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Abstract

This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a

Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch

emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be

obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance tech-

niques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Set-

ting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period

doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

When a differential system satisfies the hypotheses of the Poincaré–Andronov–Hopf theorem, then a periodic solu-

tion or limit cycle appears after a smooth variation of a distinguished bifurcation parameter l. Depending on the math-

ematical modeling and the pursued aims, one can use a numerical technique (simulation) to move along the emergent

orbit or else one can try to find an approximate analytical expression. Different methods such as multiple scales, center

manifold reduction and normal forms enable to fulfill the last possibility. Another alternative is the usual treatment of

Hopf bifurcation in the frequency domain, called for simplicity graphical Hopf method, from which a quasi-analytical

expression of the limit cycle can be obtained by means of harmonic balance techniques [1,17,18]. The accuracy provided

by this methodology is based in the quantity of harmonics that are involved in the final expression of the cycle, and can

be measured through the associated monodromy matrix, monitoring the error in the computation of the trivial multi-

plier +1 [24]. It must be taken into account that the suggested method has local validity, namely, close to Hopf bifur-

cation (also called as primary bifurcation), and whenever the established periodic solution has small amplitude. Varying

one or more parameters of the original system, it is possible that the cycle undergoes a secondary bifurcation, changing

its stability and giving place to, at least, one new periodic or quasi-periodic solution. Particularly, a solution whose per-

iod duplicates the one of the preexisting orbit is known as a new subharmonic solution and the phenomenon is called
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flip or period doubling bifurcation of cycles. Forced vibrations models described by Duffing type equations and well-

known autonomous systems as Lorenz�s, Rössler�s and Chua�s experiment qualitative changes in its solutions that in-

clude bifurcations of this kind. Frequently, the described situation repeats infinite times, generating the so-called period

doubling cascade and the final stage is the appearance of a chaotic attractor. During 1970s, the studies of Feigenbaum

attain to formalize this chaos route for maps, giving its universal characterization.

Within the works related with this topic but now in ODEs, Rand [21] sets up a starting point considering the prob-

lem of detecting a flip bifurcation and analyzing the stability change of the Hopf cycle through center manifold tech-

niques. This phenomenon has captured the attention of Belhaq and Houssni [2] for the first period doubling, and later

of Belhaq et al. [3] for the second period doubling. From the frequency domain point of view, Floquet multipliers are

commonly used to analyze bifurcations of cycles as can be seen in [5,6,29]. In the first work, the monodromy matrix and

approximations of higher order Hopf cycles are the keys to detect the appearance of a subharmonic solution. Related

with feedback systems, a solid application of harmonic balance techniques to analyze period doubling bifurcation and

approximate the resultant orbits, specially directed to bifurcation control, is developed in [27]. Flip bifurcations have

particular interest due to its frequent relationship with chaotic behavior: this can be seen in the analysis of certain elec-

tric power systems [4,26], in the frontier of the harmonic distortion of electronic oscillators [15] or in some kind of

switched reluctance motors [7]. On the other hand, this type of bifurcation is recurrent when complex biological systems

are studied, i.e., in medicine, such as the brain activity in an epilepsy model [20] or cardiac work previous to a severe

arrhythmia [25].

In this manuscript, quasi-analytical expressions which involve up to eight harmonics are used to approximate peri-

odic solutions that result from a dynamic or Hopf bifurcation. Analyzing the closeness of the trivial Floquet multiplier

to the value +1, the limit of the local approximation of the branch of cycles (starting from Hopf bifurcation) will be

derived. At the same time, an alternative proposal to obtain an approximation of the cycle, which also uses harmonic

balance, is presented. It intends to extend the established limits through the classic frequency treatment. Otherwise, if

varying the bifurcation parameter l, one characteristic multiplier of a generic cycle crosses the unit circle through �1,

then a flip or period doubling bifurcation appears. When this phenomenon takes place close to the Hopf bifurcation

value, it may be determined how the bifurcation of cycles occurs, namely, where the subharmonic solution appears,

how is its quasi-analytical expression and which are its dynamical properties. The starting point will be the known infor-

mation about the amplitude and frequency of the Hopf cycle, which changes its stability at flip bifurcation. The results

will be compared with those obtained with LOCBIF [12], through Floquet multipliers. The continuation of this new

branch of periodic solutions will allow to estimate the second period doubling bifurcation and, by making an adjust-

ment of the proposed method, the orbits coming from the last bifurcation may also be approximated. A closely related

technique has been proposed recently in Chung et al. [8] for detecting accurately the period doubling bifurcation but not

necessarily in the vicinity of a Hopf bifurcation.

This work is organized as follows: the foundation of the treatment of Hopf bifurcation in the frequency domain is set

in Section 2 and a summary of results about stability and bifurcations of cycles can be found in Section 3. Afterwards,

the subharmonic solutions which appear from a supercritical period doubling bifurcation are analyzed in Section 4 and

a simple methodology to obtain an approximation of them is proposed. Two examples are fully developed in Section 5

and at last, the conclusions are reported in Section 6.
2. Basic concepts

It is considered an n-dimensional nonlinear differential system like
_x ¼ f ðx; lÞ; ð1Þ
where _x ¼ dx
dt, x 2 Rn, f 2 Cr, rP 9 and l 2 R. It is supposed that ~x is an equilibrium point ðf ð~x; lÞ ¼ 0Þ and l is a dis-

tinguished bifurcation parameter of system (1). This problem can be expressed equivalently including new input and

output variables, say u 2 Rp and y 2 Rm, and formulated as a feedback system. Thus, one obtains the following mixed

representation with a state variable x, an output variable y, and a nonlinear control u
_x ¼ AðlÞxþ BðlÞDðlÞy þ BðlÞu;
y ¼ CðlÞx;
u ¼ gðe; lÞ ¼ ~gðy; lÞ � DðlÞy;

ð2Þ
where A is a n · n matrix (chosen for convenience, as invertible for every value of l), B, C and D are matrices with

orders n · p, m · n and p · m, respectively, ~g is a nonlinear function defined on Rp which results from the original
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function f and the selection made for the matrices A, B, C and D, and g 2 Cr, r P 9, where e = �y. This procedure con-

stitutes what is known as a realization of system (1). Then, if one applies Laplace transform to system (2) with the initial

condition x(0) = 0, the analysis of the feedback system proceeds by finding the equilibrium ~e, which is the solution of the

equation
e ¼ �Gð0; lÞgðe; lÞ; ð3Þ
where G(s;l) = C(l)[sI � (A(l) + B(l)D(l)C(l))]�1B(l) is the usual transfer matrix of the linear part of system (2),

being s the Laplace transform variable, and a nonlinear part represented by u, defined by u = g(e;l) which can be

thought as an input of the system. Carrying out a linearization of (2) and evaluating at the equilibrium ~e, one obtains
a system whose Jacobian J is a p · m matrix given by
J ¼ JðlÞ ¼ D1gðe; lÞje¼~e ¼
ogj
oek

����
e¼~e

� �
; ð4Þ
where g = [g1 g2 � � � gp]
T, j = 1,2, . . .,p, k = 1,2, . . .,m. Then, the application of the generalized Nyquist stability crite-

rion [14] provides the necessary conditions for the critical cases:

Lemma 1. If the linearization of system (1) evaluated at ~x has an eigenvalue ix0 when l = l0 then the associated eigenvalue
of the matrix G(ix0;l0)J(l0) evaluated at ~e takes the value �1 + i0 for l = l0.

The situation of Lemma 1 is related with the appearance of bifurcations in the solutions of system (1). If x0 5 0 and

some additional conditions are satisfied it is possible that a dynamic or Hopf bifurcation happens, which is linked with

the creation or disappearance of periodic solutions.

Due to Lemma 1, it is known that if a bifurcation exists in (1) then
hð�1; ix; lÞ ¼ detð�1� I � Gðix; lÞJðlÞÞ ¼ 0; ð5Þ
for a certain pair (x0,l0). Eq. (5) can be transformed into an equivalent system of equations, splitting its real (Re) and

imaginary (Im) parts, resulting
F 1ðx; lÞ ¼ Re hð�1; ix; lÞð Þ ¼ 0;

F 2ðx; lÞ ¼ Im hð�1; ix; lÞð Þ ¼ 0.

(

Making use of the functions F1 and F2, the next result can be formulated [18]:

Proposition 1. If a dynamic or Hopf bifurcation exists at (x0,l0), x0 5 0, then follows:
F 1ðx0; l0Þ ¼ F 1ðx0; l0Þ ¼ 0.
The Poincaré-Andronov-Hopf theorem [9] gives sufficient conditions to assure the appearance of a branch of peri-

odic solutions in a system like (1). Its formulation in the frequency domain [17,18] is established through three funda-

mental hypotheses, in this way.

Theorem 1
(H1) There is a unique complex function k̂, which solves h(k, ix;l) = 0, passes through (�1 + i0) when x goes through

(0,1) and involves a stability change of the equilibrium. Moreover, there is only one frequency x0 5 0 which sat-

isfies h(�1, ix0;l) = 0 for a certain value l = l0, and besides oF 1

ox

��
ðx0 ;l0Þ

, oF 2

ox

��
ðx0 ;l0Þ

do not vanish simultaneously, avoid-

ing any resonance case.

(H2) The determinant M1 is nonzero, say
M1 ¼
oðF 1; F 2Þ
oðx; lÞ

����
x0 ;l0

�����
����� ¼

oF 1

ox
oF 1

ol

oF 2

ox
oF 2

ol

�����
�����
ðx0 ;l0Þ

6¼ 0;
which is an equivalent expression for the nondegeneracy of the transversality condition of the classic formulation in

time domain.

(H3) The expression r1, known as curvature coefficient and defined as follows:
r1 ¼ �Re
uTGðix0; l0Þp1ðx0; l0Þ
uTG0ðix0; l0ÞJðl0Þv

� �
; ð6Þ
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has a sign definition. This coefficient can be calculated by other techniques and is also recognized as the first Lyapunov

coefficient [13], cubic term coefficient in the normal form expansion [9], and so on.

Observation: In the last formula, uT and v are the left and right normalized eigenvectors of the matrix G(ix0;l0)J(l0)
associated with the eigenvalue k̂ (�uTv ¼ 1 and �vTv ¼ 1, were ‘‘��’’ means complex conjugate), G0 ¼ dG

ds and p1 is a complex

vector
p1ðx; lÞ ¼ QV 02 þ
1

2
QV 22 þ

1

8
L�v;
whose computation is based on the second and third derivatives of the function g [17], and Q, Q and L are p · m matri-

ces defined as
Q ¼ QðlÞ ¼ D2gðe; lÞje¼~ev ¼
Xm
l¼1

o2gj
oel oek

�����
~e

vl

" #
;

where v = [v1 v2 � � � vm]
T, and
L ¼ LðlÞ ¼ D3gðe; lÞje¼~ev� v ¼
Xm
l¼1

Xm
i¼1

o3gj
oel oei oek

�����
~e

vlvi

" #
;

where j = 1,2, . . .,p, k = 1,2, . . .,m. Furthermore, the following vectors are defined:
V 02 ¼ �1

4
Hð0; lÞQ�v; V 22 ¼ �1

4
Hði2x; lÞQv;
where H(s;l) = [I + G(s;l)J(l)]�1G(s;l) is the so-called closed loop transference matrix.

Then a branch of periodic solutions starts at l = l0, whose direction and stability result from the values of M1 and

r1, respectively. When r1 > 0 follows that the solution will be unstable (subcritical Hopf bifurcation) or else stable if

r1 < 0 (supercritical case).

The demonstration of the Poincaré-Andronov-Hopf theorem by using harmonic balance is constructive, namely, it

allows to write an approximate expression of the periodic solution, after estimating its frequency x and the amplitude h
of its first harmonics. These values can be interpreted as a part of a certain graphic in the complex plane and this is the

reason for calling this formulation as the graphical Hopf theorem. More specifically, according with the behavior of the

eigenlocus described by the critical eigenvalue k̂ ¼ k̂ðix; lÞ, one chooses ~l next to l0 and searches for a first estimate of

the frequency ~x through the intersection point between the eigenlocus and the real axis, which results nearest to

(�1 + i0). With this solution pair ð~x; ~lÞ, one computes the corresponding eigenvectors uT, v, the complex vector p1
and at last n1 ¼ �uTGði~x; ~lÞp1. Then, it is considered a certain curve described by L1 = �1 + n1h

2, as h varies, which

is called amplitude locus. The next step consists in looking for the intersection between the two mentioned loci. So,

one obtains a new solution pair ðx̂; ĥÞ, where x̂ ¼ x̂ð~lÞ and ĥ ¼ ĥð~lÞ are approximations for the frequency and the

amplitude of the analyzed oscillation. Using second order harmonic balance, one calculates a semi-analytical approx-

imate expression of the variable e which appears in the system (2) writing
e ¼ eðt; ~lÞ ¼ ~eð~lÞ þRe
X2
k¼o

Ek expðikx̂tÞ
 !

; ð7Þ
where E0 ¼ ĥ
2
V 02, E1 ¼ ĥvþ ĥ

3
V 13 ¼ ĥV 11 þ ĥ

3
V 13, E2 ¼ ĥ

2
V 22. The vector V13 can be found taking in mind that
P ½I þ Gðix̂; ~lÞJð~lÞ�V 13 ¼ �PGðix̂; ~lÞp1; ð8Þ
where P ¼ I � V 11V T
11, under the condition V13 ? V11. All the previous expressions which involve the nonlinear function

g must be evaluated at the equilibrium ~e ¼ ~eð~lÞ.
The generalization of the described method with explicit fourth-order harmonic balance formulae appears in [16]

and justifies the hypotheses established for the function f(Æ) and afterwards for g(Æ) at the beginning of this section. This

extension allows to improve the approximations substantially, due to the use of better estimations of the frequency and

amplitude of the oscillation. The details and explicit formulae for the computation involving up to eight harmonics can

be found in [18]. One must keep in mind that these results are valid locally, in other words, when the parameter is close

to the Hopf bifurcation value and besides when the analyzed cycles have small amplitude.



Fig. 1. Bifurcations of cycles: (a) fold, transcritical or pitchfork, (b) flip or period doubling, and (c) Neimark–Sacker.
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3. Stability and bifurcations of cycles

If one has to analyze the stability of a periodic solution X ¼ Xðt; ~lÞ of a system as (1) two different tools can be ap-

plied at first, namely, Floquet theory and the dynamic analysis of discrete maps, the last one through the conception of

the Poincaré or return map. Considering the first one which comes from the stability analysis on nonautonomous sys-

tems, the stability of the orbit X is based on the study of the eigenvalues of the so-called monodromy matrix. This array

is obtained from the general solution of the following differential equation
_z ¼ DðtÞz; ð9Þ
where z 2 Rn, _z ¼ dz
dt and DðtÞ ¼ D1f ðXðt; ~lÞ; ~lÞ ¼ of

ox

��
x¼Xðt;~lÞ;l¼~l

, D(t + T) = D(t), being T the period of the cycle X.

If one considers M = M(t), a fundamental matrix of solutions of (9) such as M(0) = I, where I is the identity of order

n, and computes M(T), then the monodromy matrix of the orbit X is obtained. The eigenvalues of this matrix are called

Floquet or characteristic multipliers. It can be proved that one of the multipliers of a periodic solution of an autono-

mous system like (1) is always identically +1 [19] and this is the reason for evaluating the accuracy of a cycle approx-

imation measuring the error in the computation of the trivial characteristic multiplier [24].

If two or more Floquet multipliers are placed on the unit circle, the periodic solution is called nonhyperbolic. Gen-

erally, this situation gives rise to a bifurcation of cycles, when the parameter l varies. If one starts with a periodic solu-

tion that changes its stability at a certain value l1, the resultant dynamics depends on the mode that the Floquet

multipliers cross the unit circle (see Fig. 1). There are three possible cases: first, it can occur that one multiplier crosses

the unit circle through the positive real axis (crosses by +1). In this case, the result is a fold (saddle-node), transcritical

or pitchfork (symmetry-breaking) bifurcation of cycles, which involves at least two periodic solutions. Another situa-

tion is presented when one Floquet multiplier crosses the unit circle along the negative real axis (crosses by �1), and

gives place to a flip or period doubling bifurcation of cycles, which implicates the appearance of a new periodic solution

that rests over a Möbius band in Rn [28] and whose period doubles the period of the orbit X. At last, if two complex

conjugate Floquet multipliers cross the unit circle a secondary Hopf or Neimark–Sacker bifurcation occurs. This case is

related with the appearance of a quasi-periodic solution which lives on a torus surface in Rn.

The two initial approaches considered for the stability analysis of the solution X are connected finally through the

following result [13]:

Theorem 2. The eigenvalues of the monodromy matrix M(T) are a0 = 1 and faign�1
i¼1 , where faign�1

i¼1 , are the eigenvalues

of the linearization of the Poincaré or return map associated with the cycle X.

Observation: All the bifurcations of cycles mentioned above are recognized as local bifurcations, and one can find

their equivalent bifurcations of fixed points in discrete systems through the abstraction of the Poincaré map.
4. Subharmonic or period doubling solutions

Suppose that a system like (1) has a periodic solution X ¼ Xðt; ~lÞ of frequency ~xð~lÞ and for a certain value of the

bifurcation parameter l = l1 , lPD2 a flip or period doubling bifurcation happens. Then a new subharmonic solution

XPD2 appears and its fundamental frequency is xPD2 � ~xð~lÞ
2
. This observation is clearly reflected through the spectrum

analysis [11,19] of the periodic solutions that coexist. Otherwise, thinking about the Poincaré map associated with the
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solution XPD2, it can be inferred the existence of a cycle of period two and its stability agrees with the corresponding of

XPD2.

The aforementioned bifurcation of cycles is of codimension 1, say, it is characterized through the changes of a un-

ique parameter. Thus, supercritical and subcritical flip bifurcations can be distinguished, as in the Hopf bifurcation set-

ting. In the supercritical case, one stable period-1 solution exists when l < lPD2 while it becomes unstable for l > lPD2

and, at the same time, a stable orbit of period-2 appears. This is the dynamic case that can be developed systematically

in the following. Otherwise, the subcritical case corresponds to the appearance of an unstable period-2 orbit for

l < lPD2 coexisting with the stable period-1 oscillation.

The method described below is related with the basic idea of obtaining a quasi-analytical approximation for the new

periodic solution which appears from flip bifurcation, about the determination of when it occurs exactly as well as its

stability analysis. To specify the executed procedure, it is considered a system like (1), which has a supercritical Hopf

bifurcation when l = l0 , lH. It is known that very accurate expressions can be obtained to recover the periodic solu-

tion X which appears with ~l > lH (~l next to lH) thanks to the graphical Hopf method and its generalizations of higher

order. Those results yield approximate values for the frequency of the cycle ~xð~lÞ, whose exactness increases according
with the number of harmonics that takes part in the approximations. Analyzing the progression of the characteristic

multipliers of a generic cycle, it is observed that one of them crosses the unit circle through the real negative axis

(by �1) when l = lPD2 (it is supposed that lPD2 is close to lH), giving place to a supercritical period doubling bifur-

cation. As the frequency x̂ð~lÞ and the amplitude ĥð~lÞ of a Hopf cycle can be found with great accuracy, for any ~l next

and larger than lPD2 then these values can be considered as the starting points to obtain the approximation of the per-

iod doubling orbit. Henceforth, let us call x̂ the value of the frequency estimated by harmonic balance through the

graphical Hopf method. Thus, it is proposed the following formula
XPD2ðt; ~lÞ ¼ ðxiðPD2Þ ðt; ~lÞÞ ¼
X4
j¼0

ai;jð~lÞ cos j
x̂
2
t

� �
þ
X4
k¼1

bi;kð~lÞ sin k
x̂
2
t

� �
; ð10Þ
that points out a Fourier partial sum, where ai,j and bi,k, i = 1, . . .,n, are certain numerical vectors of Rn to determine,

admitting that XPD2ðt; ~lÞ ! X, when ~l ! lþ
PD2, ai;jð~lÞ; bi;kð~lÞ ! 0 for j = k = 1,3, and the remaining coefficients of XPD2

agree with those of the cycle X in the limit.

Considering that it is attempted to establish a solution of the system (1), substituting (10) and applying harmonic

balance of order four in the fundamental frequency x̂
2
, it is attained a nonlinear algebraic system. The corresponding

computation is always performed through classical and commercial optimization routines and the results allow to deter-

mine the quasi-analytical expression for the period doubling orbit. Then, the existence of nontrivial solutions for the last

system guarantees the character of the detected bifurcation of cycles. Moreover, the stability analysis of the bifurcated

solution can also be stated through the monodromy matrix. It can be asserted that the proposed expression becomes

more precise if the limit cycle that bifurcates has small amplitude and furthermore, if this phenomenon takes places

when ~l is close to the Hopf bifurcation value (as a consequence of the local validity of the classical Poincaré-Andro-

nov-Hopf theorem). It can be observed that, 9n coefficients must be determined in the expression (10) but often this

number can be substantially reduced due to the particularities of the considered systems.

Subtle adjustments of the exposed ideas and the expression (10) unable to fulfill with two other objectives; give

approximations to periodic solutions whose amplitude goes beyond the limits of locality by the graphical Hopf method

(Example 1 in the next section) and provide approximations for the second period doubling bifurcation and also for the

corresponding limit cycles (Example 2).
5. Applications

Example 1. Consider the classic Rössler system [23]
_x1 ¼ �x2 � x3;

_x2 ¼ x1 þ ax2;

_x3 ¼ bþ x3ðxi � cÞ;

ð11Þ
where a, b, c are parameters and a unique nonlinearity is distinguished in the third equation. The general form of the

equilibrium points of the given system is
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~x1 ¼ ~x1ða; b; cÞ ¼
c
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2
;

~x2 ¼ ~x2ða; b; cÞ ¼ � c
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2a
;

~x3 ¼ ~x3ða; b; cÞ ¼
c
2a

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2a
;

but under certain conditions that are assumed below, the equilibrium results stable when ~x1 ¼ c
2
�
ffiffiffiffiffiffiffiffiffiffi
c2�4ab

p

2
.

Observation: Precise formulae to analyze the stability of equilibrium points of (11) can be derived through Routh–

Hurwitz criterium.

Defining the following matrices
A ¼
0 �1 �1

1 a 0

0 0 �c

2
64

3
75; B ¼

0

0

1

2
64
3
75; C ¼

1 0 0

0 0 1

� �
; D ¼ 0 0½ �;
system (11) can be written as
_x ¼ Axþ BDy þ B½~gðy; ða; b; cÞÞ � Dy�;
y ¼ Cx;
where x = [x1 x2 x3]
T and y = [y1 y3]

T, yielding a linear part G
Gðs; ða; b; cÞÞ ¼ CðsI � AÞ�1B ¼ 1

D1ðsÞ
�ðs� aÞ

sðs� aÞ þ 1

� �
;

where D1(s) = (s + c)(s2 � as + 1) and a nonlinear part u
u ¼ gðe; ða; b; cÞÞ ¼ ð~gðy; ða; b; cÞÞ � DyÞjy¼�e ¼ ½bþ e1e3�.
Solving the corresponding equation (3), one obtains
~e ¼ ½~e1 ~e3 �T ¼ � c
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab

p

2

~e1
a

" #T
;

and the matrix J defined in (4) results
J ¼ D1gje¼~e ¼ ½~e3 ~e1 � ¼ ~e1
a ~e1
� �

.

It can be proved with the frequency domain formalism that a supercritical Hopf bifurcation occurs while varying the

parameter c, for the parameter values a = 0.5, b = 0.5944, c0 = 1.146880195 and frequency x0 = 1.189754010. In this

part of the example, it will be noted l = c as the main or distinguished bifurcation parameter. Proposition 1 of Section

2 can be verified. In this sense, given that
hð�1; ix; lÞ ¼ detð�1� I � GJÞ ¼ F 1ðx; lÞ þ iF 2ðx; lÞ;
results
F 1ðx; lÞ ¼ 1þ ~e1½ð2� x2ÞReðD1ðixÞÞ � ðaþ a�1Þx ImðD1ðixÞÞ�
v

;

F 2ðx; lÞ ¼
�~e1½ð2� x2Þ ImðD1ðixÞÞ þ ðaþ a�1ÞxReðD1ðixÞÞ�

v
;

where ~e1 ¼ � l
2
þ

ffiffiffiffiffiffiffiffiffiffiffi
l2�4ab

p
2

, D1(ix) = (a � l)x2 + l + ix(1 � x2 � al) and v ¼ D1ðixÞD1ðixÞ. Thus, as l = l0 = lH
follows:
F 1ðx0; lHÞ ¼ 0.15� 10�8; F 2ðx0; lHÞ ¼ �0.2751153108� 10�9;
proving Proposition 1. To verify the graphical Hopf theorem, its three hypotheses must be checked. The characteristic

eigenlocus k̂, exactly at Hopf bifurcation, is depicted in Fig. 2. Besides, one obtains



Fig. 2. Characteristic eigenlocus k̂ for Rössler system (11) at Hopf bifurcation (a = 0.5, b = 0.5944, lH = 1.146880195).

Table

Comp

~l ¼ 1.

HB2

1.0011
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M1 ¼
oðF 1; F 2Þ
oðx; lÞ

����
ðx0 ;lHÞ

�����
����� ¼ 2.084622624 6¼ 0.
From the cumbersome computation of the curvature coefficient (6), it results
r1 ¼ �0.04829905280 6¼ 0.
According with the obtained outcomes, it can be asserted that a branch of stable periodic solutions arises at lH (super-

critical Hopf bifurcation) and spreads to the right (based on the unfolding of k̂ as l varies next to lH).
To attain the determination of the limit cycles approximation, one proceeds as it has been described in Section 2. The

development of the proposed example is very laborious due to (11) does not result a SISO (single input–single output)

system, with the suggested realization. The normalized vectors u and v (jvj = 1 and �uTv ¼ 1Þ, that appear in the expres-

sion (6), have order 2 · 1 with complex components in contrast to SISO systems where u and v can be considered iden-

tically 1 and the vector V13 = 0. In the case of harmonic balance of order two, one must compute the vector V13

according with Eq. (8), and subsequently V15, V17 and V19 for higher order balances [16,18].

Considering ~l ¼ 1.16, when the solutions given by the different order balances are built up and its monodromy

matrices are analyzed, one obtains the trivial multipliers that appear in Table 1. Although the trivial multiplier is alike

under four, six and eight order balances (for short HB4, HB6, and HB8, respectively), the component x2 becomes pre-

cise just when eight harmonics are involved in its approximate expression.

By way of example, when the tool is the harmonic balance of second order (HB2), the expressions of the components

x1 and x3 result
x1ð2Þðt; ~lÞ ¼ 0.3968554773þ 0.1087821998 cosðx̂tÞ þ 0.2586111072 sinðx̂tÞ � 0.5282411513� 10�2 cosð2x̂tÞ
þ 0.5416165840� 10�3 sinð2x̂tÞ;
1

arison of trivial multipliers according to different balance orders for a limit cycle in Rössler system with a = 0.5, b = 0.5944,

16

HB4 HB6 HB8

72230 1.000615281 1.000605369 1.000605215



Fig. 3.

(– � –)

Table

Compa

a0
a1
a2
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x3ð2Þðt; ~lÞ ¼ 0.7937109546� 0.9232660253� 10�1 cosðx̂tÞ þ 0.1298139085 sinðx̂tÞ � 0.1516745424� 10�2

� cosð2x̂tÞ � 0.1037931236� 10�1 sinð2x̂tÞ;
where x̂ ¼ x̂ð2Þ ¼ 1.188260342 and ĥ ¼ ĥð2Þ ¼ 0.3226284489. With these last formulae, the variable x2 can be obtained

from the first equation of system (11). A thorough application of the generalization of the graphical Hopf method al-

lows to achieve the approximate expression of the cycle using eight harmonics (HB8) and its representation together

with the numerical one obtained by using LOCBIF [12] can be observed in Fig. 3.

It is known that the graphical Hopf method has local validity and its accuracy depends on the amplitude of the stud-

ied cycle (the method is really precise if the amplitude h is much less than 1). Moreover, the variational equation for

Rössler system, (11), results
_z ¼ DðtÞz; where DðtÞ ¼
0 �1 �1

1 a 0

x3ðt; lÞ 0 x1ðt; lÞ � l

2
64

3
75;
and the comparison of the multipliers of the two analyzed approximations is shown in Table 2.

Now let us show when this procedure is deficient in obtaining a precise quasi-analytical expression, i.e., when a limit

cycle X has amplitude ĥ which is close or larger than 1. It is reported that the system (11) undergoes a supercritical Hopf

bifurcation for a0 = 0.124967501, b = 2 and c = 4, and now a is considered as the main bifurcation parameter. There-

fore, for the rest of the development of this example, is noted l = a. Particularly, if l = 0.13, b = 2, c = 4, there is a limit

cycle with frequency x̂ ¼ x̂ð2Þ ¼ 1.008515860 (chosen by the trivial multiplier exactness test) and amplitude

ĥ ¼ ĥð2Þ ¼ 0.9354726026 (which is next to unity). It is supposed that the periodic solution has the following general form
Comparison of periodic solutions for Rössler system (11) with a = 0.5, b = 0.5944, ~l ¼ 1.16 (small amplitude cycle): LOCBIF

and HB8 (—).

2

rison of Floquet multipliers for a limit cycle in Rössler system with a = 0.5, b = 0.5944, ~l ¼ 1.16 (small amplitude cycle)

LOCBIF HB8

0.9999996 1.000605215

0.9498978 0.9469734053

0.2613515 0.2622177935



Fig. 4.

HB2 (
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Xðt; ~lÞ ¼ ðxiðt; ~lÞÞ ¼
X2
j¼0

ai;j cosðjx̂tÞ þ
X2
k¼1

bi;k sinðkx̂tÞ;
where x̂ ¼ x̂ð2Þ is the most precise approximate frequency of the limit cycle, and ai,j, bi,k, i = 1, . . . ,n, are numerical vec-

tors to compute. Starting from an expression for the component x2 such as
x2ðt; 0.13Þ ¼ a2;0 þ a2;1 cosðx̂tÞ þ a2;2 cosð2x̂tÞ þ b2;1 sinðx̂tÞ þ b2;2 sinð2x̂tÞ;
introducing it in system (11) and executing an elementary harmonic balance of second order in x̂, with an initial vector

Z = [�0.55 0.95 0.1 0.1 0.1], results
x2ðt; 0.13Þ ¼ �0.52240495570849þ 0.90896152983970 cosðx̂tÞ � 0.333981492076� 10�2 cosð2x̂tÞ
þ 0.8210187782669� 10�1 sinðx̂tÞ � 0.264690187575� 10�2 sinð2x̂tÞ;
from where the expressions of x1 and x3 can be obtained using the second and the first equation of the system (11),

respectively.

Otherwise, the approximations of the component x2, resulting from second and fourth order balances by the graph-

ical Hopf method are:
x2ð2Þðt; 0.13Þ ¼ �0.5222403102þ 0.8567493460 cosðx̂ð2ÞtÞ � 0.2385459863� 10�2 cosð2x̂ð2ÞtÞ þ 0.1061395514

� sinðx̂ð2ÞtÞ � 0.4311948699� 10�2 sinð2x̂ð2ÞtÞ;
and
x2ð4Þðt; 0.13Þ ¼ �0.5223012501þ 0.8618262509 cosðx̂ð4ÞtÞ � 0.3222695438� 10�2 cosð2x̂ð4ÞtÞ � 0.1799462176

� 10�3 cosð3x̂ð4ÞtÞ � 0.2013544557� 10�5 cosð4x̂ð4ÞtÞ þ 0.1941740708� 10�1 sinðx̂ð4ÞtÞ
� 0.3772189876� 10�2 sinð2x̂ð4ÞtÞ � 0.5631903787� 10�4 sinð3x̂ð4ÞtÞ þ 0.8945067199� 10�5

� sinð4x̂ð4ÞtÞ;
respectively, where x̂ð4Þ ¼ 1.008524147.

The representation of the solution achieved with the graphical Hopf theorem which results most precise (HB2 in this

case) has been compared with the proposed approximation and also with the numerical one obtained with LOCBIF [12]

and they are shown in Fig. 4. It is remarkable the coincidence between the outcomes of LOCBIF and the described
Comparison of periodic solutions for Rössler system (11) with ~l ¼ 0.13, b = 2, c = 4 (medium amplitude cycle): LOCBIF (*),

—), and proposed approximation (– � –).



Table 3

Comparison of Floquet multipliers for a limit cycle in Rössler system with ~l ¼ 0.13, b = 2, c = 4 (medium amplitude cycle)

LOCBIF HB2 Proposed approximation

a0 1.000000 1.001855109 0.9999686861

a1 �0.8879129 · 10�5 0.5402100989 · 10�10 0.3097166967 · 10�10

a2 0.9688779 0.9691623943 0.9688645116
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procedure. Moreover, the multipliers associated to the three approximations appear in Table 3, where the agreement, is

visible through the results depicted in Fig. 4.

Carrying on the analysis for large amplitude cycles (ĥ larger than 1), it is considered ~l ¼ 0.15, b = 2, c = 4, where the

most precise amplitude and frequency values of the Hopf cycle result: ĥ ¼ ĥð2Þ ¼ 1.936235807 � 2 and

x̂ ¼ x̂ð2Þ ¼ 1.010496960 after using a second order harmonic balance. Replaying the earlier proposal, starting now with

the initial vector Z = [�0.55 1.95 0.1 0.1 0.1], it is obtained the following expression:
Table

Compa

a0
a1
a2

Fig. 5.

(—), a
x2ðt; 0.15Þ ¼ �0.57841872820727þ 1.87215612990062 cosðx̂tÞ � 0.1771864802786� 10�1 cosð2x̂tÞ
þ 0.6907228540357� 10�1 sinðx̂tÞ � 0.1119340859546� 10�1 sinð2x̂tÞ.
Newly, the coincidence of results coming from LOCBIF [12] and those achieved with the proposed methodology is

noticeable, as can be seen in Fig. 5. Now, in Table 4 the characteristic multipliers are analyzed, where those coming

from the approximations obtained with the graphical Hopf method have been neglected due to the large error in the

trivial multiplier. Considering the multiplier a0, it can be asserted that the proposed approximation has lost some
4

rison of Floquet multipliers for a limit cycle in Rössler system with ~l ¼ 0.15, b = 2, c = 4 (large amplitude cycle)

LOCBIF Proposed approximation

1.000000 0.9998882927

0.3450 · 10�6 0.6872591421 · 10�10

0.8306614 0.8313191601

Comparison of periodic solutions for Rössler system (11) with ~l ¼ 0.15, b = 2, c = 4 (large amplitude cycle): LOCBIF (*), HB2

nd proposed approximation (– Æ –).
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precision, regarding the case with ~l ¼ 0.13. Despite of this reflection, the obtained results amply exceed those given by

the graphical Hopf method. The use of the monodromy matrix allows to predict a validity interval for the approxima-

tions of the oscillations, starting at Hopf bifurcation as far as the trivial multiplier remains in a certain and acceptable

neighborhood of the value 1. Henceforth, other quasi-analytical techniques should be used to recover the solutions

properly.

Example 2. The following system has been analyzed by Tesi et al. [27] regarding the delay of the period doubling

cascade by means of feedback control
_x1 ¼ x2;

_x2 ¼ x3;

_x3 ¼ �x1 � 1.2x2 þ lx3 þ x21;

ð12Þ
where l 2 R is the bifurcation parameter of the given system. There are two equilibrium points, say, ~x1;1 ¼ 0, ~x1;2 ¼ 1,

~x2 ¼ ~x3 ¼ 0 yet it is known that only with ~x1;1 ¼ 0 a supercritical Hopf bifurcation arises when lH ¼ � 5
6
� �0.833 and

its critical frequency results x0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�l�1

H

p
� 1.095445115.

If the realization is considered with
A ¼
0 1 0

0 0 1

�1 �1.2 l

2
64

3
75; B ¼

0

0

1

2
64
3
75; C ¼ 1 0 0½ �; D ¼ �1;
the system (12) becomes
_x ¼ Axþ BDy þ B½~gðy; lÞ � Dy�;
y ¼ Cx;

u ¼ gðe; lÞ;
where ~gðy; lÞ ¼ y21, gðe; lÞ ¼ ð~gðy; lÞ � DyÞjy¼�e ¼ ðy21 þ y1Þjy1¼�e1
¼ e21 � e1. Thereby, the transfer function G(s;l)

results
Gðs; lÞ ¼ CðsI � AÞ�1B ¼ 1

D2ðsÞ
;

where D2(s) = s3 � ls2 + 1.2s + 2.

According with (3), the frequency domain equilibrium points are: ~e1;1 ¼ 0 and ~e1;2 ¼ �1 but only the first is related

to Hopf bifurcation. Moreover, with the suggested realization, the matrix J is
J ¼ D1gje1¼~e1;1 ¼ 2~e1;1 � 1 ¼ �1.
To show the implementation of the graphical Hopf method, it is considered the value ~l ¼ �0.8 > lH, with the goal

of obtaining the quasi-analytical approximation of the limit cycle. Using harmonic balance of eighth order, the follow-

ing expression for the component x1 follows:
x1ð8Þðt; ~lÞ ¼ 0.02128105998� 0.2040839981 cosðx̂ð8ÞtÞ � 0.8543361336� 10�3 cosð2x̂ð8ÞtÞ � 0.2336150921

� 10�2 sinð2x̂ð8ÞtÞ þ 0.1303079731� 10�4 cosð3x̂ð8ÞtÞ � 0.8718147851� 10�5 sinð3x̂ð8ÞtÞ
þ 0.5774010851� 10�7 cosð4x̂ð8ÞtÞ þ 0.5331336598� 10�7 sinð4x̂ð8ÞtÞ � 0.1715095199� 10�9

� cosð5x̂ð8ÞtÞ þ 0.3002211224� 10�9 sinð5x̂ð8ÞtÞ � 0.1340401168� 10�11 cosð6x̂ð8ÞtÞ
� 0.4076862615� 10�12 sinð6x̂ð8ÞtÞ þ 0.4699758907� 10�15 cosð7x̂ð8ÞtÞ � 0.5372921492� 10�14

� sinð7x̂ð8ÞtÞ þ 0.1966077060� 10�16 cosð8x̂ð8ÞtÞ � 0.2604125289� 10�17 sinð8x̂ð8ÞtÞ;
where x̂ð8Þ ¼ 1.094470341 and returning to (12), the expressions for the variables x2 and x3 can be attained easily. In this

specific case, it is interesting to perceive the improvement in the results achieved by different order harmonic balances,

watching the error of the trivial multiplier estimation (compare it with equivalent results in [5] for sixth order harmonic

balance). This is presented in Table 5.

A continuation of the periodic solution branch can be worked out until the detection of the first period doubling

bifurcation that is found at lPD2 = �0.4847 where the cycle amplitude results x1max = 0.799. This can be checked

through Table 6. Furthermore, these results have been verified with LOCBIF which detects the first period doubling



Table 5

Comparison of trivial multipliers according to different balance orders for Tesi system with ~l ¼ �0.8

HB2 HB4 HB6 HB8

1.000058159 0.9999882234 1.000000389 1.000000033

Table 6

Flip or period doubling bifurcation detection for Tesi system through graphical Hopf method of order 8 (HB8)

l = �0.4847 l = �0.4846

a0 1.000090421 1.000090532

a1 �0.9999329740 �1.000889654

a2 �0.6061405358 �0.6059079536

Fig. 6. Continuation of periodic solutions branch for Tesi system (12): (*) LOCBIF and (—) estimation by the graphical Hopf method

(HB8).
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bifurcation for l	
PD2 ¼ �0.480927. Both periodic branches are depicted in Fig. 6. The occurrence of this bifurcation

makes that the Hopf cycle changes its stability, turning from stable to unstable and originates a new stable solution

whose period duplicates the one of the former cycle. A supercritical period doubling bifurcation is defined wholly by

these events. In the remaining of this section it is attempted to give quasi-analytical approximations of these new sub-

harmonic solutions.

According to the particularities of system (12) and the formula (10), it is proposed the following expression for the

first component of the period doubling orbit
x1ðPD2Þ ðt; ~lÞ ¼
X4
j¼0

a1;j cos j
x̂
2
t

� �
þ
X4
k¼1

b1;k sin k
x̂
2
t

� �
; ð13Þ
where a1,j, b1,k are numerical constants to find, and x̂ is the frequency of the Hopf cycle that coexists with the first per-

iod doubling solution for a certain value of ~l larger than lPD2, chosen in agreement with Section 4. Taking this expres-

sion to system (12), operating in the three equations and executing a fourth order balance with frequency x̂
2
, it is

achieved a nonlinear algebraic system, whose solution enables to write the quasi-analytical expression of the period
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doubling orbit. To illustrate the methodology, three different cases have been analyzed whereas the parameter ~l moves

away from the bifurcation value lPD2, namely, lI = �0.48, lII = �0.4633 and lIII = �0.435. In the three considered sit-

uations, the starting value x̂ arises from applying the eighth order balance, say, x̂ ¼ x̂ð8Þ.

Beginning with lI = �0.48, one finds a limit cycle with frequency x̂ð8Þ ¼ 1.086316552 and first component amplitude

ĥð8Þ ¼ 0.58929, reaching x1max = 0.80489. With the method described above and the initial vector

Z = [0 0.025 0.6 0.1 0.1 0.1 0.1 0.1 0.1], the following approximate expression for the component x1ðPD2Þ has been

obtained
Fig. 7.

Table

Comp

a0(PD2)

a1(PD2)

a2(PD2)
x1ðPD2Þ ðt; lIÞ ¼ 0.21889767624362þ 0.2513089233007� 10�1 cos 1
2
x̂t
	 


þ 0.54457984910603 cosðx̂tÞ

þ 0.355813539338� 10�2 cos 3
2
x̂t
	 


þ 0.1071714999275� 10�1 cosð2x̂tÞ þ 0.14296567650609

� 10�1 sin 1
2
x̂t
	 


þ 0.20982731737460 sinðx̂tÞ � 0.559190530143� 10�2 sin 3
2
x̂t
	 


� 0.1891960621980� 10�1 sinð2x̂tÞ.
Taking this result to system (12), the whole quasi-analytical expression of the bifurcated orbit is attained. The com-

parison between the proposed approximation and the numerical one which comes from LOCBIF is shown in Fig. 7. On

the other hand, evaluating the characteristic multipliers of the corresponding monodromy matrix DI, namely
DIðtÞ ¼
0 1 0

0 0 1

�1þ 2x1ðPD2Þðt; lIÞ �1.2 lI

2
64

3
75;
one obtains the results that are exhibited in Table 7. Therefore, the similarity of the multipliers allows to assert that the

approximation is really good. Furthermore, the new subharmonic solution is stable in agreement with the results of
Comparison of period doubling solutions for Tesi system (12) with lI = �0.48: (*) LOCBIF and (—) proposed approximation.

7

arison of characteristic multipliers for Tesi system with lI = �0.48

LOCBIF Proposed approximation

0.9999994 1.001896861

0.9646491 0.9598248056

0.40244 · 10�2 0.4032095854 · 10�2
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Section 3 due to jai(PD2)j < 1, i = 1,2, and has right precision (see a0(PD2)). Moreover, it must be noted that the period of

the proposed solution is T = 11.568 which results almost equal to LOCBIF�s: TLOCBIF = 11.563.

Regarding the parameter value lII = �0.4633, the Hopf cycle has frequency x̂ð8Þ ¼ 1.085950159 and ĥð8Þ ¼ 0.59949

as the amplitude for its first component. With this information and considering the vector

Z = [0 0.1 0.59 0.1 0.1 0.1 0.1 0.1 0.1], the nonlinear system determined by (13) is solved and then follows:
Fig. 8

approx
x1ðPD2Þ ðt;lIIÞ ¼ 0.22518179491674þ 0.10098107964686cos 1
2
x̂t
	 


þ 0.51687041752347cosðx̂tÞ
þ 0.1821723338030� 10�1 cos 3

2
x̂t
	 


þ 0.1381822888703� 10�1 cosð2x̂tÞ
þ 0.6466091529452� 10�1 sin 1

2
x̂t
	 


þ 0.25789176476450sinðx̂Þt� 0.2041177655416� 10�1 sin 3
2
x̂t
	 


� 0.1651329316608� 10�1 sinð2x̂tÞ.
The eigenvalues of the monodromy matrix DII result a0(PD2) = 0.9997533768, a1(PD2) = 0.2784811278,

a2(PD2) = 0.1686438027 · 10�1. Furthermore, as the characteristic multipliers of the numerical solution are

a0(LOCBIF) = 0.9999997, a1(LOCBIF) = 0.3165313, a2(LOCBIF) = 0.149580 · 10�1 it is observed that exists a rather evident

discrepancy with the value of a1. In spite of the last observation, the coincidence of results between the quasi-analytical

solution and LOCBIF�s is remarkable, as can be seen in Fig. 8.

The explained methodology enables to achieve very accurate approximations even in the vicinity of the next or sec-

ond period doubling bifurcation, noted as PD4. Just to give an example, it is selected the value lIII = �0.435, where

x̂ð8Þ ¼ 1.085341359 and ĥð8Þ ¼ 0.61585. Using the vector Z = [0 0.35 0.53 0.1 0.1 0.1 0.1 0.1 0.1] as starting point,

one obtains the proposed solution and its characteristic multipliers result a0(PD2) = 0.9961836760, a1(PD2) =

�0.7981672154, a2(PD2) = �0.8170013202 · 10�2, while those belonging to the numerical one are a0(LOCBIF) =

0.9999996, a1(LOCBIF) = �0.8511485, a2(LOCBIF) = �0.77888 · 10�2. Both solutions are contrasted in Fig. 9 and

it must be noted that the difference between the corresponding periods is stressed now, having T = 11.578 versus

TLOCBIF = 11.532 (though this fact is not reflected in the figure just observed).

With the information given above, it can be asserted that as the parameter lmoves away from Hopf bifurcation, it is

deepened the difference of the Floquet multipliers of the proposed solution versus LOCBIF ones, and this yields a sig-

nificant distortion when one intends to find the value of l where the second period doubling bifurcation takes place,

symbolized as l2,lPD4. According with LOCBIF, this bifurcation results at l	
PD4 ¼ �0.431768, whereas with the

suggested technique one achieves lPD4 = �0.428. Thus, the period-2 cycle becomes unstable and coexists with a new
. Comparison of period doubling solutions for Tesi system (12) with lII = �0.4633: (*) LOCBIF and (—) proposed

imation.
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period-4 orbit which is stable. Particularly, it is examined when lIV = �0.426, where the leading information is

x̂ð8Þ ¼ 1.085150860 and ĥð8Þ ¼ 0.6208346759, proposing the following pattern:
Fig. 9. Comparison of period doubling solutions for Tesi system (12) with lIII = �0.435: (*) LOCBIF and (—) proposed

approximation.

Fig. 10. Component x1 for second period doubling solutions for Tesi system (12) with lIV = �0.426: (·) LOCBIF and (—) proposed

approximation.



Fig. 11. Comparison of second period doubling solutions for Tesi system (12) with lIV = �0.426: (·) LOCBIF and (—) proposed

approximation.
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x1ðPD4Þ ðt; lIVÞ ¼
X8
j¼0

c1;j cos j
x̂
4
t

� �
þ
X8
k¼1

d1;k sin k
x̂
4
t

� �
;

where c1,j and d1,k are numerical constants to find. Fitting the period doubling argument with the initial vector Z = [z1,i],

i = 1, . . . , 17 where z1,1 = 0.24, z1,2 = z1,4 = z1,10 = z1,12 = 0.01, z1,3 = z1,6 = z1,7 = z1,8 = z1,9 = z1,11 = z1,14 = z1,15 = z1,16 =

z1,17 = 0.1, z1,5 = 0.3, z1,13 = 0.48, one states:
x1ðPD4Þ ðt; lIVÞ ¼ 0.24201810098281þ 0.2348739060806� 10�1 cos 1
4
x̂t
	 


þ 0.10711848604380 cos 1
2
x̂t
	 


� 0.1847585036934� 10�1 cos 3
4
x̂t
	 


þ 0.25501496965284 cosðx̂tÞ
þ 0.836805908637� 10�2 cos 5

4
x̂t
	 


þ 0.3913593217349� 10�1 cos 3
2
x̂t
	 


þ 0.3224027208� 10�4 cos 7
4
x̂t
	 


þ 0.1991940006355� 10�1 cosð2x̂tÞ
� 0.998792868734� 10�2 sin 1

4
x̂t
	 


þ 0.13716011436851 sin 1
2
x̂t
	 


þ 0.2469257746354� 10�1 sin 3
4
x̂t
	 


þ 0.51639332738788 sin x̂tð Þ
� 0.998219974513� 10�2 sin 5

4
x̂t
	 


þ 0.673288704952� 10�2 sin 3
2
x̂t
	 


þ 0.304615406774� 10�2 sin 7
4
x̂t
	 


þ 0.892578653946� 10�2 sin 2x̂tð Þ;
and its graphical representation is shown in Fig. 10, where the results obtained with LOCBIF are also included. It must

be stand out the large complexity of considering this determination through the proposed methodology. In spite of

this observation, the stability test has been performed again using the monodromy matrix and the characteristic

multipliers have resulted a0(PD4) = 1.001014179, a1(PD4) = �0.8919932945, a2(PD4) = �0.5811276302 · 10�4 whereas

a0(LOCBIF) = 1.000000, a1(LOCBIF) = �0.9190216 · 10�1, a2(LOCBIF) = �0.5838424 · 10�3. Therefore, the new approxi-

mation is quite precise and supports the stability of the period-4 orbit. As in the cases of the period-2 orbits examined

before, the projection of both solutions in the phase plane (x1,x2) appears in Fig. 11.
6. Conclusions

In this paper, quasi-analytical approximations for period doubling oscillations close to Hopf bifurcations have been

obtained. The methodology uses higher order harmonic balance to compute an accurate prediction of the periodic
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branch from Hopf bifurcation until the departure of the trivial Floquet multiplier from +1 is noticeable. This fact marks

the limit of the approximation of the oscillations using local methods. As the error of the approximation is acceptable,

this technique seems to be powerful in order to analyze the unfoldings of certain codimension-two bifurcations involv-

ing one or more Hopf bifurcation curves in the space of system parameters. Such degeneracies are the double Hopf

bifurcations [10] or the Gavrilov–Guckenheimer singularity [22], to mention only a few. It has been shown that in cer-

tain n-dimensional systems the period doubling bifurcation occurs when the parameterized amplitude h is smaller than

1, and then the accuracy of the detected bifurcation is high. In these cases, a standard harmonic balance technique using

9n unknown coefficients is proposed to capture the subharmonic oscillations. In other cases, however, the amplitude of

the parameterized amplitude h surpasses the value 1 and then it is not possible to detect secondary bifurcations using

local methods and even to continue the periodic branch. To remedy this situation, the same standard harmonic balance

procedure is used and the initial conditions are fed with the data provided by the graphical Hopf method. This proce-

dure can be adapted for the continuation of the periodic branch of high amplitude, as in Example 1, as well as for recov-

ering the period doubling bifurcation, as shown in the Example 2.
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