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a b s t r a c t

In advanced industry manufacturing involving robotic operations, the required tasks can be frequently
formulated in terms of a path or trajectory tracking. In this paper, an approach based on sliding mode
conditioning of a path parametrization is proposed to achieve the greatest tracking speed which is
compatible with the robot input constraints (joint speeds). Some distinctive features of the proposal
are that: (1) it is completely independent of the robot parameters, and it does not require a priori
knowledge of the desired path either, (2) it avoids on-line computations necessary for conventional
analyticalmethodologies, and (3) it can be easily added as a supervisory block to pre-existing path tracking
schemes. A sufficient condition (lower bound on desired tracking speed) for the sliding mode regulation
to be activated is derived, while a chattering amplitude estimation is obtained in terms of the sampling
period and a tunable first-order filter bandwidth. The algorithm is evaluated on the freely accessible 6R
robot model PUMA-560, for which a path passing through a wrist singularity is considered to show the
effectiveness of the proposal under hard tracking conditions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Amajor issue in robotics is the tracking of reference trajectories.
In most practical applications that use industrial and/or mobile
robots [1,2] (e.g., machining, arc-welding, adhesive application,
spray painting, assembling, inspection, object transportation in
warehouses, surveillance in known environments, etc.), the robot
task is based on tracking a given pathwith negligible error andwith
the highest possible velocity, so that the cycle time of the robot
task is minimized. In this manner, both quality and productivity
indexes can be enlarged. However, both the accuracy and the speed
with which this tracking can be performed is strongly related
with the joint actuators physical limitations, which are seldom
considered in commercial robots to regulate the robot forward
motion. Instead, the tracking speed usually has to be computed a
priori by the robot operator in order to avoid an error message.

The reference path, i.e. the path to be followed, can usually
be expressed as a one-dimensional curve in the Cartesian space,
i.e., a time-dependent vector which can be parameterized in terms
of a scalar motion parameter whose first-order time derivative is
related to the path tracking speed by well-known expressions. In
this sense, the idea of a parameterized path has been successfully
used in several research works to adjust the tracking speed so
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that the robot is able to track different types of references, even
those ones crossing robot kinematics singularities [3–6]. Among
the more significant works in this research line, a self-paced fuzzy
controller was designed in [7] to adjust the tracking speed of
two-dimensional paths in accordance with contour conditions
such as curvature. Similarly, a path parametrization satisfying
input and state constraints was obtained in [8] using look-ahead
optimization and a prediction of the evolution of the robot, for
which a priori knowledge of the desired path and a robot model
are required.More recently, a timewarp is considered in [9] to slow
down the task-space trajectory when joint limits are encountered.
In [10], instead, the power limits of the electricalmotors driving the
robot are considered to measure the maximum possible velocity
and force that can be physically generated by the robot to perform
the required task. Finally, path tracking is rigorously divided into
a geometric (desired error) and a dynamic (desired speed) task
in [11], where speed profiles are assigned for nonlinear systems
to track non-smooth paths.

This paper proposes a simple method which allows regulating
the robotic tracking speed in order to avoid path deviations
because of joint actuators constraints. In order to achieve this
goal, a sliding mode auxiliary loop is added to conventional
path tracking schemes, which is inspired on recent reference
conditioning algorithms developed to deal with constraints in
multivariable control systems [12,13]. It acts as a supervisory
block, since it is only activated when the desired speed would
lead the joint actuators to reach their limit values. Interestingly,
a practical consequence is the fact that, if a sufficiently high
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speed reference (motion parameter) is set, the method computes
the maximal tracking speed which is compatible with the joint
actuator limits. As an advantage over most of the above cited
proposals, the proposed technique is independent of the main
path tracking control algorithm and it does not require a priori
knowledge of the desired path. Since themethodwas thought to be
usedwith commercial industrial robots, speed joint constraints are
assumed (see Section 2). A well-known six-revolute (6R) robotic
arm is taken as case study, for which a path passing through a
robot singularity is considered. Themethod implementation can be
even carried out bymeans of analog electronics since the switching
device is confined to the low-power side of the system.

The article is organized as follows. In the next section the
classical kinematic control scheme for robotic path tracking is
recalled, and some common alternatives to deal with actuator
constraints are introduced. Section 3 presents some basic concepts
of variable structure theory and develops the sliding mode auto-
regulation technique for tracking speed in order to avoid path
errors due to actuator nonlinearities. In Section 4 simulation
results are presented using the free-access 6R robot model PUMA-
560, for which the main distinctive features of the method are
illustrated. Finally, some conclusions are given.

2. Classical control scheme for robotic path tracking

Due to the computational complexity of advanced control
algorithms developed in current robotics research [14,15], classical
control techniques are still widely used in industrial robot
applications. In most practical robot systems, the controller
consists of three nested control loops: an analog actuator
current controller, an analog velocity controller, and a typically
digital position controller. The great majority of industrial robot
manufacturers implement the inner control loops (i.e., the current
loop and the velocity loop) internally in the so-called joint
controllers and do not allow the robot operator to modify these
loops. Conversely, the outer-loop position controller is usually
open for the user and can be manipulated.

Let us nowdiscuss some common setups for robot path tracking
in the above described framework.

2.1. Kinematic control setups

Workspace-coordinates kinematic control. Let us denote as pref(t)
the position reference defining the desired path in some user-
chosen workspace coordinates (for instance, Cartesian position
and Euler-angle orientation of the end effector). As mentioned in
the introduction, the trajectory pref(t) can be usually expressed in
terms of a desired path function f(λ) whose argument is the so-
called motion parameter λ(t) as

pref = f(λ), (1)

and, therefore, the desired speed comes from:

ṗref =
∂f
∂λ

λ̇. (2)

A kinematic control block in a robot closes a loop using position
information in both joint coordinates, to be denoted as q, and
workspace coordinates p, as well as desired position and speed
information from the target trajectory.

The relationship between the q configuration and the end-
effector position/orientation p is highly nonlinear, generically
expressed as:

p = l(q), (3)

where the function l is called the kinematic function of the robot
model. The first-order kinematics results in:

ṗ =
∂l
∂q

q̇ = J(q)q̇, (4)

where J(q) is denoted as the Jacobian matrix or simply Jacobian of
the kinematic function.

Fig. 1 shows a common setup for the kinematic control block
in robot path tracking, consisting of a two-degree of freedom
(2-DOF) control structure which incorporates a correction based
on the position error ep = pref − p by means of the position loop
controller Cp plus a feedforward term depending on the first-order
time derivative of the position reference, i.e. ṗref.

Note that, in this scheme the error correction is performed in
the Cartesian space and then the inverse of the robot Jacobian J(q)
is used to obtain the joint velocity vector q̇. Indeed, for a non-
redundant manipulator (square Jacobian), the joint velocities q̇
producing a particular end-effector motion ṗ0 can be written as:

q̇ = J−1(q)ṗ0, (5)
and the kinematic control loop is in charge of determining the
desired value for ṗ0 as a function of current position (p) and current
target trajectory point (pref) and speed ṗref. Once ṗ0 is computed,
(5) is applied and sent to the actuators.

The Jacobian of a generic robotic arm can be easily obtained
with the vectorial approach described in [16]. It is well-known that
there are certain workspace limits and internal positions where J
is singular. This matter is later discussed in Section 4.
Joint-coordinates kinematic control. Another conventional approach
for kinematic control consists of performing the error correction
directly in the joint space [17]. This second approach requires to
compute the position inverse kinematics, i.e., q = l−1(p). In any
case, the proposed technique also applies for that or any other
kinematic control.

2.2. Dealing with actuator constraints

In order to account for input constraints, joint speed saturation
is from now on considered between the desired joint speeds q̇d of
Fig. 1 and the achievable ones, denoted as q̇ds.

Naturally, the maximum values of the robot control signals,
which are given by the power constraints of the actuators, limit
the path tracking speed. Basically, the following three approaches
can be found in practical applications in order to face with robot
actuators constraints:
(a) To use a (conservative) low tracking speed, so that the robot

control signals never exceed their maximum values.
(b) To also use a fixed tracking speed, but higher than the previous

one, in such a way that the robot control signals saturate at
least once during the tracking.

(c) To compute for each point on the path the maximum tracking
speed allowed by the limits of the control signals and to use
that value for the motion parameter speed.

The first approach is extremely conservative and thus a not
advisable solution. In effect, it gives rise to an excessively slow
path tracking, which indeed wastes the tracking capabilities of the
robotic system. The second approach,which is the classical one, has
as its main drawback that when the control signals are saturated
the robot losses the reference and even leaves the desired path,
which makes it inappropriate for high-accuracy applications. The
third option is the best choice among the three listed practical
approaches; however, it depends on the desired path and on the
robot Jacobian and, hence, it ismore involved computationally and,
furthermore, modeling errors might give a speed over the desired
limits.

In practical implementations of the second or third options, the
actuator limitations are typically faced in two different ways:
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Fig. 1. Robotic path tracking control scheme.

1. as a direct and independent saturation element for each joint, for
which:

q̇ds,i =

q̇max,i if q̇d,i > q̇max,i
q̇d,i if q̇min,i ≤ q̇d,i ≤ q̇max,i, i = 1, . . . , n
q̇min,i if q̇d,i < q̇min,i

(6)

with q̇max,i and q̇min,i denoting the maximum and minimum
actuator (speed-servo) output of the corresponding joint, and
n the robot’s degrees-of-freedom. For the sake of simplicity, it
is assumed in the following that speed limits are symmetric,
i.e. q̇min,i = −q̇max,i, although the methodologies to be
presented can be trivially modified if that were not the case.

2. as a directionality preserving saturation, inwhich the joint speeds
vector (q̇ds) direction remains constant, hence the direction of ṗ
does so as well, but its modulus is scaled as:

q̇ds = fdir q̇d (7)

where

fdir =


1

‖FN q̇d‖∞

if ‖FN q̇d‖∞ > 1,

1 otherwise,
(8)

notation ‖·‖∞ denotes element-wisemaximum (infinity norm)
and FN is a diagonal matrix with the ith diagonal element equal
to 1/q̇max,i.

The latter is the most frequent approach in robotic tracking
schemes to address joint speed limitations, and thus it will be the
case considered in the SM auto-regulation algorithm proposed in
the next section.

In the following, a simple methodology to regulate the tracking
speed in presence of actuator constraints is presented, which
can be added as a supervisory block to any tracking scheme
independently of the robot model and the desired path.

3. Tracking speed auto-regulation technique

3.1. Background on sliding modes

The kinematic-loop control to be proposed in this work
incorporates some sliding mode elements. Sliding mode control
is a well-developed discipline and the reader is referred to
references such as [18–20] for ample detail. Among other attractive
features, sliding mode controllers are easy to implement (see
(10)), reduce the order of the system dynamics, and provide
robustness to matched uncertainties and external disturbances.
Because of its interesting properties, a large number of papers
presenting practical applications of SM control have been reported.
For instance, in the recent contributions [21–24] the application of
SM to robotic systems is discussed. The basic ideas to be used in
later sections are recalled here.

A variable structure system comprises a set of two continuous
subsystemswith an associated switching function that determines
a manifold on the state space, the so-called sliding surface.
According to the sign of the switching function, the control signal

takes one of different possible values, leading to a discontinuous
control law.

In particular, consider the following dynamical system:
ẋ = h(x) + g(x)u (9)
where x ∈ ℜ

n is the system state, u is the discontinuous control
signal, and h(x) and g(x) are vector fields in ℜ

n. The variable
structure control law is defined as

u =


u− if σ(x) < 0
u+ if σ(x) > 0 (10)

according to the sign of the auxiliary output σ(x). The sliding
surface S is defined as the manifold where the auxiliary output,
also called switching function, vanishes. That is,

S = {x ∈ ℜ
n
|σ(x) = 0}. (11)

The two basic ideas of variable structure (sliding mode) control
are:
• Find a suitable auxiliary output σ such that some prescribed

properties of the closed-loop dynamics are fulfilled (stability,
time constant, etc.).

• Enforce the state to reach the prescribed sliding surface and,
henceforth, to remain (‘‘slide’’) on it by applying the control
ueq enforcing σ̇ = 0, not explicitly but by means of a very
fast switching action arising from the discontinuity in (10). This
mode of operation is denoted as sliding mode (SM) or sliding
regime.

Once this sliding mode is established, the prescribed manifold
imposes the new system dynamics.

If, as a result of the switching policy (10), the reaching condition
σ̇ (x) < 0 if σ(x) > 0
σ̇ (x) > 0 if σ(x) < 0, (12)

holds in a neighborhood of S, or, equivalently
lim
σ→0

σ σ̇ < 0, (13)

locally holds at both sides of the surface, a switching sequence
at very high frequency (ideally infinite) occurs, constraining
the system state trajectory to slide on S. The inherent low-
pass characteristics of realizable physical systems averages that
switching signal so that its behavior is equal to the so-called
equivalent control ueq fulfilling:

σ̇ =
∂σ

∂x

h(x) + g(x)ueq


= 0 (14)

so the sliding mode regime will be maintained as long as

min{u−, u+
} < ueq < max{u−, u+

}. (15)
From (9), (10) and (14) it can be easily observed that for a sliding

motion to exist on S (in other words, to satisfy condition (13)),
the auxiliary output σ(x) must have unitary relative degree with
respect to the discontinuous signal, i.e. its first derivative must
explicitly depend on u [18]:

∂σ

∂x
g(x) ≠ 0. (16)

The inequality (16) is known as transversality condition.
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Fig. 2. Proposed sliding mode auto-regulation technique for robotic path tracking (saturation block is assumed to be directionality preserving).

3.2. Proposed sliding mode conditioning of path tracking speed

Differing from conventional SM control, where the discontinu-
ous signal is commonly used as the main control action (this is the
case of the robotic applications reported in [21–24]), the approach
to be presented in this section exploits sliding regime as a simple
and robust way of determining themaximum rate of change of the
motion parameter λ which is compatible with the robot actuators
physical limits. Its purpose is, once the robot is sufficiently close to
the desired path, to automatically regulate the speed with which
the path is followed in such away that the control signal generated
by the path reference through the kinematic control does never ex-
ceed the prescribed limits, thus preventing the robot from path de-
viations due to actuator constraints.

The sliding mode technique proposed to regulate the path
following speed is presented in Fig. 2, whose constituent elements
will be described below. It assumes that the input to the path
tracking system is the desired motion parameter speed λ̇d; such
input signal will be ‘‘conditioned’’ in such a way that saturation is
avoided.

The kinematic control block of Fig. 2 represents a path tracking
control scheme as the one depicted by Fig. 1 (but not necessarily
identical). Now, a saturation block has been included between
the desired joint speeds (q̇d) and the achievable ones (q̇ds). As
already mentioned, directionality preserving saturation will be
assumed present in the referred block, as it is the most common
approach in robotic tracking schemes to address joint speed
limitations. However, it is worth mentioning that the validity of
the proposed supervisory technique is completely independent of
how saturation is performed.

From the saturation block, an auxiliary loop is added to the
conventional path tracking configuration in order to generate the
conditioned tracking speed. To this end, the discontinuous signal u
is determined by means of the commutation law:

u =


u+

= 1 if σ(x) = 0n
u−

= 0 otherwise (17)

where 0n denotes the null vector of dimensions n × 1, and the
switching function vector σ is defined as:

σ(x) = q̇ds − q̇d. (18)

The maximum tracking speed λ̇ which avoids inconsistencies
between the kinematic controller outputs and the real robot input
signals is then generated from u bymeans of a first-order low-pass
filter

ḟSM = −af fSM + af u, (19)

with the filter output fSM being a ‘‘sliding mode factor’’ such that λ̇
is obtained as λ̇ = fSMλ̇d. The filter has unit gain at low frequencies
and its bandwidth af needs to be chosen sufficiently fast for quick

stops to be allowed, but slow enough in order to smooth out λ̇. As
we will see in Section 4, the best choice for the filter bandwidth is
strongly related with the path to be followed.

Actually, the switching function vector (18) determines two
boundary sliding surfaces for each one of the n coordinates:

Si = {x|q̇d,i − q̇max,i = 0}
Si = {x|q̇d,i − q̇min,i = 0} i = 1, . . . , n.

(20)

From (2), (5), (7), (8) and (19) it can be easily deduced that these
surfaces are only reached provided the desired motion parameter
speed satisfies

λ̇d ≥
1FN J−1 ∂f

∂λ


∞

(21)

as, indeed, if the above condition does not hold in at least
one point of the path, the actuation limits will not be reached.
These conditions are the equivalent conditions for sliding mode
establishment (13). Then, if λ̇d verifies (21) on all points of the path
at least one of the actuators will be saturating at maximum speed
and, hence, the conditioning algorithm implicitly provides the
maximum-speed directionality preserving path tracking solution.

Note that this reaching condition (21) is not enforced by
the switching action. Indeed, Eq. (21) shows how the maximal
achievable tracking speed depends on the ownpath reference f, the
robot kinematics J , the actual robot configurations (J is function
of q) and, naturally, the saturation levels FN . Note that (21) is
particularly small for robot configurations close to singularities
or against abrupt path changes. In fact, in the former case some
singular values (and vectors) of J−1 are very big; in the latter case,
it is ∂f/∂λ who takes a very large value.

Hence, according to (17) and (18), when a joint speed reaches
its maximum value, the discontinuous signal u is forced equal
to zero in order to avoid surpassing the actuator bound. This
switching makes the motion parameter speed to slow down and
the corresponding control action q̇d,i to fall below its limit q̇max,i,
which in turn produces by means of the switching law (17) that
u = 1 again. In this way, as the forward evolution on the reference
path continues being limited by actuator i, the signal u will be
switching between 0 and 1 at high frequency and a sliding regime
will transiently establish on either the surface Si or Si, depending
on whether the upper or lower saturation limit was going to be
exceeded.

As a consequence of this sliding mode, the tracking speed given
by λ̇ will be continuously adjusted in such a way that the control
action q̇i sent to joint i does not exceed the actuator limit. If
because of the desired motion parameter speed the robot is forced
to saturate other joint actuator, say actuator j ≠ i, then the
same reasoning can be followed for surfaces Sj or Sj, one of which
will be from then on the responsible of the path following speed
attenuation.
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Observe that for the trivial sliding function vector (18) to satisfy
the unitary relative degree necessary condition, apart from the
filter being a first-order one, the controller Cp must be biproper. For
the case of (very unusual) strictly-proper controllers, the strategy
is still applicable but the sliding function should be redefined in
order to include additional controller states (see e.g. the switching
functions defined in [12] to delimited crossed interactions in
decentralized control of multivariable systems).

3.3. Some implementation issues

3.3.1. Switching frequency and chattering
As in all sliding mode controls, the theoretically infinite

switching frequency cannot be achieved in practice because all
physical systems have finite bandwidth. In analog sliding mode
implementations (i.e., switching with operational amplifiers set
up as comparators) the actual switching frequency will depend
on the bandwidth of the electronic components. In computer
implementations, the switching frequency is directly the inverse
of the sampling period. Finite-frequency commutation makes the
system leave the theoretical sliding mode and, instead, its states
evolve inside a ‘‘band’’ around σ = 0.

In direct sliding mode control the switching is in the main
control action of the controlled process: high-power, high-
frequency sharply-discontinuous inputs are not suitable for some
processes (such as mechanical actuators subject to fatigue issues)
and some remedies to the situation must be put in place to
overcome these so-called chattering problems [25].

Contrarily to the above, in reference conditioning setups, such
as the particular case of the proposed path tracking algorithm,
sliding mode is confined to the low-power side of the system.
Hence, fast electronic devices can be used to implement the
discontinuous action (in effect, the algorithm could be even
implemented via analog electronics using a dual operational-
amplifier chip). What is more, the sliding regime and its switching
law could actually be a few program lines of a microprocessor.
Thus, differing from conventional slidingmode control, the current
application presents a continuous speed command to the actuator
subsystem so the chattering issues are greatly alleviated. Only
a residual band due to discrete implementations will remain, as
discussed below.

As previously discussed, computer implementations must
operate at a finite frequency, so the sliding surface σi = 0 implicit
in (20) gets converted into a band |σi| ≤ ∆i.

Let us consider now the common case in which a sampling
period Ts is given by the discrete implementation of the main
position control loop. We are interested in estimating an upper
bound for the chattering amplitude ∆i so that the condition |σi| ≤

∆i is guaranteed during SM on, say, the surface Si.
The basic idea is considering that, for instance, an Euler-

integration of the first-order filter (19) results in the unity-gain
discrete system:

fSM(k) = (1 − af Ts)fSM(k − 1) + af Tsu(k). (22)

Hence when u(k) switches from zero to one, approximately, if
Ts is reasonably small so that (1−af Ts) ≈ 1, the sample-to-sample
increment of fSM is af Ts.

Thiswould lead to an increment on themotion parameter speed
of af Tsλ̇d and, if the kinematic control in Fig. 1 were used, it would
translate to a sample-to-sample increment of the speed command
approximately given by the expression:

∆i ≈

J−1(q)


i,∗

∂f
∂λ

af Tsλ̇d (23)

where

J−1(q)


i,∗ denotes the ith row of the inverse Jacobian.

The above expression could be used to select parameters af

and Ts such that the speed-command increments are below a
predefined thresholds. In broad terms, in order to reduce ∆i, the
filter bandwidth must be decreased or the sampling rate must be
increased.

The filter bandwidth also influences the supervisor ‘‘reaction
time’’, i.e., the time required to completely adapt to trajectory
changes requiring an abrupt speed change. In order for the
proposed scheme to work in practice, the filter bandwidth
must be significantly higher than the frequency content of the
initially desired trajectory ṗref =

∂f
∂λ

λ̇d. Indeed, if the desired
trajectory included high-curvature fast-acceleration movements,
a low bandwidth of the supervision mechanism would result in
tracking error, as intuitively expected. Nevertheless, as shown
in the case study section, reasonable fast sampling rate and
bandwidth make the above problems negligible in practical
implementation.

3.3.2. Choice of sampling periods
Note that, by inserting sampler and zero-order-hold elements

wherever theymight be needed, the sampling rates of the tracking
speed auto-regulation algorithm, kinematic control and robot
dynamic control may be different. In particular, the SM based
algorithm may be run at a faster sampling rate than that of the
joint controllers in order to achieve a better approximation to
the continuous-time developments, for instance, with a reduced
chattering in (23).

For the sake of simplicity, in the simulations of Section 4 the
same value is used for all sampling periods, even if in an industrial
robot application the joint controllers might likely work at a lower
sampling frequency.

3.3.3. Computing the inverse of the robot Jacobian
Note that the proposed sliding mode speed regulation tech-

nique does not need any Jacobian computation as it is independent
of the underlying kinematic control loop, which is one of the dis-
tinctive advantages of the proposal. However, in order to clarify is-
sues about its behavior in singularities, and to explain in a clearer
way the design choices later made in the case study section, the
inverse Jacobian computation is discussed below.

As seen in Section 2, the robot Jacobian J relates the joint speeds
vector q̇ to the workspace speed ṗ of the robot end-effector (EE).
Now, concerning its inverse, it is recalled that the inversion of
the robot Jacobian J gives rise to numerical problems when the
determinant of the Jacobian vanishes, which as already known
occurs at singular points. Then, a modified Jacobian inverse is
employed in this section to cope with singularities. Particularly,
the Jacobian inverse block of Fig. 1 has been implemented for the
simulations of next section as

Inv(J) =
sign(det(J))

max(|det(J)| , ϵ)
adjoint


JT


, (24)

i.e., the well-known adjoint-transpose formula for the matrix
inverse has the determinant in the denominator replaced by a
minimum value ϵ when its absolute value tends to zero. This
approximate inverse preserves the Jacobian inverse directionality.
In other words, near singular points the direction of the Jacobian
inverse is preserved but its modulus is bounded in order to avoid
numerical ill-conditioning.

It is noticed here that although (24) was chosen to evaluate
the proposed methodology, any other alternative for avoiding
Jacobian singularity could have been employed, such as those ones
described in [3].
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Time (s) Time (s)

Fig. 3. End-effector position and orientation errors (workspace coordinates) for ideal unconstrained case (dotted), direct saturation (dashed–dotted), directionality
preserving saturation (dashed) and SM auto-regulation technique (solid).

3.3.4. Effect of the feedback terms
The proposed kinematic control has two components, a

feedback error-based control and a feedforward auto-regulated
trajectory generator (2-DOF structure). In theory, the proposed
motion parameter conditioning generates a trajectory reference
which can be followedby the robot under the prescribed saturation
constraints. In that sense, if the robot started on exactly the same
point as the reference path does, it would track the rest of the path
with no error (assuming negligible modeling error).

Then, as in any 2-DOF setup, the effect of the error-based
controller corrects two issues:

• Initial conditions not in the starting point of the path
• Modeling error and process/sensor noise.

It is easy to understand that the proposed motion parameter
conditioning technique stops the set-point movement if initial
conditions or transient tracking error are big. Basically, the
supervisor blocks reduce the maximum motion parameter speed
as tracking error increases. The intensity of the effect (i.e., the
error figures forcing the path-generator to stop updating reference
points) depend on the gain of the feedback regulator: the larger the
regulator gain, the smaller the error boundwhich stops themotion
parameter (λ̇ = 0). This is in agreement towhat it is expected from
conventional feedback regulators (the larger the gains, the smaller
the errors); hence, the feedback-gain tuning conveniently tunes
both the closed-loop behavior regarding disturbance rejection and
modeling error and the regulation of the reference path’s speed if
errors are high.

4. Case study: 6DOF robot arm

In this section the main features of the proposed SM auto-
regulation technique are illustrated through simulation results
on the well-known 6DOF robotic arm PUMA-560, which is a
classical 6R serial manipulator with spherical wrist. A path passing
through a wrist singularity point is considered in Section 4.2 in

order to show the effectiveness of the method under hard control
conditions.

The results shown have been obtainedwith the Robotics Toolbox
(Release 7.1) for MATLAB r⃝ developed by Corke [26], which is
available to download for free, and which includes the kinematic
model of the PUMA-560 robot.

4.1. Conditions and parameters for the simulations

Simulations were run under the following conditions:

(i) A kinematic framework is considered, i.e. the dynamics given
by the joint controllers is considered much faster than the
dynamics given by the position loop, and therefore the actual
joint speed vector q̇ is assumed approximately equal to the
saturated desired joint speed vector q̇ds.

(ii) The six elements of the workspace coordinate vector have
been defined as follows: the Cartesian


x y z


coordinates

have been chosen as representation of the end-effector
position; the roll-pitch-yaw Euler angles


α β γ

T have
been chosen for the end-effector orientation. The units
for linear and angular dimensions are meters and radians,
respectively.

(iii) Four cases have been considered: in the first three cases
the tracking speed λ̇ is constant, while in the fourth case
the tracking speed is auto-regulated with the proposed SM
technique. Moreover, in the first case the joint speeds are
ideally unconstrained, whereas in the other three cases the
joint speeds are constrained. In this regard, the second case
uses a direct saturation for the joint speeds, whereas the third
and fourth cases use a directionality preserving saturation, see
Section 2.2.

(iv) A maximal tracking speed was aimed, i.e. the desired motion
λ̇d does always satisfy condition (21).

(v) For the sake of simplicity, a proportional controller has been
used for the correction of the position error, i.e. Cp = Kp.
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Fig. 4. Joint velocities for ideal unconstrained case (dotted), direct saturation (dashed–dotted), directionality preserving saturation (dashed) and SM auto-regulation
technique (solid).

In all the simulations, the linear position of the reference path
is given by the following helicoidal path:xref(λ) = xref_ini + 0.1 (cos (λ) − 1)
yref(λ) = yref_ini + 0.1 sin (λ)
zref(λ) = zref_ini − 0.1λ,

(25)

with λ = 0, . . . , 2π , while and the end-effector orientation
αref(λ) βref(λ) γref(λ)

Tis defined in the corresponding sub-
sections.

It is important to recall that for the PUMA-560 manipulator the
Z-axis of the robot base frame is aligned with the first joint and
its origin is located at the same height of the second joint, i.e. the
shoulder joint.

Furthermore, the following parameter values have been used
in the simulation: determinant bound ϵ = 10−5, controller gain in
all coordinates Kp = 10. The sampling period Ts used in the first
three simulated cases was 2.5 ms. The maximum/minimum joint
speed limitations are assumed as q̇max,i = −q̇min,i = 0.5 rad/s
with i = 1, . . . , 6.

4.2. Simulation for a regular reference path

Firstly, we consider a constant orientation reference for the
robot EE and initial robot pose error. We take in particular
pref(0) =


0.58 −0.15 0.14 0 π 0

T as the initial value
for the path reference, whilst the robot pose starts at p(0) =
0.68 −0.25 0.19 0.2 2.94 0.1

T.
Figs. 3–6 compare the results obtained with the four con-

sidered cases. Dotted lines depict the ideal unconstrained case,
dashed–dotted and dashed lines draw respectively the direct sat-
urated and directionality preserving saturated cases, and solid
curves show the SM auto-regulation achievements.

For comparative purposes, the constant tracking speed used in
the first three simulated cases has been taken as λ̇ = 1.26, such
that they take exactly the same time as the SM auto-regulation
technique for completing the required helicoidal path. Naturally,

Time (s)

Fig. 5. Top box: Speed profile λ̇ produced by SM auto-regulation. Bottom box:
directionality factor fdir with (solid) and without (dashed) SM auto-regulation.

these conventional approaches can be sped up by increasing λ̇, but
at the expense of greater position errors. In fact, Fig. 3 reveals that,
despite their greater initial errors, both the direct saturated and
directionality saturated cases lose the reference path after having
(or almost having) reached it. This can also be appreciated in the
3D and 2D views of the desired and followed paths shown in Fig. 6.
The reason of these path deviations is that the robot is unable to
follow the given path at the specified constant speed because of
joint speed saturation. Indeed, these conventional methods would
require ‘‘hand-tuning’’ λ̇ to achieve the goal of fast trackingwithout
drifting out of the desired path. This is what the proposed auto-
regulation transparently performs.
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Fig. 6. 3D and 2D views of followed paths and desired path.
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Fig. 7. Position and orientation errorswhen tracking a path includingwrist singularity for ideal unconstrained case (dotted), direct saturation (dashed–dotted), directionality
preserving saturation (dashed) and SM auto-regulation technique (solid).

The solid lines of the figures show the effectiveness of the auto-
regulation proposal. Figs. 3 and 6 confirm that, once the initial error
is reduced making use of the directionality preserving saturation,
themethod avoids path errors by regulating themotion parameter
speed λ̇. For this particular case in which λd = 5 was taken,
the algorithm gives the maximal tracking speed compatible with
the actuator constraints, thus minimizing the time required to
complete the path. This is shown by Fig. 4, where it can be seen
how the method enforces at all times at least one joint speed to
reach its limit value.

The corresponding motion parameter λ̇ and directionality
factor fdir are depicted in the Fig. 5. In this case, a sampling period
Ts of one millisecond and a low-pass filter with a cutoff frequency
of 5 rad/s were employed. As shown by Eq. (23), slower filter
bandwidth or faster sampling rates could be used if chattering
reduction were aimed. However, with the chosen sampling period
and bandwidth, themotion parameter speed (and, hence, position)
appear smooth enough in the referred plot: the chattering issues
discussed on Section 3.3.1 are irrelevant in practice if fast sampling
rates are possible.
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Fig. 8. Joint positions q and velocities q̇ when tracking a path including wrist singularity for ideal unconstrained case (dotted), direct saturation (dashed–dotted),
directionality preserving saturation (dashed) and SM auto-regulation technique (solid).

As discussed on Section 3.3.4, the controller gain Kp gives rise
to an error band or tolerance inside which the trajectory reference
startsmoving forwards. In Fig. 5 the effect is noticeable in the initial
phase: the trajectory is automatically stopped until t ≈ 0.9, when
the (directionality preserving) saturation movement reaches the
vicinity of the starting reference point.

Finally, Table 1 compares the root mean square errors of
each coordinate and of the corresponding Euclidean norm for
the four cases considered in Fig. 3. As expected, the auto-
regulation technique reduces the errors produced by conventional
constrained tracking algorithms.

4.3. Simulation for a reference path with a singular point

In order to evaluate the proposal under hard tracking condi-
tions, we consider now an initial robot pose p(0) = pref(0) =


0.57 −0.15 0.07 0 π/2 0

T (zero initial error) and a ref-
erence orientation for the robot EE given by:

αref(λ) = 0

βref(λ) =


π/2 + λ/2 if λ ≤ π
π if λ > π

γref(λ) =


0 if λ ≤ π
(λ − π)/2 if λ > π, with λ = 0, . . . , 2π,

(26)

for which there is a wrist singularity at λ = π , since the fourth
and sixth joints are aligned on the same axis at that point and
therefore the determinant of the Jacobian vanishes. Note that the
approaching to the wrist singularity is in the non-degenerated
direction and the departure from the wrist singularity is in a
degenerated direction, i.e. the singularity is of the ordinary type [3].
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Time (s)

Fig. 9. Speed profile λ̇ produced by SM auto-regulation when tracking a path
including wrist singularity.

Table 1
Comparison of the root mean square errors corresponding to the four cases
considered in Fig. 3. Case 1: ideal (unconstrained); case 2: direct saturated; case
3: directionality preserving saturated; case 4: SM regulation.

Position errors Case 1 Case 2 Case 3 Case 4

RMS({ep1}) 0.0101 0.0497 0.0523 0.0266
RMS({ep2}) 0.0101 0.0188 0.0517 0.0266
RMS({ep3}) 0.0051 0.0834 0.0540 0.0133
RMS({ep4}) 0.0202 0.1013 0.0642 0.0531
RMS({ep5}) 0.0202 0.2127 0.0642 0.0531
RMS({ep6}) 0.0101 0.0722 0.0321 0.0266
RMS({‖ep‖2}) 0.0339 0.2655 0.1326 0.0891

In this case, the maximum/minimum joint speeds were taken
as q̇max,i = −q̇min,i = 2 rad/s, with i = 1, . . . , 6, in order to allow
greater tracking speeds. The constant motion parameter used in
the first three cases was then set as λ̇ = 3.1, again for comparative
aims; whereas the fourth case has been simulated with Ts = 0.25
ms, ωc = 150 rad/s and λ̇d = 12.

Figs. 7–9 show the corresponding results. The following points
are worthy of highlighting:

(i) As intuitively expected, in the first unconstrained case the
joint speeds of the fourth and sixth joints are extremely
large at the singular point (although truncated in Fig. 8, their
magnitude orders are given by 1/ϵ).

(ii) In conventional constrained cases significant path errors
appear since the singular point is crossed (see Fig. 7), and
these deviations remain during all the second half-cycle of the
helicoidal path.

(iii) In order to prevent the robot from leaving the desired path, the
SM auto-regulation technique completely stops the forward
movement (λ̇ = 0) at the singular point, and it only restarts
moving forward once the 4th and 6th joints have finished
their reorientations (Figs. 8 and 9). Note that with the SM
tracking algorithm the singularity is reached earlier than with
conventional approaches because of the higher initial tracking
speed.

5. Conclusions

A variable structure algorithm for path tracking speed auto-
regulation was proposed using sliding mode related concepts. The
strategy acts as a supervisory loop, shaping the speed reference
along the path so that it is always compatible with joint actuator
constraints. In this manner, the algorithm does only activate
when the nominal speed reference leads a control signal to its
maximum value, slowing down as much as necessary in order
to avoid path deviations. The proposal can be easily added as an
auxiliary loop to conventional robotic path tracking schemes, and
its implementation is extremely easy. Importantly, singularities
are gracefully handled.

Although the algorithm was illustrated for a particular kine-
matic controller and 6R robot, the conclusions drawn for the
tracking speed auto-regulation method also apply to any other
kinematic controller and/or robotic system accepting joint speed
commands. One suggestion for further work would be to extend
the proposed technique to include acceleration and/or torque con-
straints.
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