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Abstract— Viscoplastic constitutive formu-
lations are characterized by instantaneous tan-
gent operators which do not exhibit degrada-
tion from the elastic properties. As a conse-
quence viscoplastic material descriptions were
often advocated to retrofit the shortcomings of
the inviscid elastoplastic formulations such as
loss of stability and loss of ellipticity.

However, when the time integration of
viscoplastic material processes is considered
within finite time increments, there exists an
algorithmic tangent operator which may lead
to loss of stability and loss of ellipticity similar
to rate-independent elastoplastic materials.

The algorithmic tangent operator follows
from the consistent linearization process.
Therefore, the numerical method considered
for the time integration of the constitutive
equations plays a fundamental role in failure
analysis of viscoplastic materials.

This paper focuses on the performance of the
conditions for diffuse and localized failure of
two Perzyna-type viscoplastic models, one of
them based on the classical formulation and
the other one based on a new proposal by Pon-
thot (1995) which includes a constrain condi-
tion representing a rate dependent generaliza-
tion of the plasticity’s yield condition. Appli-
cation of Backward Euler method for time inte-
gration of both Perzyna formulations leads to
quite different form of the consistent tangent
material operaters. These stiffness tensors are
obtained for Perzyna generalizations of the so
called Extended Leon Model which is a fracture
energy—based elastoplastic constitutive model
for concrete.

The results included in the paper illustrate
the strong differences between the failure pre-
dictions of both Perzyna—type viscoplastic for-
mulations. In this regard, the classical formu-
lation is unable to reproduce the predictions
of the inviscid model when the viscosity ap-
proaches zero. This case leads to very small
values of both failures indicators and their per-
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formance are characterized by strong oscilla-
tions and even discontinuities. On the other
hand the so—called continuous formulation is as-
sociated with algorithmic tangent moduli which
signals a smooth transition from the elastic
operator to the elastoplastic algorithmic one,
when the viscosity varies from very large to
very small values.

Keywords— Viscoplasticity, failure, local-
ization, consistent tangent.

I, INTRODUCTION

The Perzyna-type viscoplastic models are widely
used to characterize rate effects in plastic materi-
als. In the classical form the constitutive equations
of Perzyna-type viscoplasticity do not reduce to the
rate-independent plasticity formulation as the viscos-
ity parameter approaches zero. This feature had led to
some difficulties on the development of efficient time
integration algorithm for computational implementa-
tion of Perzyna viscoplastic models, both at the lo-
cal as well as at the global “momentum-balance loop”
level. On the local level, the viscoplastic rate equa-
tions are numerically integrated for the specified time
increment At. It is certainly desirable if the inte-
gration algorithm employed is unconditionally stable.
Therefore, the Backward Euler algorithm is usually
considered for the return mapping during Perzyna vis-
coplastic material processes. On the global or Finite
Element level, the use of consistent tangent moduli
is crucial in preserving the quadratic rate of conver- -
gence of the Newton method in conjunction with non-
linear finite element computations. The lack of a con-
strain condition in case of the classical formulation
of Perzyna viscoplasticity forces the consideration of
residual functions for Newton iteration of momentum
balance, see Ju (1990) and Etse and Willam (1999).
In this way a consistent or algorithmic tangent opera-
tor for rate-dependent material formulations is derived
which strongly varies from that of the inviscid elasto-
plastic material when the viscosity tends to zero. In
this case the fourth order material operator of the vis-
coplastic model approaches the fourth order zero ten-
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Recently, an alternative formulation for Perzyna
type rate-dependent models was derived by Ponthot
(1995) whereby the viscoplastic problem is treated in
a similar way to the elastoplastic one. In this pro-
posal the classical viscoplastic constitutive equations
are complemented by a new constrain condition which
represents a generalization of the inviscid condition
F =0 for rate dependent viscoplastic materials.

The generalized constrain condition plays a funda-
mental role in the alternative on “continucus” vis-
coplastic formulation. On one hand it allows a gen-
eralization of the Kuhn - Tucker conditions. On the
other hand, the linearization of its differential form
leads to the algorithmic tangent operator. This stiff-
ness tensor takes a similar form to that corresponding
to the inviscid material which is fully recover in the
extreme case when the viscosity tends to zero.

Aside from measuring canonical degradation of stifi-
ness and strength, the spectral properties of tangent
operators of continuum or smeared crack-based mod-
els define two types of failure modes: one of them
corresponds to a loss of uniqueness of the incremen-
tal response and is associated with the singularity of
the fourth order material operator, or of its symrmet-
ric counterpart, see Runnesson and Mréz (1989). The
other one corresponds to a localization in the form of
discontinuous bifurcation which signals a change in the
character of the governing differential equations from
elliptic to hyperbolic and vice-versa in quasi-static and
dynamic loading conditions, respectively (Needleman,
1988, Sluys, 1992). Both failure modes may arise due
to destabilizing non-symmetric constitutive operators
in the case of non-associated flow rules and/or due to
softening of the strength properties.

in this paper the fundamental differences between
both formulations for Perzyna—type viscoplastic mate-
rials are firstly analyzed. After derivation of the con-
sistent stiffness tensors the attention focuses on the
performance of the conditions for diffuse and localized
faitures of both Perzyna viscoplastic formulations. The
results obtained for plane strain conditions support the
conclusion that the classical Perzyna formulation leads
to strong discontinuities of the failure indicators per-
formance when the viscosity approaches zero. In this
case both diffuse and localized failure modes may be
activated and the prediction of the inviscid material
are not reproduced.

On the other hand the continuous Perzyna formu-
lation leads to algorithmic material operators which
exhibit a smooth transition from the elastic to the
elastoplastic tensor according to the assumed value for
the viscosity. Therefore, when this material parame-
ter approaches zero the same failure predictions as the
inviscid material are obtained.

32:21-31 (2002)

II. FAILURE INDICATORS

Diffuse or continuous failure is agsociated with a singu-
larity of the tangential material stiffness. This condi-
tion infers material branching, i.e. a singularity of the
tangential material operator and leads to limit state
or limit point when the critical eigen direction is ac-
tivated. On the other hand, localized failure corre-
sponds to a state of bifurcation inside the material
which is associated with spatial discontinuities of the
field variables.

In the following the indicators for diffuse ard local-
ized failure are presented.

A. Diffuse Failure Indicator

The condition for diffuse or continuous failure is math-
ematically expressed as

det (By,) = 0, (1)

where E¢, represents the tangential material stiffness.

From the eigenvalue problem for E;; follows that
in case of diffuse failure the critical eigentensor é,,i
associated with the minimum eigenvalue Amin(Eyg) =
0 is the one which renders stationary values of the
stress rate

c=Ey:e=0 for Erie 70 (2)

corresponding to an horizontal asymptote at the max-
imum strength or limit state of the stress - strain re-
lation, where the (:) symbol defines the doubly con-
tracted tensor product and the dot indicates rate.

In case of non-associated elastoplasticity the mini-
mum eigenvalue of E;; is defined by the bilinear form
below, which is normalized with regard to the corre-
sponding elastic value

n:Ey:m 1
B =1- .
piBim - g

norm __
/\min

o (8)

where E is the elastic tensor, m and n the gradients of
the plastic potential and the yield function respectively
and E, represents the so called hardening modulus.

We observe that the diffuse failure condition
det (B¢y) = 0 is fulfilled only if the hardening mod-
ulus diminishes to zero, as long as the bilinear form
(0 : Eyy : m) > 0 remains positive.

B. Localized Failure Indicator

Localized failure involves the formation of weak dis-
continuities in the strain rates or rather velocity gra-
dient fields. Assuming that the deformed solid can be
divided in two subdomains named as ”4” and ”-* by
an internal boundary with normal N, and according to
Maxwell’s compatibility theorem (Truesdell & Toupin,
1960) this jump of the velocity gradient field is a rank
one second order tensor which must satisfy

[[val] =M @ N, (4)
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where M denotes the polarization vector and 4 an
scalar factor defining the magnitude of the jump.
The situation described by Eq. (4) has its analogous
counterpart in fracture mechanics, corresponding to a
Mode I fracture for M L N and Mode II fracture for
M || N. The strain rate discontinuity is then defined
by the symmetrized dyadic of the unit vectors M and
N, i.e.,

() =1vea)) = 47 (MeN +
— -y &
7 (M ® N)
Balance of linear momentum across the discontinu-
ity surface leads to the localization eondition

— —

N®M)= -

t"=1<T'[[iT]]=1‘3;Em=[['~‘—]]= 6
’?ﬁ-Ecg:(N’IQaN) =4Q-M=0 )
where the localization (acoustic) tensor is defined as
Q=N 3 O -N. According to (6), discontinuous bifur-
cation initiates when the localization tensor exhibits a
gingularity, i.e., det (Q) = 0 for some directions M
and N.

III. CONSTITUTIVE EQUATIONS FOR
PERZYNA VISCOPLASTICITY

In this section the constitutive equations of Perzyna
type viscoplastic models are presented. We distinguish
between the classical formulation and the continuous
formulation of Perzyna viscoplastic constitutive equa-
tions. The second one leads to a constrain condition
which plays a fundamental role in the algebraic prob-
lem when finite time increments are considered, as we
will see in Section 4.

A. The Classical Formulation

Similar to the flow theory of plasticity, the consti-
tutive relations of Perzyna (1963, 1966) type elasto-
viscoplastic material formulations may be written

o = .- Op=E:(e- &)  (7)

tr = g.F, o)=%<¢(F)>m (®)

m = A'l:n::A_l:g% (9)
N

we = [Hgel] (10)

q = %(«P(F))H:m,' (1)

where ¢,, represents the viscoplastic portion of the
total strain tensor €, n the viscosity and q the set
of hardening/softening variables defined as a tensor
of arbitrary order. The relations (7) follow the ad-
ditive decomposition of the total strain rate into an

elastic and a viscoplastic part € = & + €, quite
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similar to the Prandil-Reuss equations in case of in-
viscid elasto-plastic constitutive relations. Equations
(8) and (9) describe a general non-associated flow rule,
whereby the direction of the viscoplastic strains m, is
obtained by a modification of the gradient tensor n
of the yield surface F' by means of the fourth order
transformation tensor A. Moreover, ¥(F) is a dimen-
sionless monotonically increasing over—stress function
whereby F, represents a normalizing factor. The Mc
Cauley brackets in Eq. (8) defines the features of the
over-stress function as

F
0

if
if

F>0

win = { b

(12)
being F' = F( #,q) a convex yield function which de-
fines the limit of the elastic domain.

Finally Eq. (11) represerts the evolution law of the
hardening/softening variables g by means of a suitable
tensor function H of the state variables.

A consistency condition similar to the flow theory of
plasticity can not be obtained in the classical formu-
lation of viscoplastic materials. However, if the vis-
coplastic problem is treated in a similar way to the
elastoplastic one, as we will see in Section 3.2, a con-
strain condition can be obtained which represents a
generalization of the inviscid yield condition for vis-
coplastic materials.

Remark: instantaneous viscoplastic material re-
sponse do not exhibit deterioration of the elastic prop-
erties. Therefore a viscoplastic continuum tangent
stiffness tensor B, similar to inviscid elastoplastic ma-
terials can not be obtained in case of viscoplastic for-
mulations,

B. The Continuous Formulation

In this formulation the Eqs. (7) to (11) are comple-
mented by a consistency parameter A, see Ponthot
(1995}, defined as an increasing function of the over—
stress

: 1
A= E('ﬁ‘(F))-

So that the evolutions Eqs. (8) and (11) take now the
classical forms

(13)

Am
AH:m=Ah.

(14)
(15)

€vp

g

being h = H : m. Thus, from Egs. (8) and (14)
follows

0 el
| m ]

Pyt (Lomly) <y () g

We may now define for the viscoplastic range, the
new constrain condition
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where M denotes the polarization vector and 4 an
scalar factor defining the magnitude of the jump.
The situation described by Eq. (4) has its analogous
counterpart in fra.cture mechanics, corresponding to a
Mode I fracture for M L N and Mode II fracture for
M || N. The strain rate discontinuity is then defined
by the symmetrized dyadic of the unit vectors M and
N, i.e.,

ndhﬂwmf%ﬂﬁgﬁ+ﬁ®ﬁy= "
7(MeoN)

Balance of linear momentum across the discontinu-
ity surface leads to the localization condition

o ]]—N By [l =
(M@N —5Q - M =0

t_.

6
’)’N Etg ( )

\-._/

where the localization (acoustic) tensor is defined as
Q= ﬁ-Et,g -N. According to (6), discontinuous bifur-
cation initiates when the localization tensor exhibits 8
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and N.

I1X. CONSTITUTIVE EQUATIONS FOR
PERZYNA VISCOPLASTICITY

In this section the constitutive equations of Perzyna
type viscoplastic models are presented. We distinguish
between the elassical formulation and the continuous
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¢ = o= bp=Bi(e- ) ()

e = EWF 0)= -4MF)m (®)

m = A':n=A" ‘;Fa ()
N

I (10)

4 = %wwwﬂum (1)
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total strain tensor ¢, 7 the viscosity and g the set
of hardening/softening variables defined as a tensor
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similar to the Prandtl-Reuss equations in case of in-
viscid elasto-plastic constitutive relations. Equations
(8) and (9) describe a general non-associated flow rule,
whereby the direction of the viscoplastic strains m, is
obtained by a modification of the gradient tensor n
of the yield surface F' by means of the fourth order
transformation tensor A. Moreover, ¥(F) is a dimen-
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F
0

if
if

F>0

F<0 (12)

wery = {
being F = F( @,q) a convex yield function which de-
fines the limit of the elastic domain.

Finally Eq. (11) represents the evolution law of the
hardening /softening variables q by means of a suitable
tensor function H of the state variables.

A consistency condition similar to the flow theory of
plasticity can not be obtained in the classical formu-
lation of viscoplastic materials. However, if the vis-
coplastic problem is treated in a similar way to the
elastoplastic one, as we will see in Section 3.2, a con-
strain condition can be obtained which represents a
generalization of the inviscid yield condition for vis-
coplastic materials,

Remark: instantaneous viscoplastic material re-
sponse do not exhibit deterioration of the elastic prop-
erties. Therefore a viscoplastic continuum tangent
stiffness tensor E,, similar to inviscid elastoplastic ma-
terials can not be obtained in case of viscoplastic for-
mulations.

B. The Continuous Formulaticn

In this formulation the Eqs. (7} to (11) are comple-
mented by a consistency parameter A, see Ponthot
(1995), defined as an increasing function of the over—
stress

=$wm» (13)

So that the evolutions Egs. (8) and (11) take now the
classical forms

€& = Am (14)

¢ = AH:m=J\h (15)

being h = H : m. Thus, from Eqs. (8) and (14)
follows

F= —1 (“ EDP ” ) I | )\ 16

v o) =97 (Am) 09)

We may now define for the viscoplastic range, the
new constrain condition
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F=F_ g1 (;\-n)=o (17)
which represents a generalization of the inviscid yield
condition F' = 0 for rate-dependent Perzyna viscoplas-
tic materials. The name continuous formulation is due
to the fact that the condition 17 = 0 (no viscosity ef-
fect} leads to the elastoplastic yield condition F = 0.
Moreover, from (13) follows that when n — 0 the con-
sistency parameter remains finite and positive since
also the over—stress goes to zero. The other extreme
case, 7 — oo, leads to the inequality F < 0 for ev-
ery possible stress state, indicating that only elastic
response may be activated.

The constrain defined by Eq.(17} allows a general-
ization of the Kuhn-Tucker conditions which may be
now written as

AF=0, A>0, F<o. (18)

Finally, the viscoplastic consistency condition ex-
pands into

H ~1¢3 -
F=n: b‘+f:c’1—MA=0 (19)
8A
-where
~ gt
g OF _OF W7 (Am) (20)

dq dq q

Other recent and interesting approach to this prob-
lem is due to Wang (see Wang et al., 1997), which
includes the strain rate as state variable into the flow
and viscoplastic potential function, i.e.

F*? = F'P( g,q, €) (21)

this also leads to a rate dependent Kuhn-Tucker condi-
tions as in case of the continuous Perzyna formulation.

IV. CONSISTENT TANGENT STIFFNESS
TENSOR

In this section the consistent tangent tensors of both
Perzyna viscoplastic material formulations described
in section 4 are derived. These operators will be used
in the next section for the analysis of diffuse and lo-
calized failure predictions.

The lack of a constrain condition in case of the clas-
sical formulation of Perzyna viscoplasticity forces the
consideration of the stress residual to derive the consis-
tent tangent operator. On the other hand, in the con-
tinuous formulation this stiffness tensor follows from
the linearization process of the differential form of the
generalized consistency condition, similar to the case
of the inviscid elastoplastic formulation,

The start point for the derivation of the consistent
tangent moduli in both formulations of Perzyna vis-
coplasticity is the Backward Euler stress equation.

24
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A, Classical Perzyna Formulation

Integrating Eqs. (8) and (11) during the finite time
step At with the unconditionally stable Backward-
Euler (BE) or Closest Point Projection (CPP) algo-
rithm and considering Perzyna formulations of first
order, i.e. N = 1in Eq. (10), we obtain the alge-
braic formats:

FAY Onyl
Aqﬂ.-{-l

E:A €nt1 — AtE En-t1
AtHnpi1 @ Bntl

(22)

where the Perzyna viscoplastic evolution law is evalu-
ated at t = ¢,

1
Bni1 = E(¢(F)n+1)mn+1- (23)
To derive consistent tangent moduli of the Perzyna
description we define the stress residual at ¢ = ¢,,,, as

Rn+1 =E:A €nt1 — AtE: Bn+1 — A Ont1- (24)
The root Rypq1 = 0 of Eq. (24) is determined via

Newton-Raphson iteration, in the form
RN =R, + AREY =0,

n

(25)

where the superscript on the right indicates the current
iteration cycle. Linearization of the residual in Eq.
(25) yields

oRY,,

Je

where the individual terms of the Jacobian involve

ORE
ARﬁiﬁ:-—%ﬁ:—l:Aa+ :Ae  (26)

5Rﬁ+1 agfm-l
Bo o~ T1TAE:—G-
At om
= J—-—E:|om+Pp(F)——| (27
- VF) 55| @20
ORE
e - F (28)
with
Bp(F)
= 2
g 3o (29)

and I is the fourth order identity tensor.
Substituting Eqs.(27) and (28) into Eq. (26) and
subsequently into Eq. (25) we obtain

de At
a‘;—c I+?E(\Il®m+'t,b(F)M) (30)
where
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C = EI (31)
Om o2 F
M= —=A"1": ———.
oo doxdo (32)
Equation (30) can be alternatively expressed as
d At
LD+ 2 em (33)
do f
whereby
At
D!'=C+ 7¢(F)M. (34)

The final expression of the consistent. tangent mod-
uli of classical Perzyna viscoplasticity takes then the
form

class d o
= E =

[Ef;":ffr] _D:\I'®m:D.
Z=+¥:D:m

Note: the algorithmic tangent operator obtained
with the classical Perzyna formulation does not require
the determination of the elastoplastic moduli tensor,
as in case of Duvaut and Lions (1972) viscoplasticity,
see Etse and Willam (1999). From Egs. (30) and (33)
foliow that the limiting case 7 — co results in instan-
taneous elasticity A o = E : A elike the Duvaut-Lions
viscoplastic material. On the other hand, when — 0
it also implies that the overstress measure ¥{F) tends
to zero for a finite viscoplastic strain value, as an anal-
yais of Eq.(8) can readily show. In consequence, as
the coeflicient affecting M in the linear combination
Eq.(34) becomes undeterminated, the material oper-
ator has no defined limit for this case. In spite of
the “apparent” regularization capability of the rate-
dependent classical Perzyna formulation we will see in
Section 5 that in this extreme case numerical instabil-
ity may arise due to the particular form which takes
the consistent material moduli.

From Eq.(35) follows that, when finite time incre-
ments are considered, the eigenvalue of the algorith-
mic tangent operator normalized with respect to the
fourth order tensor D (see 34) yields

(35)

=1- !

1- n'D:m
Thus, the condition for diffuse failure is fulfilled only
when 1 = 0 (non viscosity effects) as longasn: D :m
remains positive. However, due to the particular form
of D in Eq. (34), the extreme case 7 — 0 may lead to
quite different values of the bilinear formn: D :m

normiPer
P\min

(36)

B. Continuous Perzyna Formulation

The algorithmic tangent operator can be formulated
from the linearization of the viscoplastic consistency
condition, see Eq.(19), for a finite increment d, quite
similar to rate independent plasticity,

25

Gyt ()\ . n)
)

In order to avoid further complications, it’s supposed

that A is accurately approximated by A = %%, i.e

AX = &L((F)), this leads to di = 982, The conse-

quences of this assumption are analyzed in other work

of the authors (Carosio et al., 2000)

Proceeding in a similar form to the algebraic elasto-
plastic problem, i.e. substituting in Eq. (37) the dif-
ferential changes of the stress tensor and of the state -
variables evaluated in a consistent form with the BE

dF =n:do+7:dq- dA=0. (37)

do=E™:(d e~ dA m) (38)
dg=dAXh+ AAp:E™: (d €~ dAAm)  (39)
where
E™ = (BE7'+AMM) (40)
oh
P = Jo (41)

alg

cont
we obtain the relations d o = [Epe,] : d € with

the algorithmic operator

_ M@+ AN:Mmep

=E™ -
Em + AMED + E,

] cont

B2, (42)

whereth = E™ :m, i = n: E™, p = p: E™ and the
scalar values ET, EZ* and E; defined as

Ef=n:E™":m-f:h (43)
El=%:p:E™:m (44)

1 oy
. PS AL AR (45)

The last three equations are similar to the elasto-
plastic case,

Note 1: Eq.(39) is valid for every possible order n
of the tensor q of state variables. From Eqs.(15) and
(41) follow that the order of the tensor h is equal to
that of q, i.e. n, while the order of p is n + 2.

Note 2: the algorithmic tangent operator of the con-
tinuous formulation approaches the consistency oper-
ator of the rate-independent elastoplastic case when
71 = 0. The other extreme case, when 7 = oo leads
to the elastic tensor. With other words, the continu-
ous formulation of Perzyna viscoplastic maierials leads
to algorithmic tangent tensors which signal a smooth
transition between the elastic one and that of the
elastoplastic case.




Latin American Applied Research

V. COHESIVE/FRICTIONAL
VISCOPLASTIC MODEL

To analyze the failure conditions of viscoplastic ma-
terial descriptions attention is focused on the elasto—
(visco-)plastic Extended Leon concrete model, cf.
Etse & Willam (1994). In this section thg relevant
constitutive equations are briefly summarized.

‘The rate-independent triaxial Extended Leon Model
(ELM) for conerete features a non-associated flow the-
ory of plasticity with isotropic hardening in the pre-
peak regime and isotropic fracture energy-based soft-
ening in the post-peak regime. The encompassing
loading surface in the hardening and softening regimes
is described as follows:

T 2g) om0

where o, p and @ designates the three High Wester-
gard stress coordinates and f! the uniaxial compressive
sirength. g(f) describes the variation of the deviatoric
shear strength p = p(6,e) as a function of the Lode
angle and of the eccentricity 1/2 < e = pfp. £ 1,
whereby the elliptic approximation of the 5§ Parame-
ter Model of Willam & Warnke (1974) is defined

() = 2a(8, e) cosf + ble)?
yer= a(8,e) + ble)~/2a{0,e) cosf + cle)

(47)

with the functions a(8, e), b{e) and c(e) defined as

a(f,e) = 2(1—e?)cosd {48)
ble) = (Ze—1) (49)
cle) = B5e* —4e (50)

The different loading sutfaces in the hardening
regime are generated by the strength parameter k
which varies between 0.1 and 1.0, while ¢ and m, the
cohesion and friction parameters, remain constant. k
ig defined in terms of the strain-hardening parameter
Kp a8

ka(K:h) :koJf“(l_ko)VK'h(z_Hh)

1.
with & = —A|lm]|. (51)
Tp

Thereby x, represents the hardening ductility mea-
sure which account for the level of confining stress in
the hardening behavior.

The maximum strength surface is reached when
k = 1. Continuous plastic loading in the failure
regime below the transition point of brittle-ductile

26
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fracture leads to softening which is defined by a frac-
ture energy-based formulation involving a characteris-
tic length to account for mesh objectivity. The overall
softening mechanism is described by decohesion and
equivalent degradation of tensile bond stress o, ex-
pressed in terms of the strain—softening parameter sy
which represents the difference between crack spacing
in mode I and mode II type fracture

?-igf’gf—)_ = exp (—5;—':),withfcf - 5};)\ | (m? ||
(52)

f{ designates the uniaxial tensile strength, u. the
rupture displacement for mode I type fracture and
the softening ductility measure. The fracture energy-
concepts are introduced in the definition of x5 which
depends on the ratio between the fracture energy re-
lease rate for mode I and for mode 11 type of fracture,
and of the characteristic length. Finally, m? repre-
sents the gradient tensor of the plastic potential in the
principal stresses space.

To reduce excessive dilatation in the low confine-
ment region, a non-associated flow rule is included.
The plastic potential is formulated on the basis of a
volumetric modification of the yield condition

_ aiw (2, m®Y, @]
@ = [(l 0 (7 %) 3 } +
f}:- (mQ + m&\/(g)) k=0 (53)

with the friction parameter m — mg = mg(o) be-

ing redefined in terms of the volumetric stress o = {1 :
o, see Etse & Willam (1994).

To preserve optimal convergence rate of the iterative
solution in the Newton method the algorithmic or con-
sistent tangent operator of the elastoplastic concrete
model was developed by Etse (1992) and is presented
by Etse & Willam (1996).

The constitutive and algebraic equations of the
elastic-plastic backbone description for concrete were
used for the evaluation of the algorithmic tangent
moduli of the Extended Leon-Perzyna viscoplastic
model based on both the classical and the continuous
formulation.

Vi. NUMERICAL ANALYSIS OF
FAILURE INDICATORS

In this section the performance of the diffuse failure
indicator and of the condition for localized failure are
analyzed. The failure indicators are evaluated from
the consistent operator obtained both with the classi-
cal and with the continuous Perzyna generalization of
the ELM.

Figure 1 illustrates the maximum strength surface
of the ELM, which corresponds to the strength pa-
rameter k = 1 and the cohesion parameter ¢ = 1, in




G. ETSE, A. CAROSIO

the particular case of plane strain condition whereby
the relation a3 = v(o: + o2) between the out of plane
stress (o3) and the other two normal stresses is valid.

Softening behavior takes place below the so—called
Transition Point (TP) of brittle-ductile behavior. Fig-
ure 2 shows a comparison between the maximum
strength surface and the yield surface in softening cor-
responding to ¢ = 0.5.

Due to the symmetry with respect to the hydrostatic
axis, the performance of failure indicators are analyzed
for stress states located along one half of the yield
surface in softening.
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Figure 1: Extended Leon Model. Maximum strength
surface in plane strain condition for o3 = (o) + 72).
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Figure 2: Extended Leon Model. Maximum strength
surface and yield surface for ¢ = 0.5. Plane strain
condition with o3 = v(g1 + 02).

A, Performance of the Diffuse Failure
Indicator

Figure 3 iilustrates the variation of the normalized
diffuse failure indicator det E3?/detE for the stress
points located on the yield surface characterized by
e = 0.5 of the inviscid elastoplastic model under
plane strain condition. As before, the relation g3 =
v(o1 + oz) between the out of plane stress (o3) and
the other two normal stresses is considered. In the
evaluation of det B3 the load is applied in terms of
the plastic.multiplier AX, which defines the amount of
plastification in a single time step.

The normalized determinant of the material opera-
tor at every stress point is represented by a line seg-
ment normal to the load surface in a proper scale. The
results in Figure 3 indicate that in the high confine-
ment zone, perfect plasticity and no softening takes
place. On the other hand, the maximum softening is
obtained in the biaxial tensile region.
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Figure 3: Elastoplastic Extended Leon Model. Nor-
malized diffuse failure indicator on the yield surface .
c=0.5

Figure 4 shows the performance of the indicator for
diffuse failure det (E32.)4%¢ / det B for the case of the
classical Perzyna model. In all studies the time step
was held constant, At = 1, while for the viscosity the
values 10 and 100 were considered. With increasing
7 the normalized diffuse failure indicator approaches
the value 1 indicating elastic behavior. For the smaller
value of i the normalized determinant decreases but
remain positive.

Figure 5 illustrates clearly that when 7 approaches
zero also the normalized determinant of the material
operator tends to zero. However, strong oscillations
and discontinuities appear. Moreover, in some regions
the indicator turns negative and the hold performance
is quite different from that obtained with the invis-
cid model. With other words, in case of the classi-
cal Perzyna formulation the no viscosity effect does
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Figure 4: Classical Perzyna-based Extended Leon
Model. Normalized diffuse failure indicator on the
yield surface ¢ == 0.5 for 5y = 100.0 and # = 10.0

not lead to the same failure predictions as the inviscid
model.
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Figure 5: Classical Perzyna-based Extended Leon
Model. Normalized diffuse failure indicator on the
yield surface ¢ = 0.5 for n = 1.0.

The performance of the indicator for diffuse failure
in case of the continuous Perzyna model is illustrated
in Figures 6 and 7. Contrary to the case of the classi-
cal Perzyna model, a smooth transition from the elas-
tic to the elastoplastic predictions of the normalized
diffuse failure indicator is obtained when 7 varies from
very large to very small values. This performance is
quite similar to that obtained with the Duvaut-Lions
viscoplastic formulation, see Etse & Willam (1999).

B. Performance of the Localization Indicator

Figure 8 illustrates the variation of the normalized lo-
calization indicator along the yield surface ¢ = 0.5 of
the inviscid ELM. In the high confinement zone no

32:21-31 (2002)
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Figure 6: Continuous Perzyna-based Extended Leon
Model. Normalized diffuse failure indicators on the
yield surface ¢ = 0.5 for 5 = 1000.0 and » = 100.0.

1259

-Ouif'e x 107

1000

VS0 n=10

300

£50

— =10

dot(E)

-230 250 S00 750 1000 1250
-oaffe x 107

-250

Figure 7: Continuous Perzyna-based Extended Leon
Model. Normalized diffuse failure indicators on the
yield surface ¢ = 0.5 for # = 10.0 and = 1.0.

localization takes place and only diffuse failure is ob-
tained. Localized failure occur in the uniaxial com-
pression and low confinement zone as well as in the
biaxial tensile zone.

The performance of the localization indicator for
classical Perzyna generalization of the ELM is illus-
trated in Figures 9 and 10 for different values of #.
Similar to the performance of the diffuse failure diag-
nostic corresponding to the classical Perzyna model,
oscillations and even discontinuities can be cbserved
for decreasing values of the viscosity. This effect can
be clearly recognized in the diagram depicted in Fig-
ure 10 corresponding to the performance of normalized
localization indicator when a very small value of n was
used.

Figures 11 and 12 illustrates the variation of the nor-
malized acoustic tensor determinant of the continuous
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Figure 8: Elastoplastic Extended Leon Model. Nor-
malized localized failure indicator on the yield surface
c=0.5
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Figure 9: Classical Perzyna-based Extended Leon
Model. Normalized localized failure indicators on the
yield surface ¢ = 0.5 for n = 140.0 and 7 = 1.0.

Perzyna model. These results demonstrate again that
the continuous Perzyna formulation leads to a smooth
transition from elastic to elastoplastic behavior when 5
varies from large to small values and for every possible
stress state.

The evolution of the indicator for localized failure
and the predictions of critical bifurcation direction for
the limit point stress state of the uniaxial compression
test in plane strain condition are illustrated in Fig-
ures 13 and 14 for both Perzyna formulations. The
plots in Figure 14 corresponding to the comtinuous
Perzyna formulation show that for decreasing values
of the viscosity a continuous increase of the elastic
properties degradation of the localized failure indica-
tor is obtained. Moreover, for very small values of 1
the continuous Perzyna model renders same bifurca-
tion directions as the inviscid elastoplastic material.
This is not the case of the classical Perzyna model as
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Figure 10: Classical Perzyna-based Extended Leon
Model. Normalized localized failure indicator on the
yield surface ¢ = 0.5 for n = 0.001

Figure 11: Continuous Perzyna-based Extended Leon
Model. Normalized localized failure indicators on the
yield surface ¢ = 0.5 for 7 = 1000.0 and = 100.0.

it can be observed in Figure 13, These results further
illustrate the fundamental differences between failure
predictions of both Perzyna viscoplastic formulations.

VII. CONCLUSIONS

In this paper two different formulations for Perzyna
viscoplasticity were analyzed with regard to the pre-
dictions of diffuse and localized failure for stress
states under plane strain conditions. Considering the
time integration of real viscoplastic material processes
within finite time increments, then the algorithmic
tangent operator replace the instantaneous one which
do not exhibit degradation of the elastic properties.
From the consistent linearization process based on the
Backward Euler method for time integration of the
differential equations, the algorithmic tangent opera-
tor of both Perzyna formulations were obtained which
exhibit quite different features. The numerical results
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Figure 12: Continuous Perzyna-based Extended Leon
Model. Normalized localized failure indicators on the
yield surface ¢ = 0.5 for n = 10.0 and n = 1.0.
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Figure 13: Normalized acoustic tensor determinant
plot for Classical Perzyna Viscoplastic and for Elasto-
plastic Formulations of Extended Leon Model. Limit
point stress state of uniaxial compression test in plane
strain condition.

in this paper support the conclusion that these dif-
ferences are responsible for failure predictions which
show considerable disagreement when the viscosity ap-
proaches zero.

Tn this extreme case the classical Perzyna model do
not reproduce the predictions of the inviscid material
and the performance of the diffuse and localized failure
indicators exhibit strong oscillations and even discon-
tinuities due to numerical instabilities which arise from
the time integration process.

On the other hand the continuous Perzyna formu-
lation leads to algorithmic material operators which
exhibit a smooth transition from the elastic to the
elastoplastic tensor according to the assumed value for
the viscosity. Therefore, when n approaches zero the
same localization predictions as the inviscid material
are obtained.
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Figure 14: Normalized acoustic tensor determinant
plot for Continuous Perzyna Viscoplastic and for
Elastoplastic Formulations of Extended Leon Model.
Limit point stress state of uniaxial compression test in
plane strain condition.
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