,91084 S-PLUS 0,49686 -0,00038 -0,00076 0,00370 0,00094 3,27483 0,00332

0,00017 0,00033 0,00012 0,00624
0,92080 MINITAB 0,49739 0,00015 0,00030 0,00354 0,00078 3,13142 0,00369

0,00016 0,00032 0,00011 0,00267

Table 5: Simulation results with the MA(1) model with parameter α = 0.90 (ρ =

0.49724) T = 100, n = 500, contamination of p = 0.50 and 3values of k

2. For p = 0.10, relative biases are non-significant at the 5% level, in
all cases of Table 7 (which includes the two columns headed this paper in
Table 1), except FORM1 when k = 1.

3. Estimates of S(r) range from 0.00228 to 0.00292 for all procedures
and values of k, except that FORM1 has the value 0.00396 for k = 1.

4. As a consequence of these observations, the estimated mean square
error rme(r) takes values similar for the various procedures, except FORM1
as indicated.

5 Final comments,summary and conclusions

The main objective of this study is to perform an empirical analysis by
means of simulations, the robustness of different proposals to estimate the
parameters in the MA(1) time series model. The non-normal populations
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that we consider are mixtures of normal densities, defined in general by
g(x) = pN(0, k) + (1 − p)N(0, 1), where the contamination proportion is
taken to be p = 0, 10 or 0.50, the variance of the contaminating normal
distribution k = 1, 9 or 100 (Andrews et al. (1972)), and the estimation
procedures are Cls (conditional least squares) and Bak (“backcasting”)
of BMDP (BMDP (1990)), SPLUS (Venables and Ripley (1997)), ITSM
(Brockwell and Davis (1991)) and MINITAB (MINITAB (1996)).

The other components of the simulations program are: the MA(1)
model parameter is taken to be α = 0.90, except in Tables 3 and 4 where
α = 0.40 : 0.90 is a value close to the region of non-invertibility (|α| < 1
for the MA(1) to be invertible into an infinite autoregression), sample size
is T = 100, while some partial experiments were done with T = 250, and
the number of repetitions is n = 100 or 500.

The results obtained in the estimation of α or ρ are presented with
the format designed in Anderson et al. (1996), which is a simulation study
using only FORM1 and BMDPBak.

The empirical results (Table 1) show that the programs (except for
BMDPCls, as expected) give satisfactory results in terms of biases in the
estimation of ρ, and that these biases do not change when contaminated
errors (mixtures) are used in the MA(1) model. These results are compared,
partially at least, with those in Anderson et al. (1996), having found a great
deal of similarity among them, also as expected (Table 2); this similarity
exists even when the sources of generation of the pseudorandom numbers
are changed.

Since the error variance changes when we consider different mixtures,
and is given by Var(ut) = pk + (1 − p), Tables 3 and 4 show the results
of some experiments done with BMDPBak. This procedure is selected
because it provides complete results, and it improves the estimation by
BMDPCls. The following values are taken: α = 0.40, T = 100 or 250, n =
100 or 500 and p = 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 and 0.75. A summary
of these results, compared with the corresponding theoretical or expected
values, constitutes Table 6.

The good agreement of the empirical results with the underlying theory
is observed.

Finally, in the experiment done by changing p from 0.10 to 0.50 (and n
from 100 to 500), good stability of the results is observed.
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Contamination k = 1 k = 1 k = 9 k = 9 k = 100 k = 100
(p) Var(ut) Estimation Var(ut) Estimation Var(ut) Estimation

BMDPBak BMDPBak BMDPBak
0.05 1.00 1.0163 1.40 1.4535 5.90 6.4230
0.10 1.00 1.0161 1.80 1.8523 10.90 11.3766
0.20 1.00 0.9743 2.60 2.5383 20.80 20.3548
0.30 1.00 1.0015 3.40 3.4549 30.70 31.3293
0.40 1.00 1.0180 4.20 4.3681 40.60 42.4690
0.50 1.00 0.9648 5.00 4.7832 50.50 48.2631
0.75 1.00 1.0107 7.00 6.9545 75.25 74.5799

Table 6: Comparison between simulation with the MA(1) model, in estimating the

variance of the error term defined by a mixture: comparison between empirical

averages and theoretical Values
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Part a. k = 1
Form1 BMDBPBak S-PLUS MINITAB

Item p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50
n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

m(r) = m 0,49631 0,49641 0,49749 0,49722 0,49671 0,49648 0,49727 0,49709

bi(r) -0,00093 -0,00083 0,00025 -0,00002 -0,00053 -0,00076 0,00003 -0,00015
-0,0004 -0,0002 -0,00026 -0,00018 -0,00029 -0,00021 -0,00027 -0,00019
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asm(r) 0,00264 0,00109 0,00183 0,00081 0,00236 0,00099 0,00201 0,00084

rsa(r) 1,56644 4,03951 1,01029 3,63660 1,15699 4,17675 1,07969 3,81777
-0,0067 -0,0077 -0,00432 -0,00693 -0,00495 -0,00796 -0,00462 -0,00325

mse(r) 0,00303 0,00374 0,00280 0,00409 0,00240 0,00396 0,00276 0,00417

Part b. k = 9
Form1 BMDBPBak S-PLUS MINITAB

Item p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50
n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

m(r) = m 0,49705 0,49661 0,49780 0,49740 0,49713 0,49670 0,49758 0,49725

bi(r) -0,00019 -0,00063 0,00056 0,00016 -0,00011 -0,00054 0,00034 0,00001
-0,00026 -0,00019 -0,00023 -0,00017 -0,00027 -0,00019 -0,00026 -0,00018

rbi(r) -0,00038 -0,00126 0,00113 0,00033 -0,00022 -0,00108 0,00069 0,00002
-0,00053 -0,00038 -0,00046 -0,00035 -0,00053 -0,00038 -0,00051 -0,00037

s(r) 0,00262 0,00426 0,00228 0,00387 0,00266 0,00426 0,00256 0,00412
-0,00019 -0,00013 -0,00016 -0,00012 -0,00019 -0,00013 -0,00018 -0,00013

asm(r) 0,00220 0,00104 0,00160 0,00076 0,00203 0,00097 0,00175 0,00081

rsa(r) 1,03480 3,76911 0,90324 3,42288 1,05136 3,77224 1,01198 3,64629
-0,00443 -0,00718 -0,00287 -0,00652 -0,0045 -0,00719 -0,00433 -0,00311

mse(r) 0,00243 0,00364 0,00285 0,00403 0,00255 0,00373 0,00290 0,00413

Part c. k = 100
Form1 BMDBPBak S-PLUS MINITAB

Item p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50 p = 0.10 p = 0.50
n = 100 n = 500 n = 100 n = 500 n = 100 n = 500 n = 100 n = 500

m(r) = m 0,49708 0,49669 0,49790 0,49753 0,49724 0,49686 0,49772 0,49739

bi(r) -0,00016 -0,00055 0,00066 0,00029 0,00000 -0,00038 0,00048 0,00015
-0,00029 -0,00017 -0,00024 -0,00015 -0,00028 -0,00017 -0,00027 -0,00016

rbi(r) -0,00032 -0,00111 0,00113 0,00057 0,00001 -0,00076 0,00097 0,00030
-0,00058 -0,00034 -0,00048 -0,0003 -0,00057 -0,00033 -0,00054 -0,00032

s(r) 0,00289 0,00378 0,00238 0,00335 0,00284 0,00370 0,00268 0,00354
-0,00021 -0,00012 -0,00017 -0,00011 -0,0002 -0,00012 -0,00019 -0,00011

asm(r) 0,00209 0,00104 0,00142 0,00072 0,00191 0,00094 0,00156 0,00078

rsa(r) 1,14333 3,34737 0,94122 2,96039 1,12333 3,27483 1,05984 3,13142
-0,00489 -0,00638 -0,00403 -0,00564 -0,00481 -0,00624 -0,00454 -0,00267

mse(r) 0,00273 0,00323 0,00304 0,00363 0,00284 0,00332 0,00316 0,00369

Table 7: Comparison of simulation results with the MA(1) model with contam-

inations of p = 0.10 and 0.50, n = 100 and 500. Parameter α = 0.90 (ρ =

0.49724), T = 100, and 3 values of k

Andrews, D. F., Bickel, P. J., Hampel, F. R., Huber, P. J.,
Rogers, W. H., and Tukey, J. W. (1972). Robust estimates of lo-
cation: survey and advances. Princeton University Press, Princeton.

BMDP (1990). BMDP Statistical Software. Los Angeles, California.



404 R. P. Mentz and C. I. Mart́ınez

Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis Fore-
casting and Control . Holden-Day, San Francisco.

Box, G. E. P. and Tiao, G. C. (1975). Intervention analysis with applica-
tions to economic and environmental problems. Journal of the American
Statistical Association, 70:70–79.

Brockwell, P. J. and Davis, R. A. (1991). ITSM: An Interactive Time
Series Modelling Package for the PC . Springer-Verlag, New York.

Chang, I., Tiao, G. C., and Chan, C. (1988). Estimation of Time Series
parameters in the presence of outliers. Technometrics, 30:193–204.

Cook, R. D. and Weisberg, S. (1982). Residuals and influence in re-
gression. Chapman and Hall, London.

Fox, A. J. (1972). Outliers in Time Series. Journal of the Royal Statistical
Society , B 43:350–363.

Lindsay, B. G. (1995). Mixture models: theory, geometry and applica-
tions. Regional conference series in probability and statistics, Institute
of Mathematical Statistics.

Martin, R. D. (1980). Robust estimation of autoregressive models. Di-
rections in time series, Institute of Mathematical Statistics, Hayward,
California.
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