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The critical behavior of a nonlocal scalar field theory is studied. This theory has a nonlocal kinetic term
which involves a real power 1 − 2α of the Laplacian. The interaction term is the usual local ϕ4 interaction.
The lowest order Feynman diagrams corresponding to coupling constant renormalization, mass
renormalization, and field renormalization are computed. Particular features appearing in the renormal-
ization of this nonlocal theory that differ from the case of local theories are studied. The previous
calculations lead to the perturbative computation of the coupling constant beta function and critical
exponents ν and η. In four dimensions for α < 0 this beta function presents asymptotic freedom in the UV.
This is remarkable since no non-Abelian vector fields are included. However, this comes at the expense of
losing reflection positivity.
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I. INTRODUCTION

The computation of critical exponents for the 3-
dimensional Ising model using the ϵ-expansion provides
a concrete example of the relevance of the renormalization
group ideas [1,2]. This is done by considering a self-
interacting ϕ4 theory in d ¼ 4 − ϵ dimensions, where ϵ is
allowed to take real values. This procedure led to a qualitative
understanding of the 3-dimensional Ising model physics
and to predictions for critical exponents in reasonable
agreement with the exact values. The results for the theory
in d-dimensions are obtained by computing the theory in an
integer number n of dimensions and then replacing n by d.
The renormalization group consists in the study of the

evolution of a system under scale transformations. This
system involves all possible interactions of any range for all
kinds of dynamical variables. Different physical systems
correspond to the study of particular fixed points in this
huge space of couplings. This paper studies a particular
example of system described near the corresponding fix
point by a nonlocal field theory. Nonlocal field theories
appear in various aspects of physics. These include pro-
posals for dealing with quantum gravity [3], field theories
based on noncommutative geometry [4] and in critical
phenomena. The use of nonlocal field theories in the
description of critical phenomena is not new [5–8]. Such
models appear in statistical systems with long range

interactions. In this paper the critical behavior of a nonlocal
field theory is studied. This nonlocal theory is motivated by
an alternative approach to noninteger dimensional spaces
(NIDS) [9]. Free scalar theories on these spaces have been
studied in this last reference. This theory has been
employed to compute loop corrections and compare the
results with dimensional regularization [10,11], showing
that the structure of singularities is the same as in dimen-
sional regularization. In addition, the fulfillment or not of
the requirement of reflection positivity for the correspond-
ing Euclidean field theory has been considered [12]. There,
it is shown that for negative values of the noninteger power
mentioned above, the theory fulfills reflection positivity.
This means that the corresponding theory in Minkowski
space is unitary for those values of the noninteger power.
The aim in this work is to add a ϕ4 interaction and study the
renormalization and critical properties of the resulting
nonlocal theory.1 This study shows the relevance of this
model in describing nontrivial fixed points. The features
and results of this work are summarized as follows:

(i) The theory to be considered is the free scalar theory
studied in [9]with the additionof aϕ4 interaction term.

(ii) The contribution of the lowest order Feynman
diagrams corresponding to coupling constant re-
normalization, mass renormalization, and field re-
normalization are computed. This computation
exemplifies general issues about the renormalization
of nonlocal field theories. The procedure employed
involves features that do not appear in the local case.
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1This theory can also be obtained as the analytic regularized
[13] version of the usual ϕ4 local field theory.
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(iii) The previous calculation allows to compute the fixed
point value for the coupling constant and the critical
exponents ν and η, respectively. The corresponding
results describe a theory which shows asymptotic
freedom in the UV and a nontrivial infrared fixed
point at finite coupling. The corresponding theory
does not fulfill the condition of reflection positivity.

(iv) In addition, assuming the usual n-dimensional con-
formal algebra to be a symmetry of the theory, the
unitarity bounds are studied. They agree with the
ones obtained by requiring the condition of reflec-
tion positivity.

II. THE ACTION

The free part of the action to be considered is essentially
the same as in [9] for2 M ¼ 0. The interaction part is ϕ4. In
terms of the scalar product of form fields mentioned above
and described in [9], the action is given by:

S¼ S0þSI; S0 ¼
1

2
hdϕ;dϕi; SI ¼

λ0
4!
hϕ2;ϕ2i; ð2:1Þ

evaluating the scalar products appearing in the last equation
leads to the following expression in terms of an integral
over the integer n-dimensional space:

S0¼
Z

dnx
1

2
ϕð−□þm2

0Þð−□Þ−2αϕ; SI ¼
λ0
4!

Z
dnxϕ4;

where, anticipating renormalization effects, an explicit
mass term has been included.3 In what follows, bare mass
and coupling will be indicated by m0 and λ0; the corre-
sponding renormalized quantities will be m and λ. The
Fourier transform of the free two point function is therefore
given by:

hϕϕiðpÞ ¼ 1

ðp2 þm2
0Þðp2Þ−2α

¼ Γð1− 2αÞ
Γð−2αÞ

Z
1

0

dað1− aÞ−1−2α 1

ðp2 þm2
0aÞ1−2α

;

the second equality in the last equation is obtained using
Feynman parametrization. This last expression will be
employed in the computations below.

III. RENORMALIZATION AND
THE CRITICAL EXPONENTS

A. Field renormalization

Field renormalization is required at the two loop level.
The corresponding correction to the two point function is
given by the following sunrise diagram (see Fig. 1).
The integral to be computed is

aSðp; αÞ ¼
�
Γð1 − 2αÞ
Γð−2αÞ

�
3

×
Z

1

0

�Y3
i¼1

daið1 − aiÞ−1−2α
�

× ISðp; α; a1; a2; a3Þ

ISðp; α; a1; a2; a3Þ ¼ λ20

Z
dnq1
ð2πÞn

dnq2
ð2πÞn

×
1

ðq21 þ a1m2
0Þ1−2αðq22 þ a2m2

0Þ1−2α

×
1

½ðpþ q1 þ q2Þ2 þ a3m2
0�1−2α

:

The correction to the kinetic term comes from the above
integral evaluated at m0 ¼ 0. This integral is,

I0ðp; αÞ ¼ λ20

Z
dnq1
ð2πÞn

dnq2
ð2πÞn

×
1

ðq21Þ1−2αðq22Þ1−2α½ðpþ q1 þ q2Þ2�1−2α

introducing Feynman parametrizations to rewrite the
integrand, performing the momentum integrals and the
integrals on the Feynman parameters and taking n ¼ 4
leads to,

I0ðp; αÞ ¼ p2ð6αþ1Þ 4
−2α−3λ20 cscð4παÞΓð−6α − 1ÞΓð3

2
− 2αÞB1ð4αþ 2; 2αþ 1Þ

π7=2Γð3 − 8αÞΓð1 − 2αÞ2Γð4αÞ

The coupling λ0 has dimension 4 − n − 8α in momentum units, therefore, for n ¼ 4, it can be written as follows in terms of
an adimensional coupling g0 as follows,

2No infrared regulator is required for the following computations.
3This way of introducing a mass term is motivated by the calculation of perturbative corrections appearing below.
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λ0 ¼ g0μ−8α ⇒ g ¼ λμ8α ð3:1Þ

noting that,

�
Γð1 − 2αÞ
Γð−2αÞ

�
3
Z

1

0

�Y3
i¼1

daið1 − aiÞ−1−2α
�

¼ 1

leads to,

aSðp; αÞ ¼
g20

ð4πÞ4 μ
−16αðp2Þ6α

�
p2

12α
þOðα0; mÞ

�

¼ g20
ð4πÞ4 μ

−16α ðp2Þ6α
12α

½p2 þ αOðα0; mÞ�

where Oðα0; mÞ denote terms that vanish when α and m go
to zero. At this stage a recurrent situation in the renorm-
alization of these non-local theories shows up. Similar to
what happens in dimensional regularization the correction
provided by a given diagram, in this case the sunrise
diagram, is proportional to a power of the momentum
which is not in general the same as the one that originally
appears in the Lagrangian. The integral I0ðp; αÞ gives a
contribution4 proportional to p2ð1þ6αÞ, while the original
Lagrangian has the power p2ð1−2αÞ. The choice of the power
of p2 that appears in the kinetic term of the renormalized
Lagrangian fixes the finite contribution of this diagram. In
other words, if a different power of p2 is chosen then the
finite contribution of the diagram will also be different. The
following way of rewriting aSðp; αÞ illustrates this point,

aSðp; αÞ ¼
g20

ð4πÞ4 μ
−16α ðp2Þ−2α

12α
ðp2Þ8α½p2 þ αOðα0; mÞ�

¼ g20
ð4πÞ4

ðp2Þ−2α
12α

½p2 þ αOðα0; mÞ�

×

�
1þ 8α log

�
p2

μ2

�
þOðα2Þ

�

¼ g20
ð4πÞ4

ðp2Þ−2α
12α

½p2 þ αOðα0; mÞ�: ð3:2Þ

For α → 0 the pole term of the last expression multiplied by
the symmetry [14] factor 1

6
is the one to be subtracted. It is

given by:

�
1

6
aSðp; α

�
pole

¼ g20
ð4πÞ4

p2ð1−2αÞ

72α
;

which leads to the renormalization constant,

Zϕ ¼ 1þ g20
ð4πÞ4

1

72α
;

the function γ is defined and given by:

γðgÞ ¼ μ
∂
∂μ logZ

1
2

ϕ

���
λfixed

¼ 1

2

∂
∂ log μ log

�
1þ λ20μ

16α

ð4πÞ4
1

72α

�

¼ 1

2Zϕ

�
λ2016α

ð4πÞ472α μ
16α

�
¼ g2

9ð4πÞ4 þOðg4Þ: ð3:3Þ

B. The fixed point and coupling constant
renormalization

The diagram to be considered is the one corresponding to
the one loop correction to the quartic coupling, i.e., Fig. 2.

The integral to be computed is:

aFðp; αÞ ¼
�
Γð1 − 2αÞ
Γð−2αÞ

�
2
Z

1

0

�Y2
i¼1

daið1 − aiÞ−1−2α
�
IFðp; α; a; bÞ

IFðp; α; a; bÞ ¼
3

2
λ20

Z
dnq
ð2πÞn

1

ðq2 þm2
0aÞ1−2αððpþ qÞ2 þm2

0bÞ1−2α
;

FIG. 1. Lowest order diagram contributing to field
renormalization.

FIG. 2. Lowest order diagram contributing to coupling constant
renormalization.

4In dimensional regularization of the usual local ϕ4 theory, the correction provided by the sunrise diagram is proportional to
p2ðd−3Þ ¼ p2ð1−ϵÞ.
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the factor 3
2
coming from the 1

2!
of the second order term of the exponential and the contributions of 3 diagrams which give

the same contribution. Introducing the Feynman parametrization and integrating over the n-moment q, leads to:

IFðp; α; a; bÞ ¼
3

2

λ20
ð4πÞn2

Γð2 − n
2
− 4αÞ

Γð1 − 2αÞ2
Z

1

0

dx
ðm2½axþ bð1 − xÞ� þ p2ð1 − xÞxÞn2−2þ4α

ðð1 − xÞxÞ2α

¼n¼4 3

2

λ2μ8α

ð4πÞ2
Γð−4αÞ

Γð1 − 2αÞ2
Z

1

0

dx

�ðm2
0 þ p2ð1 − xÞxÞ2
μ4ð1 − xÞx

�
2α

¼α≪1 3ðλ0μ4αÞ2
4ð4πÞ2

�
−

1

2α
þ
Z

1

0

dx log

�
μ4ð1 − xÞx

ðm2
0 − p2ðx − 1ÞxÞ2

��
;

where in the second equality a parameter μ with dimensions of mass has been introduced in order to make adimensional the
argument of the logarithm. In addition, in the last equality only terms up to Oðα0Þ have been kept. In the minimal
subtraction scheme only the first term in the square bracket of the last expression will be relevant in defining the
renormalized coupling λR. This term is independent of a and b; therefore,

aFðp; αÞ ¼
�
Γð1 − 2αÞ
Γð−2αÞ

�
2
Z

1

0

dadbð1 − aÞ−1−2αð1 − bÞ−1−2α 3ðλ0μ
4αÞ2

4ð4πÞ2
�
−

1

2α

�
¼ 3ðλ0μ4αÞ2

4ð4πÞ2
�
−

1

2α

�
:

Taking into account the computation in the last subsection, this leads to the following renormalized coupling:

λ ¼ λ0Z2
ϕ

Zg
; Zg ¼ 1þ 3

4

λ0
ð4πÞ2

ðμ2Þ4α
ð−2αÞ þOðλ20Þ; Zϕ ¼ 1þ g20

ð4πÞ4
1

72α
;

the beta function corresponding to the renormalized adimensional coupling g fulfills

βðgRÞ ¼ μ
d
dμ

gR ¼ μ
d
dμ

�
λZ2

ϕ

Zg
μ8α

�

¼ 8αgR þ 2gRZ−1
ϕ μ

d
dμ

Zϕ þ gRZ−1
g μ

d
dμ

Zg

¼ 8αgR þ 4gRγþ gR
3

8α

1

ð4πÞ2 βðgRÞ;

which implies

βðgRÞ ¼ 8αgR þ 6g2R
2ð4πÞ2 þ 4

g3R
9ð4πÞ4 :

Neglecting negative values of g, which make the theory
unstable, the figure below shows a plot of this function for
α ¼ �0.01 (see Fig. 3).
This figure shows that for α > 0 the theory has asymp-

totic freedom in the infrared. However for α < 0 this
4-dimensional theory presents asymptotic freedom (AF)
in the ultraviolet (UV). This is a remarkable result since
it is usually believed that non-Abelian gauge bosons are
required in order to get AS in the UV. However, as the

analysis in [12] shows, the theory for α < 0 does not satisfy
the requirement of reflection positivity (RP). This means
that the Wick rotated theory in Minkowski space does not
provide a unitary representation of the Poincaré group,
which implies that no unitary evolution can be defined in
this space. Alternatively, as will be shown in the next

α=–0.01α=0.01

2 4 6 8
g

–0.4

–0.2

0.2

0.4

β

FIG. 3. Quartic coupling beta function for α ¼ �0.01.
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section, the unitarity bounds are violated for α < 0. This
does not mean that the Euclidean theory is useless; indeed
many useful statistical mechanical models fail to satisfy RP.
The fixed point g⋆ is defined by βðg⋆Þ ¼ 0. Writing the

solution of this last equation as a power series in α,

g⋆ ¼ g0 þ g1αþ g2α2 þ � � �
leads to two solutions, the Gaussian fixed point g⋆ ¼ 0 and

g⋆ ¼ −
8

3
ð4πÞ2α −

256

243
ð4πÞ2α2:

C. Mass renormalization

The one loop correction to the two point function is
given by the diagram in Fig. 4.
The integral to be computed is

aTðαÞ ¼
Γð1 − 2αÞ
Γð−2αÞ

Z
1

0

dað1 − aÞ−1−2αITðα; aÞ

ITðα; aÞ ¼ −λ0
Z

dnq
ð2πÞn

1

ðq2 þm2
0aÞ1−2α

; ð3:4Þ

leading to

ITðα; aÞ ¼ −
λ0

ð4πÞn2
Γð1 − n

2
− 2αÞ

Γð1 − 2αÞ ðm2
0aÞ

n
2
−1þ2α;

replacing in (3.4) leads to

aTðαÞ ¼
Γð1 − 2αÞ
Γð−2αÞ

Z
1

0

dað1 − aÞ−1−2α

×

�
−

λ0
ð4πÞn2

Γð1 − n
2
− 2αÞ

Γð1 − 2αÞ ðm2
0aÞ

n
2
−1þ2α

�

¼n¼4 −g0μ−8α

16π sinð2παÞ ðm
2
0Þ1þ2α

¼ −g0
16π sinð2παÞ ðm

2
0Þ1−2α

�
m2

0

μ2

�
4α

¼ ðm2
0Þ1−2α

�
−g0

ð4πÞ22αþOðα0Þ
�
;

where in the second equality the dimensional coupling λ
has been expressed in terms of the adimensional coupling g

by means of (3.1). As was mentioned for the case of the
sunrise diagram, in this case also the power of p2 appearing
in the correction is different from the one appearing in the
Lagrangian. In a similar way as for the sunrise, the choice
of the power to appear in the renormalized Lagrangian fixes
the finite contribution of this diagram. This last point is
illustrated by the following computation of the correction to
the proper two point function5:

Γ2ðpÞ ¼ ðp2 þm2
0Þðp2Þ−2α − 1

2
aTðαÞ

¼ ðp2 þm2
0Þðp2Þ−2α þ ðm2

0Þ1−2α
g0

ð4πÞ24αþ C

¼ ðp2 þm2
0Þðp2Þ−2α þm2

0ðp2Þ−2α
�
m2

0

p2

�−2α

×
g0

ð4πÞ24αþ C

¼
�
p2 þm2

0

�
1þ g0

ð4πÞ24α
��

ðp2Þ−2α þ C0;

where C and C0 denote terms that converge for α → 0.
Therefore, taking into account the computation in
subsection III A, the renormalized mass m in the minimal
subtraction scheme is given by

m2 ¼ m2
0

Zϕ

Zm2

;

where, up to Oðg2Þ,

Zm2 ¼ 1 −
g0

ð4πÞn2
1

4α
;

the beta function γm for the mass is given by

γmðgÞ ¼
μ

m
∂m
∂μ ¼ 1

2

�
μ

Zϕ

∂ logZϕ

∂μ − μ
∂Zm2

∂μ
�

¼ γ þ 1

2

βðgÞ
ð4πÞn24α

¼ 1

2
βðgÞ

�
1

ð4πÞn24αþ 2g0
ð4πÞ472α

�

¼ g
ð4πÞ2 þ

g2

9ð4πÞ4 þOðg3Þ:

D. The critical exponents ν and η

These critical exponents are related to the fixed point
values γ⋆ and γ⋆m of the functions γ and γm. They are given by

FIG. 4. Lowest order diagram contributing to mass
renormalization.

5It is worth noting that if the mass was included with a kinetic
term of the form, L0 ¼ ϕð−□þm2Þ1−2αϕ, then the singular
contribution of this diagram when α → 0 could not be absorbed
by mass renormalization; in other words the counterterm required
to cancel the divergence when α → 0 would not be of the form L0.
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ν ¼ 1

2 − 2γ⋆m
; η ¼ 2γ⋆:

The nontrivial fixed point is given by

g⋆ ¼ −
8

3
ð4πÞ2α −

256

243
ð4πÞ2α2;

the fixed point values γ⋆m and γ⋆ are therefore given by

γ⋆m ¼ γmðg⋆Þ ¼ −
8α

3
þ 256

243
ð12π2 − 1Þα2

þ 65536π2α3

6561
þOðα3Þ

γ⋆ ¼ γðg⋆Þ ¼ 64α2

81
þ 4096α3

6561
;

which implies

ν ¼ 1

2
−
4α

3
þ 32

243
ð23þ 48π2Þα2 − 256ð171þ 736π2Þα3

6561

η ¼ 2

�
64α2

81
þ 4096α3

6561

�
: ð3:5Þ

It is worth noting that the value of α is related to the
dimension of space. A free propagator at the Gaussian fixed
point in 4-dimensions should behave as 1

jxj2; this corre-

sponds to small values of α, as the ones employed in the last
figure. The critical exponents for the non-Gaussian fixed
point for α ¼ −0.01 are

ν ¼α¼−0.01
0.52; η ¼α¼−0.01

0.0001:

Following the same reasoning in 3 dimensions, the 1
jxj

behavior of the free propagator gives α ¼ − 1
4
. This is the

value of α which corresponds to the ϵ ¼ 1 in the
ϵ-expansion. In the same spirit as in the case of the
ϵ-expansion, the critical exponents for the non-Gaussian
fixed point can be computed for this last value of α.
Replacing α ¼ − 1

4
in (3.5) leads to the following values for

the critical exponents:

ν ¼α¼−1
4
4.92; η ¼α¼−1

4
0.079;

which, in comparison with the values obtained with the
ϵ-expansion, significantly differs from the 3d-Ising model
critical exponents. This shows that this fixed point does not
describe the 3d-Ising model critical point.

IV. RELATION WITH ϵ EXPANSION

For each diagram there is a way to obtain its divergent
contribution (when α → 0) from the corresponding one in
the ϵ expansion. In order to show this let us consider the
superficial degree of divergence (SDD) for both theories:
the one considered in this paper described by the action
(2.1), from now on the α-theory; and the usual ϕ4 theory
dimensionally regularized to a dimension d ¼ 4 − ϵ, from
now on the ϵ-theory. The SDD for a proper graph G in the
ϵ-theory is given by

ωϵðGÞ ¼ 4 − ϵð1þ VÞ þ
�
ϵ

2
− 1

�
E;

where V denotes the number of vertices and E the number
of external legs. For the case of the α-theory the SDD can
be computed to give

ωαðGÞ ¼ 4þ 8αV − ð1þ 2αÞE;

which of course coincides for α ¼ ϵ ¼ 0. Note that there is
no replacement of ϵ as a function of α such that for any V
and E the following equality holds6:

ωϵðαÞðGÞ ¼ ωαðGÞ:

However for each given V and E there is a replacement.
This is shown in the Table I, which compares the SDD and
the renormalization constants for the diagrams considered
in the previous section:

ZðϵÞ → ZðαÞ:

This table shows that knowing the SDD of a given
diagram in both theories allows to obtain the renormaliza-
tion constant in one theory knowing the renormalization

TABLE I. Relation between degree of divergence and renormalization constants for the ϵ and α theories.

ωϵ → ωϵ

Diagram ωϵ ωα ZðϵÞ ZðαÞ ZðϵÞ → ZðαÞ
2 − ϵ 2þ 4α Zm2ðϵÞ ¼ 1þ g

ð4πÞ2ϵ Zm2ðαÞ ¼ 1 − g
ð4πÞ24α ϵ → −4α

−ϵ 8α ZgðϵÞ ¼ 1þ 3g
ð4πÞ2ϵ ZgðαÞ ¼ 1 − 3g

ð4πÞ28α ϵ → −8α

2 − 2ϵ 2þ 12α ZϕðϵÞ ¼ 1 − g2

ð4πÞ412ϵ ZϕðαÞ ¼ 1þ g2

ð4πÞ472α ϵ → −6α

6If such a replacement were possible then an expansion in
powers of α would be the same as the ϵ expansion.
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constant in the other. In other words for a given diagram G
the same replacement that sends ωϵðGÞ to ωαðGÞ, sends
ZGðϵÞ to ZGðαÞ. This fact shows that an expansion in
powers of α and the ϵ expansion are not same and describe
different critical theories; this is so because of the nontrivial
dependence of this replacement on the diagram considered.

V. UNITARITY BOUNDS

A. The conformal algebra in n-dimensions

The action (2.1) is invariant under conformal trans-
formations.7 It is assumed that there exists conserved
charges implementing these transformations at the level
of the field. The conformal algebra for dimensions n ≥ 3 is
given by

½D;Pμ� ¼ iPμ

½Pρ; Lμν� ¼ iðηρμPν − ηρνPμÞ
½D;Kμ� ¼ −iKμ

½Kμ; Pν� ¼ 2iðημνD − LμνÞ
½Kρ; Lμν� ¼ iðηρμKν − ηρνKμÞ
½Lμν; Lρσ� ¼ iðηνρLμσ þ ημσLνρ − ημρLνσ − ηνσLμρÞ;

where Pμ are the generators of translations, Lμν the
generators of rotations in the μ − ν plane, D the generator
of dilatations, and Kμ the generators of special conformal
transformations. In cylindrical coordinates the Hermiticity
properties of operators are such that [15]:

P†
μ ¼ Kμ:

B. Positive definite inner products and bounds for α

For a spinless primary state jΔ > the commutation
relation between Pμ and Kν can be used to show that

jPμjΔ > j2 > 0 ⇒ Δ > 0

jPμPνjΔ > j2 > 0 ⇒ Δ >
n − 2

2
; ð5:1Þ

for a space of dimension n. For the free theory λ ¼ 0, the
dimension of the field ϕ is

½ϕ� ¼ n − 2þ 4α

2
;

thus the unitarity bound (5.1) implies

α > 0:

For the interacting theory,

½ϕ� ¼ n − 2þ 4α

2
þ η

2
;

thus the unitarity bound implies

α > −
η

4
;

therefore, using (3.5), this implies that

αþ 1

2

�
64α2

81
þ 4096α3

6561

�
> 0;

the polynomial on the l.h.s. of the last inequality has only
one real root at α ¼ 0, and the last inequality is equivalent
to α > 0. This shows that the free theory unitarity bound is
stable under the corrections computed in this work.

VI. CONCLUDING REMARKS

Conclusions and further research motivated by this work
are summarized in the series of remarks given below:

(i) It was shown that introducing a nonlocal kinetic
term which involves a power 1–2α of the Laplacian
for a scalar field with interaction ϕ4, it is possible for
α < 0 to get asymptotic freedom in the UV without
including non-Abelian vector fields. However for
these values of α, the resulting theory can not be
Wick rotated to obtain a field theory over Minkow-
ski space realizing a unitary representation of the
Poincaré group. This is so because the condition of
reflection positivity is not fulfilled for α < 0.

(ii) From the Wilson renormalization group point of
view, there is no restriction on the range of inter-
actions. Therefore it makes sense to study the
renormalization of a nonlocal field theory. In this
work, this has been done using the field theoretic
version of this procedure. This was done for the first
corrections to the two and four point functions. The
concrete renormalization procedure shows features
different from the case of local theories, which all
the same make sense. In particular the choice
of the power of the Laplacian for the renormalized
kinetic term affects the finite contribution of the
corresponding diagram8 and the form of the
counterterms required for mass renormalization
dictate the nonlocal version of the mass term
to be employed.97Given that this theory can be thought of as a theory depending

on derivatives of the field of any order, then there should be an
infinite number of conserved charges. This assertion is not
analyzed in this paper.

8See the paragraph before Eq. (3.2).
9See the footnote in subsection III C.
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(iii) The fact that reflection positivity does not hold for
α < 0 is confirmed by the violation for α < 0 of the
unitarity bounds obtained, assuming that the theory
provides a representation of the conformal algebra.
This raises a question about which are the sym-
metries for the nonlocal action (2.1), which is an
interesting subject to be considered.

Summarizing, it is believed that the study of nonlocal field
theories can enlarge our knowledge about the fixed points

and renormalization group flows in the space of all possible
couplings mentioned in the introduction.
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