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Development of a highly specific ensemble of
topological models for early identification of
P-glycoprotein substrates
Mauricio Di Iannia, Alan Talevia*, Eduardo A. Castrob

and Luis E. Bruno-Blancha
P-glycoprotein (Pgp) is an ATP-dependent efflux tran
diseases such as cancer, epilepsy and AIDS. It is prefer
J. Chemom
sporter protein associated with multidrug resistance in several
entially expressed in organs and tissues that function as a barrier

(e.g. the gut walls or the blood–brain barrier) or promote the elimination of xenobiotics from the organism (e.g. liver
and kidney). Pgp limits drug bioavailability; thus, the recognition of Pgp substrates at the early stages of the drug
development cycle is essential for the development of new chemotherapeutic agents to deal with multidrug
resistance issues. Here we present the development of several classifier models based on topological descriptors
to identify potential Pgp substrates, aimed to be applied as secondary filter in virtual screening campaigns. Receiver
Operating characteristic (ROC) curves show that combination of individual models, through data fusion, in a
three-model ensemble, allows attaining higher areas under the curve and an overall better behavior in terms of
sensitivity or specificity. The individual discriminant functions (dfs) presented have a performance similar to that of
the previously reported models and, remarkably, our models only include low-dimensional (up to 2D) molecular
descriptors, which makes them adequate for the virtual screening of increasingly large virtual chemical repositories.
Copyright � 2011 John Wiley & Sons, Ltd.
Supporting information may be found in the online versi
on of this article.
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1. INTRODUCTION

The old drug discovery and development paradigm focused on
introducing structural modifications to a lead compound in order
to improve the potency of the drug (i.e. its ability to interact with
the molecular target), with little attention being paid to other
important aspects of a drug such as bioavailability or toxicity. As a
consequence of this scheme, around 40% of the drug
development projects failed because of inappropriate drug
disposition characteristics (inability of the drug to reach its
biological molecular target in adequate amounts) and about 20%
ended up in failure due to toxicity issues [1]. Recent data suggest,
however, that at present the attrition rate related to poor
pharmacokinetics has been considerably reduced, and this can
be ascribed to integration of in vitro and in silico Absorption,
Distribution, Metabolism and Elimination (ADME) filters at early
stages of the drug development process [2,3].
Among the ADME-related drug properties that raise more

interest is drug affinity to P-glycoprotein (Pgp, also known as
MDR1 protein or ABCB1 protein). Pgp is an ATP-dependent
transporter that functions as a transmembrane efflux pump that
translocates its substrates from its intracellular domain to its
extracellular domain [4]. It is located in many organs and tissues
that protect the organism from potentially toxic xenobiotics
(a chemical that is found in a given organism but which is not
normally produced or expected to be present in it), such as the
epithelial cells of the gastrointestinal tract, the canalicular
membrane of hepatocytes, the luminal membrane of the
etrics 2011; 25: 313–322 Copyright � 2011 J
proximal tubule cells in the kidneys, the blood–brain barrier
and others. When expressed in a normal tissue, Pgp acts in three
main ways: it limits drug entry into the body after oral
administration; it promotes drug elimination into urine and bile
and; once a drug has reached general circulation, it limits the
amount of drug that reaches certain sensitive tissues and organs
(e.g. the brain and the testis). Pgp is also expressed in tumor cells,
and similar transporters have been identified in infectious agents.
A central characteristic of Pgp is its broad substrate specificity (i.e.
substrate promiscuity, the ability to bind and transport a wide
range of structurally unrelated chemicals): over-expression of
Pgp thus determines multidrug resistance issues (decreased
sensitivity to a wide range of structurally and/or functionally
unrelated chemotherapeutic agents) [5]. Pgp over-expression
ohn Wiley & Sons, Ltd.
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may be intrinsic to a given patient (e.g. due to polymorphisms in
the MDR1 gene) [6] or it may be triggered by disease or by drugs
themselves [7,8]. Pgp over-expression is clinically relevant: it is
associated with multidrug resistance throughout a very broad
array of health conditions such as cancer [9], AIDS [10] and many
central nervous system diseases [11], among others. Two
strategies are thus being explored by medicinal chemists and
pharmacologists to cope with Pgp-mediated multidrug resist-
ance: (a) developing Pgp inhibitors and their co-administration
together with already known drugs that are recognized as Pgp
substrates and (b) identifying potential Pgp recognition at the
beginning of the drug development cycle to select or design
drug candidates that are less likely to be transported by Pgp [12].
Most of the recently reported computational models to

recognize Pgp substrates or inhibitors are either phamacophore
hypothesis or QSAR models that rely on 3D molecular descriptors
[12–23], with some exceptions such as the work by Huang et al.
[24] and Cabrera et al. [25], who reported models that include
either constitutional or topological (0D–2D) descriptors. Since
currently public chemical repositories, such as Pubchem or ZINC
databases, hold several millions of drug-like compounds and the
small organic compound chemical space grows exponentially
toward the hypothetical estimate of 1060 to 10100 feasible
chemical entities [26,27], 3D models might not be the most
efficient choice for exploration of this vast universe, since they
require previous conformational analysis to obtain a probable
conformer or an ensemble of probable conformers of the
repository compounds. Alternatively, low-dimensional, confor-
mation-independent descriptors (0D–2D) do not require any
pre-processing of themolecular structures and their computation
is extremely inexpensive in terms of computational time (a more
detailed discussion on the advantages and disadvantages of 2D
and 3D approaches can be found elsewhere [28]). Structure-
based approaches to develop new drugs to circumvent Pgp are
yet to be explored, due to the unavailability of a high-resolution
structure of this efflux transporter. Because of the intrinsic
difficulties in crystallizing transmembrane proteins [29], it was not
until lately that a 3.8 Å crystal structure was described [30].
Here we report the development of an ensemble of QSAR

topological models to be applied in virtual screening campaigns
in order to discard potential Pgp substrate among drug
candidates. This ensemble of models is aimed to efficiently
explore large virtual repositories of chemical compounds to
select chemical entities capable of dealing with Pgp-related
multidrug resistance issues, and it has been conceived as an
ADME filter to be used in virtual screening campaigns. The use of
an ensemble of models instead of a single model is proposed
here as a strategy to increase the specificity of the model and to
consider the fact that multiple binding sites have been described
in Pgp, so it would be difficult to identify Pgp substrates that are
recognized by different sites of the protein with a single model. A
detailed discussion on these subjects is presented in Sections 2
and 4.
2. METHODS

2.1. Dataset

A 250-compound diverse dataset containing 104 substrates
and 146 non-substrates was extracted from the literature
[12,16,18,31]. The dataset was split into a 125-compound
wileyonlinelibrary.com/journal/cem Copyright � 2011 John
training set and a 125-compound test set by systematic
random sampling (the compounds of each category were sorted
alphabetically and one in two compounds was kept for the
test set; no periodic pattern exists between the name of the
compounds used in this study and their structure or pharma-
cologic activity). We decided for an even partition of the dataset
into training and test sets on the basis of a recent report that
suggests that external validation results may be more reliable
when even, random partitions of medium-size datasets are
considered [32]. The name and structures of the drugs that
compose the training and the test sets are presented as
supplementary information so that the reader may examine its
chemical diversity.
2.2. Molecular descriptor calculation and modeling
technique

Dragon software for molecular descriptors calculation, version 4.0
(Milano Chemometrics, 2003) was used for the calculation of
867 low-dimensional (0D–2D) descriptors, distributed along
12 blocks of descriptors, e.g. constitutional descriptors, topolo-
gical descriptors, connectivity indices, Galvez topological charge
indices and others. Since such a high number of descriptors may
result in chance correlations between the modeled property and
a subset of descriptors, 30 subsets of descriptors obtained from
random combinations of the blocks of Dragon low-dimensional
descriptors were considered as independent pools of descriptors,
each combination containing around 200 molecular descriptors.
For example, the first pool of descriptors (207 descriptors)
emerged from the combination of the following Dragon blocks of
descriptors: edge adjacency indices, topological charge indices,
eigenvalue-based indices and functional group counts; the
second pool of descriptors (160 descriptors) combined walk and
path counts, 2D autocorrelations and topological charge indices,
and so on. We will refer to these random combinations of
descriptors blocks as ‘random pools’ from now on.
A 31st pool of descriptors that we will call ‘rational pool’

was also considered by reviewing past reports of models related
to Pgp affinity and designing a subset with those Dragon
descriptors possibly related to key features identified in
previous modeling efforts [12–24,33–35]. For example, several
of the previous studies on Pgp affinity models reported that
the numbers of H-bond donors and acceptors are important
features for the recognition event; therefore, the number of
H-bond donors, the number of H-bond acceptors, the number
of primary, secondary and tertiary N atoms and the number of
OHs were included in the rational pool. Some previous models
suggested that the size of a molecule may be important
for recognition: therefore, molecular weight and molar refractiv-
ity were included in the rational pool, since they are clearly
correlated with molecular size and molecular volume. Several 2D
autocorrelations possibly related to pharmacophore features of
reported pharmacophores were also considered. In this way, we
arrived at a 90-descriptor rational pool. Descriptors with constant
or near-constant values for the training set, associated with low
information content, were removed from random and rational
descriptors pools.
A binary, dummy variable codifying the category of each

compound was used as a dependent variable (class¼ 1 for
substrates and class¼�1 for non-substrates). Stepwise forward
multiple linear regression was used to select the descriptors from
Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 313–322
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each random pool that best discriminated the category of
the compounds; linear discriminant analysis (LDA) was used to
characterize the corresponding linear discriminant functions
(dfs). Dfs assume the following general form:

df value ¼a0 þ
X

i

ai�di

where a0 is the constant and ai is the coefficient associated
with molecular descriptor di. Due to the values arbitrarily
assigned to substrates and non-substrates, substrates will tend to
have positive df values, and non-substrates will tend to assume
negative values.
The binary classification scheme reduces the error associated

with the process of combining data obtained in different labs and
conditions [12]. Multiple regression and discriminant analysis
modules from Statistica version 5.1 (Statsoft Ltd., 1996) were used
for modeling purposes. Tolerance values no lower than 0.2 were
used in order to avoid inclusion of highly correlated pairs of
descriptors. The minimum cases to predictors ratio allowed was
10 (10 or more cases in the training set for each descriptor
included in the model) in order to reduce chances of over-fitting.
Only descriptors with significant coefficients at an a level of 0.05
are allowed into the model. Randomization, leave-group-out
(LGO) cross-validation and external validation (predicting the
class for the independent 125-compound test set) were used to
assess robustness and predictive ability of all models. Forty
randomized models were built in the randomization test. In each
LGO row, 12 compounds were randomly removed from the
training set to the test set and the LGO models were used to
assess the category of the removed compounds; this process was
repeated until all the compounds in the training set had been
removed at least once.
3

2.3. Combining models

Two important indicators of the performance of a given QSAR
model are sensitivity (Se) and specificity (Sp). They are defined by
the following expressions:

Se ¼ TP
TPþFN

Sp ¼ TN
TNþFP

where TP refers to true positives, FN refers to false negatives, TN
refers to true negatives and FP refers to false positives. Here, since
we are looking for compounds that are not transported by Pgp
(Pgp non-substrates) and we want to discard Pgp substrates, the
previous expressions may be re-written as follows:

Se ¼ True non-substrates

True non-substratesþ False substratesð Þ

Sp ¼ True substrates

True substratesþ False non-substratesð Þ

By modifying the selection threshold from the lowest to
the highest score provided by the model, Se and Sp will evolve
in opposite ways; consequently, it is not possible to optimize
both parameters simultaneously, and a tradeoff has to be found
[36]. ROC curves are a widely used tool to assess and compare
the performance of different models [36]. They are graphical
plots of the sensitivity (true positive rate) versus 1 minus
specificity (i.e. 1 less the false positive rate), for a binary classifier
system, as its discrimination cutoff value changes. ROC curves
J. Chemometrics 2011; 25: 313–322 Copyright � 2011 John Wil
provide a rational and user-friendly basis to balance type I and
type II errors, selecting optimal models and optimal cutoff
values. The area under the ROC curve can be used for general
comparison purposes of different models or methodologies:
an ideal model will present an area under the ROC curve of
1 (equivalent to perfect classification, i.e. a sensitivity of 1 and
a specificity of 1 for a given cutoff value) while random
classification is represented by a line of slope 1 and corresponds
to an area under the ROC curve of 0.5. Here, we have built
ROC curves to compare the performance of the individual
models developed and the performance of a three-model
ensemble obtained through different, simple data fusion
schemes.
It has been pointed out that there is no general rule for

balancing errors [36,37]: balancing FP and FN depends on
pragmatic considerations that are to be judged by the researcher
[38]. We are interested in adopting a conservative attitude
and developing highly specific models, i.e. models capable of
discarding practically all Pgp substrates. This is strongly related
to our background: a small academic research group from a
developing country with limited resources to invest in drug
acquisition and pharmacologic testing. Therefore, we will prefer
Sp over Se: at the risk of losing some valuable scaffolds when
applying our topological Pgp affinity models in virtual screening
campaigns, we will choose to avoid acquiring or synthesizing a
drug candidate that, once sent to pharmacological testing, will
prove to be an FP (a drug that was predicted as a non-substrate
of Pgp but which is actually transported by Pgp). Therefore, in
the light of the fact that most of our models perform better in
the classification of non-substrates (which indicates a higher rate
of FP, wrongly classified substrates, than FN, wrongly classified
non-substrates, see Section 3), and taking into account that Pgp
is characterized by broad substrate specificity (probably because
of the existence of multiple binding sites in the protein [19,39]),
we have chosen to look for combinations of the topological dfs
that provide the lowest rate of FP in the external validation.
Substrate promiscuity indicates that it might be difficult to obtain
a single model capable of identifying the entire set of Pgp
substrates. We have combined the models by the very simple
strategy of looking for all the possible two-model combinations
of the models built from the random pools of descriptors, and
then joining the best two-model combination with the models
obtained from the rational pool, to give a three-model ensemble.
On the basis of our aforementioned decision to prefer highly
specific models, we used the FP rate on the 125-compound test
set to define the best combinations of models, using zero as a
cutoff value and selecting, among those combinations with
lowest FP rate, the combination with lowest FN rate. As a first
approach, the maximum (MAX operator) value among the three
values provided for each compound by the three independent
classifiers that compose the three-model ensemble was used
to classify each of the test-set compounds as Positive (Non-
substrate) or Negative (Substrate). Later, two additional data
fusion schemes were also explored: (a) the sum of the three
values provided for each compound by the three independent
models that compose the ensemble (SUM) and (b) the average
of the three values provided for each compound by the three
independent models that compose the ensemble (AVE). The
strategy of combining different models has been successfully
used previously to improve classification [14,17]. Table I
summarizes the different stages applied to obtain the best
three-model ensemble.
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Table I. Summary of the different stages of the combination scheme used to obtain the three-model ensemble

Stage Description Criteria used

1 Generation of models from the
random pools of descriptors

30 random subsets of descriptors are derived from a pool of 867 molecular
descriptors from Dragon software
Linear discriminant analysis is applied, using a tolerance no smaller than
0.2 to avoid inclusion of redundant descriptors
No model with less than 75% of overall good classifications on the training
set is kept
No model with cases to predictor ratio below 10 is kept, to avoid over-fitting
Cross-validation and randomization tests are performed
External validation is performed through a 125-compound test set

2 Generation of models from the
rational pools of descriptors

A 31st pool of descriptors is used to derive more models. This pool is based
on previously reported models to identify Pgp substrates. Criteria identical
to those used with the random pools are applied

3 Analysis of all possible two-model
combinations of the models
derived from the random pool of
molecular descriptors

To increase Sp at the expense of Se, the combination of models providing
smallest FN rate among those combinations with smallest FP rate is
selected
The MAX value among the two df values provided by the two independent
classifiers composing each combination is used to classify each of the
125 test set compounds
Whenever the MAX df value is positive, a test set compound is considered
a Pgp substrate

4 Generation of the three-model
ensemble

The best two-model combination from stage 1 is combined with each of
the models derived from the rational pool of molecular descriptors
Again, we look for the three-model combination with lowest FP rate.
Between two combinations with similar FP rate, we prefer that with
lower FN rate
The MAX value among the three df values provided by the three
independent classifiers composing each combination is used to classify
each of the 125 test set compounds
Whenever the MAX df value is positive, a test set compound is considered
a Pgp substrate

5 Exploration of alternative data fusion
schemes

The sum and the average of values from the three independent models
are proposed as alternative data fusion schemes to combine the
information from the three independent models

6 Selection of the threshold value ROC curves are built for the three-model ensemble and each data fusion
scheme. The curves are used to select the cutoff value to differentiate
substrates and non-substrates, preferring Sp over Se; the ROC curves
from the ensemble are also compared to the ROC curves of individual
models to check the success of the model combination strategy
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3. RESULTS

3.1. Models built from the random pools

Among the 30 models obtained from the 30 random pools of
descriptors, only one presented an acceptable explanatory power
(overall classification of 75% on training set compounds). Details
of the model are provided below these lines.

Df value ¼ �4:45þ 0:63 � IC3�0:94 � nCN
þ 1:34 � GATS4v�0:01 T N::Clð Þ

F ¼ 12:13 p < 0:0000 Wilk0s l ¼ 0:71

(1)

Tolerance¼ 0.5; overall good classifications training set¼
78.4%; overall good classifications test set¼ 77.6%; average
overall good classifications test set LGO¼ 76.8%; average overall
good classification in randomized models¼ 60.8%; cases to
wileyonlinelibrary.com/journal/cem Copyright � 2011 John
descriptors ratio¼ 31.25. We have kept Dragon’s nomenclature
for the descriptors. IC3 represents the information content index
considering third-order neighborhoods; nCN represents the CN
count in the molecule; GATS4v symbolizes Geary autocorrelation
of lag 4 weighted by atomic Van der Waals volumes and T(N..Cl)
represents the topological distance between nitrogen and
chlorine atoms in the molecule.
The performance of this model is quite similar to that of

previously developed models [12–23,25] and approaches the
upper bound of 85% of good classifications in Pgp models
estimated by Zhang et al. on the basis of the variability of
experimental data on Pgp-related assays [16] (only the work from
Huang et al. reports a performance of 90%, above the calculated
upper bound [24]). The percentage of well-classified training set
substrates is 73.1%, while for the non-substrates the percentage
rises to 82.2%. The percentage of well-classified test set
substrates is 69.2%; for the non-substrates in the test set, the
Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 313–322
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percentage is 83.6%. Note that the percentages are quite similar
in the training and the test sets. The performance of
randomization models, as expected, approaches random per-
formance (in fact, a deeper analysis of the randomization models
reveals that they tend to classify most of the compounds as
non-substrates: the average percentage of well-classified com-
pounds is 89.5% for the non-substrates and only 20.3% for the
substrates. In other words, randomization models are highly
biased toward predicting non-substrates, and therefore they
have almost no classificatory power at all). The difference of
classification ability between substrates and non-substrates in
both the training and the test sets (the non-substrates’
classification is clearly better) has also been observed in other
modeling efforts [12,17] and may be a consequence of the wide
substrate specificity of the molecular target. It may also be
reflecting the uneven distribution of substrates and non-
substrates in the training set (non-substrates are more frequent
than substrates in the training set). Note that the constant in the
model (�4.45) is negative and quite far from zero, which suggests
a possible bias toward predicting non-substrates. To investigate
whether these observations arise from the intrinsic nature of
the problem at hand (Pgp promiscuity) or from a problem in
the dataset (over-representation of non-substrates), we have
repeated the modeling process on the random pools of
descriptors, but for this second modeling round be have set
the constant to 0 in the multiple regression and setting the
a priori classification probability as ‘the same for all groups’ in
the Discriminant Analysis module (in fact, we cannot know
for sure whether the distribution of the classes in the datasets
mimics distribution in nature). This time we obtained four models
with acceptable performance explanatory power:

Df value ¼ �0:40 � nCl�1:48 � nTBþ 2:70 �MATS3p

þ 0:067 � GGI2
F ¼ 12:40 p < 0:0000 Wilk0s l ¼ 0:71

(2)

Tolerance¼ 0.35; overall good classifications training set¼
76.8%; overall good classifications test set¼ 63.2%; average
overall good classifications test set LGO¼ 63.9%; average overall
good classifications in randomized models¼ 52.0%; cases to
descriptors ratio¼ 31.25. nCl represents the number of chlorine
atoms; nTB represents the number of triple bonds; MATS3p is
the Moran autocorrelation of lag 3, weighted by atomic
polarizabilities and GGI2 is the Galvez’ topological charge index
of second order. The percentage of well-classified training set
substrates by model (2) is 71.2%, while for the non-substrates the
percentage rises to 80.8%. The percentage of well-classified test
set substrates is 67.3%; for the non-substrates in the test set, the
percentage is 60.3%.

Df value ¼ 0:41081 � EEig14d�1:38061 � nCN
� 1:26139 � nSO2N�0:01946�
T N::Clð Þ�0:03033 � T O::Brð Þ�0:00000188 � VRA1

F ¼ 9:69 p< 0:0000 Wilk0s l ¼ 0:61

(3)

Tolerance¼ 0.5; overall good classifications training set¼ 76.0%;
overall good classifications test set¼ 79.2%; average overall
good classifications test set LGO¼ 77.1%; average overall
good classifications in randomized models¼ 54.7%; cases to
descriptors ratio¼ 20.8. EEig14d represents the Eigenvalue
J. Chemometrics 2011; 25: 313–322 Copyright � 2011 John Wil
14 from edge adjacency matrix weighted by dipole moments,
nCN is the number of ciano groups, nSO2N is the number
of sulphonamides, T(N..Cl) represents the sum of topological
distances between N..Cl, T(O..Br) is the sum of topological distances
between O and Br and VRA1 corresponds to Randic-type
eigenvectors based index from adjacency matrix. For model (3),
the percentage of well-classified training set substrates is 65.4%,
while for the non-substrates the percentage rises to 83.6%. The
percentage of well-classified test set substrates is 76.1%; for the
non-substrates in the test set, the percentage is 83.6%.

Df value ¼ �0:64 � Yindexþ 0:11GGI2�0:75 � S-108
� 1:28 � nSO2N�0:45�
Cl-089þ 0:54 � N-069þ 0:56 � C-033þ 0:37 � nRSR

F ¼ 9:23 p < 0:0000 Wilk0s l ¼ 0:67

(4)

Tolerance¼ 0.35; overall good classifications training set¼
80.0%; overall good classifications test set¼ 75.2%; average
overall good classifications test set LGO¼ 75.3%; average overall
good classifications in randomized models¼ 58.3%; cases to
descriptors ratio¼ 15.6. Y index stands for Balaban Y index; S-108
represents the number of R¼ S; Cl-089 represents the number of
Cl attached to sp2 carbons; N-069 represents a primary aromatic
amine or a primary amine bonded to a halogen atom; C-033
symbolizes X–CH. . .X fragments (X being halogen) and nRSR
represents the number of sulfurs. The percentage of well-
classified training set substrates for model (4) is 73.1%, while for
the non-substrates the percentage is 84.9%. The percentage of
well-classified test set substrates is 65.4%; for the non-substrates
in the test set, the percentage is 82.2%.

Df value ¼ �0:55 � Yindexþ 0:17GGI2�0:61 � S-108
� 1:23 � nSO2N�0:38 � Cl-089
þ 0:55 � N-069þ 0:59 � C-033þ 0:51 � nRSR
� 27:70 � JGI8�0:34 � nCONR2

F ¼ 8:21 p < 0:0000 Wilk0s l ¼ 0:58

(5)

Tolerance¼ 0.20; overall good classifications training set¼
79.2%; overall good classifications test set¼ 72.8%; average
overall good classifications test set LGO¼ 76.1%; average overall
good classifications in randomized models¼ 60.9%; cases to
descriptors ratio¼ 12.5. JGI8 stands for Galvez mean topological
charge index of eighth order and nCONR2 is the number of
tertiary (aliphatic) amines. The percentage of well-classified
training set non-substrates for model (5) is 82.2%, while for
the substrates the percentage is 75.0%. The percentage of
well-classified test set substrates is 80.8%; for the non-substrates
in the test set, the percentage is 67.1%.
Note that in one of these later four models (model (2)), the

performance of the classification of the test set substrates is
better than that of the non-substrates, which suggests that the
‘set on zero’ strategy has been successful to avoid bias toward
good classification of non-substrates.

3.2. Models built from the rational pool

In this case, since only one rational pool was designed, after the
first model was obtained through the stepwise forward
procedure, we removed from the pool the molecular descriptor
that entered the model in the first step-forward step, and
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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repeated the stepwise forward procedure. We systematically
repeated this procedure (removal of the first descriptor added to
the model from the rational pool of descriptors and a new,
subsequent stepwise forward round) until no significant
correlation between the dependent variable and the remaining
descriptors of the pool was found. We obtained 28 models, of
which two seemed relevant:

Df value ¼ 14:1616þ 0:0029 � ATS8e�0:9421 � GATS3e
þ 0:3471 � nCaH�14:621 �MATS2m

þ 0:2427 � nCO�1:3575 �MATS6p

F ¼ 7:23 p < 0:0000 Wilk0s l ¼ 0:73

(6)

Tolerance¼ 0.50; overall good classifications training set¼
77.6%; overall good classifications test set¼ 73.6%; average
overall good classifications test set LGO¼ 76.9%; average overall
good classifications in randomized models¼ 55.4%; cases to
descriptors ratio¼ 20.8. ATS8e corresponds to Broto–Moreau
autocorrelation of a topological structure of lag 8 weighted by
atomic Sanderson electronegativities, GATS3e corresponds to
Geary autocorrelation of a topological structure of lag 3 weighted
by atomic Sanderson electronegativities, nCaH stands for the
number of unsubstituted aromatic Cs, MATS2m represents
the Moran autocorrelation of lag 2 weighted by atomic masses,
nCO represents the number of ketones and MATS6p represents
the Moran autocorrelation of lag 6 weighted by atomic
polarizabilities.
This model correctly classifies 67.3 and 84.9% of the training

set substrates and non-substrates, in that order, and 61.5 and
82.2% of the test set substrates and non-substrates, respectively.

Dfvalue ¼ 20:61þ 0:12 nHAcc�22:95 �MATS2m

þ 0:042mlogP2 þ 0:38 � nCaHþ 0:22 � nCO
F ¼ 7:77 p < 0:0000 Wilk0s l ¼ 0:75

(7)

Tolerance¼ 0.50; overall good classifications training set¼
79.2%; overall good classifications test set¼ 72.8%; average
overall good classifications test set LGO¼ 76.1%; average overall
good classifications in randomized models¼ 60.9%; cases to
descriptors ratio¼ 12.5. nHAcc corresponds to the number of
Table II. Summary of the results and features of the seven selected

Model Overall %
of good
classified

training set

Overall %
of good
classified
test set

Well-classified
substrates
in the

training set

Well-classi
non-substr

in the
training

1 78.4 77.6 76.1 82.2
2 76.8 63.2 71.2 80.8
3 76.0 79.2 65.3 83.6
4 80.0 75.2 73.1 84.9
5 79.2 72.8 75.0 82.2
6 77.6 73.6 67.3 84.9
7 79.2 72.8 65.1 91.8
2þ 4þ 7
(ensemble,
MAX,
cutoff¼ 0)

71.2 68.8 92.3 56.2
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H-bond acceptors; mlog P2 is the square of Moriguchi’s logarithm
of the octanol–water partition coefficient. This model correctly
classifies 61.5 and 91.8% of the training set substrates
and non-substrates, in that order, and 65.4 and 78.1% of the
test set substrates and non-substrates, respectively. Since the
intercepts here are positive and quite large, we assumed no
improvement may be observed by forcing the intercept to take
zero value.

3.3. Models combination

As expected, combination of different models according to the
scheme presented in Section 2 resulted in a significant increment
of Sp (less FP) and a concomitant reduction of Se (increase of FN).
The optimal combination of models (the one that raises the most
the good classification in the substrate category of the test set—
which is our priority—and drops the least the good classification
of the non-substrates) was the one combining models (2), (4) and
(7), which resulted in 90.4% of good classifications among the test
set substrates and 52.1% of good classifications among the test
set non-substrates when zero was used as a cutoff value and the
MAX data fusion scheme was considered. A brief summary of the
performance and features of the selected individual models plus
the performance of the best ensemble is presented in Table II.
Figures 1 and 2 present the distribution of values that the dfs
(1)–(7) and the three-model ensemble assume for both the
training and the test sets. The three data fusion schemes (MAX,
SUM and AVE) explored for the ensemble are presented. Figure 3
presents the ROC curves of the individual models and the
ensemble (considering the three different data fusion schemes),
for both the training and the test sets.
4. DISCUSSION

Results indicate that our individual models present similar
performance compared to previously reported models devel-
oped to recognize Pgp substrates. The overall classification of the
individual models, when zero value is used as a threshold to
differentiate substrates from non-substrates, is around 80%. As
can be appreciated in Table II and in Figures 1 and 2, most of the
models, and the most specific ensemble of topological models

fied
ates

set

Well-classified
substrates
in the
test set

Well-classified
non-substrates

in the
test set

Tolerance Cases to
predictors

ratio

69.2 83.6 0.5 31.25
67.3 60.3 0.35 31.25
76.1 83.6 0.5 20.8
65.4 82.2 0.35 15.6
67.1 80.8 0.2 12.5
61.5 82.2 0.5 20.8
65.4 78.1 0.5 12.5
90.4 52.1 — —

Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 313–322



Figure 1. Distribution of values that the discriminant functions (1)–(6) assume for the training and test set compounds (continuous and discontinuous

lines, in that order). NS train stands for training set Pgp non-substrates; S train represents training set Pgp substrates; NS test denotes test set

non-substrates and S test represents test set substrates.
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models showed a similar performance on the training and test
sets, i.e. explanatory power of the models is similar to the
predictive power, or, in other words, no over-fitting was observed.
Note that the plots corresponding to the distribution diagrams
of the training and test sets superpose fairly well for all the
models, and in particular for the three-model ensemble using
AVE data fusion approach. Average performance of the LGO
cross-validation models was also similar to the performance on
the 125-compound test set used for external validation purposes.
Moreover, the average performance of the models obtained
through the randomization of the dependent variable always
drops considerably compared to that of the actual model (what is
more, the performance of the randomized models in some
cases is artificially increased due to the fact that many
randomizedmodels are biased toward predicting non-substrates,
non-substrates being over-represented in the dataset). The
strategy of forcing the intercept to take zero value in the stepwise
J. Chemometrics 2011; 25: 313–322 Copyright � 2011 John Wil
procedure seemed to be efficient when building models from
the random pools of descriptors: more relevant models were
detected and, in one of them, the classification of the test set
substrates outperformed the classification of the test set
non-substrates. Some of the bias of themodels toward predicting
non-substrates may then be related to the uneven distribution of
the substrates and non-substrates in the dataset, while substrate
promiscuity may explain the difference in classification success
across the two considered categories. All the models present
good tolerance values, with six out of the seven presented
models with tolerance above 0.35, which indicates very low
paircorrelation among the included descriptors. The performance
of the models is quite near the upper bound calculated by
Zhang (85% of accuracy) from the evidence of high variability in
Pgp affinity experimental data. Only the Support Vector Machine
model from Huang seems to overcome the limit calculated by
Zhang. Only one of the models (model (2)) presents significant
ey & Sons, Ltd. wileyonlinelibrary.com/journal/cem
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Figure 2. Distribution of values that the discriminant function (7) and the three-model ensemble assume for the training and test set compounds. The
three data fusion schemes are considered for the ensemble.

Figure 3. ROC curves comparing the performance of the individual
models (1)–(7) to the performance of the three-model ensemble, con-

sidering explanatory capability (upper plot, corresponding to training set)

and predictive capability (lower plot, corresponding to test set).
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differences between the performance on the training and
test sets, indicating a considerable degree of over-fitting. Never-
theless, model (2) appears in several of the ensembles of models
that showed best performance, and in the best combination,
suggesting that the set of substrates wellclassified by model (2) is
complementary to that wellclassified by other models.
The combination of three models resulted in an improved

classification of the test set substrates, increasing Sp at the
expense of Se when zero was used as a cutoff value to
discriminate substrates from non-substrates (note that the
balance between Sp and Se can be chosen from observations
of ROC curves, i.e. the cutoff value may be rationally optimized
from ROC curves on the basis of a particular user’s needs, which
are background-dependent). The best combination includes one
of themodels derived from the rational pool of descriptors, which
was designed from analysis of previous reports on in silicomodels
to recognize Pgp substrates.
Several conclusions may be drawn from the observations of

ROC curves and visual comparison of areas under the curves. The
AVE and SUM data fusion schemes performed much better than
the MAX scheme. The ROC curves built from the performance of
the individual models and the ensemble on the training set
indicate that the AVE and the SUM ensembles performed quite
better than most of the individual models (models (1), (2), (4), (6)
and (7)) while models (3) and (5) performed slightly better than
the ensemble no matter what threshold value was adopted.
Nevertheless, when analyzing the ROC curves built from the test
set distribution diagram (which are, in fact, the curves that help us
to estimate the predictive capability, i.e. the classificatory power
on an independent set of compounds), it is clear that the
ensembles outperform the individual models. For example,
performances of models (4), (5) and (6) are quite similar to the
performance of the AVE and SUM ensembles in the high-
specificity region of the curve, but the performance of those
individual models is quite lower than that of the ensembles in the
high-sensitivity region. In contrast, model (1) outperforms the
wileyonlinelibrary.com/journal/cem Copyright � 2011 John Wiley & Sons, Ltd. J. Chemometrics 2011; 25: 313–322
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ensembles in the high-sensitivity region, but its performance
drops considerably below the performance of the ensemble in
the high-specificity region. In other words, when using AVE and
SUM data fusion schemes, the ensemble performs considerably
well on the test set through all the 1-Sp range. We believe that the
use of an ensemble of models is better justified from the
biochemical point of view, since Pgp has wide substrate
specificity and multiple binding sites, suggesting the potential
limitations of individual QSAR models to predict the wide range
of Pgp substrates.
5. CONCLUSIONS

A set of topological dfs capable of identifying Pgp substrates has
been built, whose performance compares quite well with the
performance of almost all previously reported models. Remark-
ably, our models only include low-dimensional descriptors, which
makes them adequate for the virtual screening of increasingly
large virtual chemical repositories (previous conformational
analysis is not required). To the present, relatively few studies
exist on exclusively topological in silico models to identify
potential Pgp substrates. Although easy-to-interpret pharmaco-
phore and grid-based approaches might be more suitable for
drug design purposes, topological descriptors look more
adequate for virtual screening campaigns.
The ensemble of topological models allowed us to increase

specificity, an essential parameter in our current background
(limited budget that urges us to make the most efficient possible
use of our funding, i.e. to optimize chemical synthesis and
pharmacological tests by incorporating rational approaches at
the beginning of the drug development project and by
increasing, as much as possible, the probability of success at
biological testing). ROC curves suggest that the ensemble
performs consistently well through all the 1-sp range, in contrast
with individual models that tend to perform well in either the
high-sensitivity or the high-specificity regions of the curves.
Using the average or the sum of the three models for data fusion
purposes seems to be a better general strategy than to use the
maximum value provided by ensemble models.
Throughout this study we have used previous advances in the

field of Pgp substrates modeling in several ways: (a) for
comparison purposes (using previous reports as a reference of
performance); (b) to develop the ensemble of topological models
(by imitating past similar, successful approaches based on
combination of pharmacophores or combinations of different
kind of models) and (c) to design what we have called ‘a rational
pool’ of descriptors on the basis of the more prominent features
of previously reported models. One of the models obtained from
the rational pool is present in the best combination of models,
merged with other two models obtained from random
combinations of Dragon descriptors. In this way, we have
combined ‘de novo’ models (obtained in a rather stochastic way)
with already available information from previous studies. Keeping
in mind recent advances on the crystallization of Pgp, future
efforts should focus on combination of ligand-based and
structure-based approaches.
3
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