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Correlation constrained multivariate curve resolution-alternating least-squares is shown to be a feasible

method for processing first-order instrumental data and achieve analyte quantitation in the presence of

unexpected interferences. Both for simulated and experimental data sets, the proposed method could

correctly retrieve the analyte and interference spectral profiles and perform accurate estimations of

analyte concentrations in test samples. Since no information concerning the interferences was present in

calibration samples, the proposed multivariate calibration approach including the correlation

constraint facilitates the achievement of the so-called second-order advantage for the analyte of

interest, which is known to be present for more complex higher-order richer instrumental data. The

proposed method is tested using a simulated data set and two experimental data systems, one for the

determination of ascorbic acid in powder juices using UV-visible absorption spectral data, and another

for the determination of tetracycline in serum samples using fluorescence emission spectroscopy.
Introduction

In recent years, the subject of analyte determination in the

presence of unexpected sample constituents, i.e., those not taken

into account in the calibration phase, has been a field of major

scientific improvements. Recent reviews and perspective articles

on the subject highlight the importance of analyte quantitation

regarding the analysis of complex and natural samples, even

when potential interferences occur in a given specimen.1–5 A

variety of strategies have been discussed, most of them taking

advantage of the intrinsic property of higher-order instrumental

data, i.e., data having two or more inter-modulated measurement

orders or modes per sample.5 In these cases, the so-called second-

order advantage6 can be implemented in well-known algorithms

for the adequate processing of higher-order (multi-way or multi-

mode) data, as has been exploited in a substantial number of

recently proposed analytical methods (mainly but not restricted

to the spectroscopic field).1

The problem of the appearance of measurement interferences

in an unknown sample is ubiquitous. Components present in

both calibration and validation samples are regularly called

‘expected’, because analysts expect them to be present in most
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test samples, and therefore include them into a sufficiently

representative training sample set. The expected components can

be further divided into ‘calibrated’ and ‘uncalibrated’, referring

to whether or not calibration concentrations are available for

each of them. Truly unknown samples may contain additional

components which are not expected, hence the name

‘unexpected’ components. Although these potential interferences

may generate a signal that overlaps with the analyte of interest,

they will not always produce a real interference, because they will

not always lead to a systematic error in the analyte determina-

tion.7 Whether the interference will be actual or will only remain

as potential, depends on the type of instrumental signals and on

the calibration methodology. Univariate calibration, for

example, cannot detect sample components producing an inter-

fering signal. First-order calibration may compensate for

potential interferences, usually by inclusion of the latter in the

calibration set. This methodology does also allow one to flag new

samples containing unexpected components, a property known

as the first-order advantage.6 On the other hand second- and

higher-order calibration methods can compensate for potential

interferences which are not included in the calibration set, which

is the basis of the second-order advantage.6

Since first-order instrumental data can be measured using

unsophisticated equipment, different procedures have been

devised in order to quantitate analytes from first-order multi-

variate data in the presence of unexpected substances (interfer-

ences). One alternative is to select a spectral window where the

contribution from the interferences is relatively low in compar-

ison to the analyte contribution. This is for instance possible by

resorting to the so-called net analyte signal regression plots.8 The

net analyte signal is the part of the total signal which can be

uniquely ascribed to the analyte of interest,9 and the regression

plot corresponds to the net analyte signal for a test sample as
This journal is ª The Royal Society of Chemistry 2010



a function of that for the pure analyte. This plot should ideally be

a straight line.8 Significant deviations from linearity indicate the

presence of unexpected constituents, opening the possibility of

selecting only those sensor regions where these plots are linear.

This has been accomplished in the framework of classical least-

squares8 and also in hybrid linear regression analysis.10,11

Another alternative is the so-called secured-principal compo-

nent regression analysis.12 In this variant of the well-known

principal component regression (PCR) technique, test sample

data are analyzed after conventional calibration in two steps: 1)

investigating first whether sample data are consistent with the

calibration model or not, and 2) extracting from the measured

spectrum those spectroscopic features not adequately modeled

by the principal components model. This corrected spectrum is

then re-evaluated by conventional PCR.12

Recently, however, a different method has been proposed

which intends to model rather than to discard the effect of

unexpected components: this is the so-called augmented classical

least-squares method,13 in which the incorporation of prior

information into the model can improve the accuracy of analyte

quantitation in the presence of unknown interferences, especially

when the pure component contributions for the interferents are

known and taken into account. The latter is, however, the major

weakness of this procedure, since it requires a thorough knowl-

edge of the qualitative composition of the analytical system

under scrutiny.

A second possibility is to employ the multivariate curve reso-

lution-alternating least-squares (MCR-ALS)14 method. This

method iteratively applies natural constraints during an alter-

nating least-squares optimization, such as: 1) non-negativity in

concentrations and spectral profiles, 2) unimodality (as for

chromatographic profiles), 3) closure relationships in closed

systems. A correlation constraint has been previously proposed,

where the objective was the quantitative analysis of mixtures of

metal ions by voltammetry15 or the quantitative determination of

the components in mixtures of analytes in pharmaceutical using

UV spectrophotometric data and of protein and humidity

contents in agricultural samples using near infrared spectro-

photometric data.16 In this latter case, the experimental spectra

of wheat samples were strongly affected not only by component

interferences but also by physical and matrix effects.

The purpose of this work is to further investigate the ability of

the proposed correlation constraint in MCR-ALS for analyte

quantitation in complex mixtures, in the presence of unexpected

interferences, and to check for the achievement of the second-

order advantage, considering and processing first-order multi-

variate data. To assess the achievement of this advantage, in the

case of the experimental examples investigated in this work, the

results obtained using MCR-ALS with the correlation constraint

have been compared with those obtained previously using the

unfolded partial-least squares residual bilinearization (U-PLS/

RBL)17,18 and the bilinear least-squares/RBL (BLLS/RBL)19

methods. These two methods have already proved to achieve the

so-called second order advantage from instrumental data.20,21 As

will be shown, the use of the correlation constraint in MCR-ALS

to model small subsets of first-order data allows one to achieve

a performance comparable to the one obtained when using

second-order data, at least in the application to the particular test

cases herein investigated.
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Experimental section

General

The two experimental systems analyzed in this work were: 1) the

determination of ascorbic acid in powder juices using spectral-

pH matrices21 and 2) the determination of tetracycline in serum

samples using excitation-emission fluorescence matrices.20 Apart

from these two experimental systems, an additional simulated

data system (see below) was analyzed to better ascertain the

properties of the proposed algorithm.

Electronic absorption measurements for system 1 were carried

out on a Perkin Elmer Lambda 20 spectrophotometer (Perkin

Elmer, Waltham, Massachusetts, USA), using 1.00 cm quartz

cells and 2 nm slit width. Fluorescence measurements for system

2 were carried out on a Varian Cary-Eclipse spectrofluorimeter

equipped with a xenon flash lamp, using 1.00 cm quartz cells. The

spectra were saved in ASCII format, and transferred to a PC

AMD Athlon 2200 for subsequent manipulation.
Reagents

All samples were prepared using analytical-reagent grade

chemicals. For the experimental system 1, a stock solution of

ascorbic acid (1.00 � 10�2 mol L�1) was prepared by dissolving

the compound in doubly distilled water. Auxiliary solutions of

KH2PO4 (pH ¼ 4.27), HCl and NaOH, all of them 1.00 mol L�1,

were prepared by convenient dissolution or dilution in doubly

distilled water. For the experimental system 2, a stock solution of

tetracycline, containing 1.000 g L�1, was prepared by dissolving

the compound in doubly distilled water. This solution was stable

for at least 2 months in a refrigerator (4 �C). Serum samples were

prepared by spiking blank sera with appropriate amounts of the

stock solution of tetracycline.
Calibration and validation sets

For experimental system 1, three standard solutions of ascorbic

acid were prepared by placing appropriate volumes of the stock

solution in 5.00 mL volumetric flasks and completing to the mark

with a buffer solution (see below). The concentrations of these

standard solutions were 0.500, 0.750 and 1.000 � 10�4 mol L�1.

Linearity in the absorbance-concentration relation was verified

in this concentration range. Three test samples were prepared: a)

sample ‘Ma’, a blank specimen containing only background juice

and no analyte [a commercial (Dink) powder orange juice dis-

solved in 1000 mL of distilled water followed by 1 : 5 dilution], b)

sample ‘Mb’, a blank specimen spiked with ascorbic acid 0.30 �
10�4 mol L�1, and c) sample ‘Mc’, a blank specimen spiked with

ascorbic acid 0.50 � 10�4 mol L�1.

For experimental system 2, and owing to the presence of

analyte-background interactions, the calibration set was built by

adding pure standards of tetracycline to sera obtained from

healthy patients. Five standards were prepared for tetracycline

calibration, with the following concentrations: 0.5, 1.0, 2.0, 3.0

and 4.0 mg mL�1. The selected concentrations cover the thera-

peutic range of tetracycline. After suitable dilution (1 : 500), the

latter concentrations rendered values which were previously

verified to lie in the known linear fluorescence-concentration

range, i.e., 0.167–1.333 mg mL�1. Appropriate amounts of the
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stock solution of tetracycline were added to 1.00 ml of serum in

order to obtain the desired concentrations. The samples were

then homogenized, and 2.00 mL of magnesium acetate 5 � 10�3

mol L�1 in ammonium chloride 3 mol L�1 were added.22 After

homogenization, and within a period of 30 min from the sample

preparation (in order to avoid signal intensity changes), the

emission spectra were recorded at lexc ¼ 340 nm. Eight test

samples were prepared, all of them composed of sera from

healthy patients (different than those used for the calibration set)

and tetracycline, with the addition, in certain cases, of four drugs

which are occasionally co-administered with tetracycline, i.e.,

salicylate, paracetamol, ibuprofen and doxorubicin. The final

concentration of tetracycline was 1.3mg mL�1 in the three

samples and 1.8 mg mL�1 in the remaining five samples.

Spectra for the experimental systems 1 and 2 were actually

collected in Ref. 20 and 21.
Theory

Bilinear least-squares with residual bilinearization (BLLS/RBL)

and unfolded partial least-squares with residual bilinearization

(U-PLS/RBL)

These two methods were described in detail in previous works.20,21

A brief description of them is provided in the Supplementary

Information. In Ref. 20 and 21 they were employed to analyze

both of the experimental systems described in this work.
Multivariate curve resolution alternating least squares

(MCR-ALS)

The spectral data matrix D analyzed by the MCR-ALS method

contains in its rows the individual spectra measured for the

different analyzed samples, and in its columns the sample signals

measured at each spectral wavelength. In the first step, a rough

estimation of the number of components is obtained, which can

be simply performed by visual inspection of singular values or

principal component analysis (PCA) plots,23,24 or by carrying our

leave-one-out cross-validation, as suggested in Ref. 25. This

initial number of components can be afterwards refined consid-

ering larger or lower number of components, and checking for

their fit and reliability (see below). The bilinear model assumed

by MCR methods is analogous to the generalized Lambert-

Beer’s law, where the individual responses of each component are

additive. In matrix form, this bilinear model is expressed as:

D ¼ CST + E (1)

where D (size I � J) is the matrix of experimental data, (I is the

number of samples or spectra and J the number of wavelengths), C

(size I � K) is the matrix of concentration profiles of the K

components present in the samples, ST (size K� J) is the matrix of

pure spectra, whose K rows contain the K pure component spectra

and E (size I� J) is a matrix collecting the experimental error and

the variance not explained by the bilinear model of eqn (1).

The resolution is accomplished using an optimization as

follows. The iterative Alternating Least Squares, ALS, procedure

is initialized using an initial estimation of the spectral or concen-

tration profiles for each intervening species. Different methods are

used for this purpose such as EFA15 or the determination of the
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purest variables.16–18 In this work, initial estimations were based

on the detection of purest variables which were more easily

obtained and preferred. If the initial estimations are the spectral

profiles, the unconstrained least-squares solution for the

concentration profiles can be calculated from the expression:

C ¼ D (ST)+ (2)

where (ST)+ is the pseudoinverse of the spectral matrix ST, which

is equal to [S(STS)�1] when ST is full rank.26 If the initial

estimations were the concentration profiles, the unconstrained

least-squares solution for the spectra can be calculated from the

expression:

ST ¼ C+D (3)

where C+ is the pseudoinverse of C [C+ ¼ (CTC)�1CT], when C is

full rank.26 Both steps can be implemented in an alternating least-

squares cycle, so that at each iteration new C and ST matrices are

obtained. During these iterative recalculations of C and ST,

a series of constraints are applied to give physical meaning to the

obtained solutions, and to limit their possible number for the

same data fitting.27 Iterations continue until an optimal solution

is obtained that fulfils the postulated constraints and the estab-

lished convergence criteria. For example, non-negativity

constraints are applied to the concentration profiles, due to the

fact that the concentrations of the chemical species are always

positive values or zero. Non-negativity constraints are also

applied for UV-Vis, fluorescence or near-infrared spectra.

Unimodality is a constraint which can be applied to profiles

having a single maximum, as in the case of chromatographic

profiles. Finally, closure constraints may be applied for the

fulfilment of chemical mass balance equations among different

chemical species in equilibrium or in kinetics.

In this paper a correlation constraint is also applied during the

MCR-ALS analysis to establish calibration models for the

quantitative determination of analytes in the presence of

unknown interferences.15,16 This correlation constraint consists of

a series of steps performed during each iteration step of the ALS

optimization. The concentrations of a particular analyte in cali-

bration samples at each ALS iteration, are forced to be correlated

to previously known reference concentration values of the analyte

in these samples. A local linear model between the ALS estimated

values and the nominal concentrations is built by least-squares

linear regression. Concentration values are then updated

according to the predicted values using the estimated parameters

of the local model. More details about the implementation of this

constraint in previous works can be found elsewhere.15,16
Data simulations

A simulated data set was especially prepared to validate the use

of the MCR-ALS method with the correlation constraint in the

analysis of multi-component synthetic mixtures having two

calibrated analytes, and a single potential interference appearing

in the test samples along with the analytes. Noiseless profiles for

the analytes and for the potential interference are shown in

Fig. 1. Using the analyte profiles shown in Fig. 1, a calibration set

of 10 samples was built having random concentrations (both
This journal is ª The Royal Society of Chemistry 2010



nominal analyte concentrations were taken as random numbers,

distributed with equal probability in the range 0–1). To produce

the calibration data set, the simulated spectrum for a typical

sample was obtained as the sum of the contributions of the two

analytes. For the 100 test samples, both analytes were considered

to be present at nominal concentrations which were also taken at

random from the range 0–1. These test samples did also contain

the potential interference, at concentrations taken at random

from the range 0–1. Once the calibration and test data set

matrices were built, noise was added to all signals (standard

deviation ¼ 0.005 units). The added noise represents ca. 1% with

respect to the maximum calibration concentration and signal

respectively. The simulated system consists of two calibrated

analytes, present in the training sample set, and a series of test
Fig. 1 Simulated profiles normalized to both unit length and unit

concentration, employed for simulating the data and MCR-ALS

retrieved spectral profiles. A) analyte 1, B) analyte 2, C) interferent.
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samples which do also contain a spectral interference or unex-

pected component. The calibration and test spectra were joined

into a single data matrix of size 110 � 50.

With respect to the analyte calibration and test concentrations,

the nominal values employed for building the calibration and test

spectra were not directly employed for calibrating the model for

analyte quantitation and for comparing the model predictions

with the nominal values respectively. Instead, and in order to

mimic a real analytical experiment, in which the sample prepa-

ration always carries some degree of uncertainty in the final

analyte concentrations, gaussian-distributed noise with a stan-

dard deviation of 0.01 units was added to all nominal concen-

trations. The final values were employed for calibration and for

comparison of predicted with nominal analyte concentrations in

the test samples. This intends to resemble the existence of an

average error of 0.01 concentration units in the analyte concen-

tration during the preparation of all samples. Since the maximum

concentration is 1 unit, then the concentration uncertainty level

introduced in these simulations is also 1%, analogous to that

employed in the case of the signal noise (see above).

Software

All simulations were done using MATLAB computer and visu-

alization environment.28 Correlation constrained MCR-ALS

was implemented using a MATLAB code which is available on

request from R. Tauler (e-mail: Roma.Tauler@idaea.csic.es).

Results and discussion

Simulated data

The simulated data matrix D was built with the spectra for the

calibration and all test samples (see Fig. 1), and it has 10 cali-

bration and 100 test samples measured at 50 different spectro-

scopic channels. Before submitting the D matrix to MCR-ALS

decomposition, initial estimates of the three component spectra

were obtained using SIMPLISMA.16–18 In the present case, the

number of components was known to be three because of the

previous knowledge of three absorbing analytes in the system.

Nevertheless, in a general case, the first step is an estimation of

the number of components by visual inspection of a PCA plot or

by cross-validation analysis. Non-negativity constraints were

applied to both concentration and spectral profiles. The two

calibration vectors (size 10 � 1) containing the nominal

concentrations for each analyte in the calibration samples were

provided as initial inputs, as well as the information that the

interferent was not present in the calibration samples. This

information was provided during the ALS optimization as

a masking matrix of concentration values of the same size as the

C matrix, in which the known calibration values are used for the

corresponding correlation and equality constraints.20,21

After the MCR-ALS optimization, the retrieved spectral

profiles were compared with those used in the data simulation

(Fig. 1). As can be seen, the agreement is totally satisfactory, with

excellent spectral recoveries for both analytes. Although the

recovery of the interferent profile is not perfect, the analytical

results were nevertheless satisfactory. With regards to the pre-

dicted concentrations of both analytes in the test samples, the

root mean square error (RMSE) for analyte 1 was 0.060
Analyst, 2010, 135, 636–642 | 639



concentration units, corresponding to a 12% relative error of

prediction (REP) with respect to the mean calibration concen-

tration (0.5 units). For analyte 2, in turn, the corresponding

values were RMSE ¼ 0.030, REP ¼ 6%.

It should be noticed that the simulations implied a minimum

average concentration error of 0.01 units (see above), introduced

in order to resemble a real analytical experiment. In comparison,

the RMSE values furnished by the multivariate model are

slightly larger, as expected from the fact that error propagation

to the final concentrations arises from several sources: 1)

uncertainties in analyte concentrations during sample prepara-

tion, 2) uncertainties in the experimentally measured signals for

each sample, and 3) model errors attributed to the least-squares

fitting employed to calibrate the model.
Table 1 Predictions obtained by BLLS/RBL and MCR-ALS on real
powder juice samples spiked with known concentrations of ascorbic acid

Sample

Nominal
BLLS/RBL
predictions

MCR-ALS
predictions

(mol L�1

� 104)
(mol L�1

� 104)
Recovery
(%)

(mol L�1

� 104)
Recovery
(%)

Ma 0.000 0.100 — 0.020 —
Mb 0.300 0.300 100.0 0.296 98.7
Mc 0.500 0.470 94.0 0.555 111.0
RMSE (mol L�1 � 104) 0.02 0.03
Experimental system 1

In a previous work, this system was studied by processing

second-order spectral-pH data.21 pH was varied between 1.83

and 6.80 for each sample (including the calibration standards and

the test samples). This pH variation was obtained by adding

appropriate volumes of either acid or basic solutions to thirteen

volumetric 5.00 mL flasks. In this way, both species (ascorbic

acid/acorbate) were assured to be present in equilibrium at

significant concentrations for each of these thirteen solutions.

Their absorption spectra were then recorded between 200 and

300 nm, at 1 nm intervals, giving a data matrix of size 13 � 101

data points for each sample. The application of the bilinear least-

squares/residual bilinearization (BLLS/RBL) method gave

acceptable predictions for test samples. It is interesting to remark

that in the test samples not only was spectral overlapping severe,

but also the absorbance due to the background was significantly

larger than that of the analyte, adding a considerable challenge to

the determination of its concentration.

In the present work, only the spectra recorded at the single

pH ¼ 1.83 were used. At this pH the only species present was the

ascorbic acid (the interference was also present in test samples).

The data matrix D was built with three calibration spectra and
Fig. 2 UV spectra corresponding to ascorbic acid standard solutions

(0.500, 0.750 and 1.000 � 10�4 mol L�1) in solid lines, and three blank

samples spiked with ascorbic acid (0.000, 0.300 and 0.500� 10�4 mol L�1)

in dashed lines.
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three test samples (size 6� 101). The number of components was

estimated by visual inspection of a PCA plot and by cross-vali-

dation, and it was two, as previously commented. Initial esti-

mates were also obtained using SIMPLISMA. Fig. 2 clearly

shows the presence of a non-calibrated interference (the back-

ground juice), which is present in the test samples.

Fig. 3 shows the retrieved spectral profiles of the analyte and of

the interference after MCR-ALS application. A visual inspection

of the acid ascorbic pure normalized spectrum and of its MCR-

ALS resolved spectrum indicates an excellent agreement between

them. The MCR-ALS resolved spectrum corresponding to the

background juice sample is also shown in Fig. 3. As can be

observed, spectra overlapping occurs in the whole wavelength

range. Concerning the predicted concentrations of ascorbic acid

in the test samples, the root mean square error (RMSE) for them

was 0.03 � 10�4 mol L�1, which corresponds to a relative error of

prediction of 14.7% with respect to the mean calibration

concentration (0.75� 10�4 mol L�1). As it can be seen in Table 1,

these values are close to those obtained using the BLLS/RBL

method when they were applied to pH modulated second order

spectral data matrices of the same system.21 The main advantage

in this case however is the fact that MCR-ALS was applied to

simpler single pH first order data and the correct recovery of the

qualitative spectral information not only of the analyte, but also

of the interference (background juice).
Fig. 3 Comparison between the MCR-ALS retrieved spectral profile

(solid line) with the acid ascorbic pure normalized spectrum (circles). The

dashed line is the profile for the interference as extracted by MCR-ALS.
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Fig. 5 Retrieved MCR-ALS profiles when analyzing sample number 6

(see Table 2) which contains the more complex serum sample.

Fig. 4 Emission spectra (400–600 nm) recorded when exciting at lexc ¼
340 nm five tetracycline standard solutions (0.5, 1.0, 2.0, 3.0 and

4.0 mg mL�1, solid lines), and eight serum samples spiked with tetracycline

(see Table 2, dashed lines).
Experimental system 2

Concentrations of tetracycline in serum samples were previously

estimated using excitation-emission fluorescence matrices

(EEMs) and the unfolded partial least-squares followed by

residual bilinearization (U-PLS/RBL) method, which is consid-

ered to be a powerful method achieving the so-called second-

order advantage. By contrast, in the present work emission

spectra were recorded at only a single excitation wavelength

(lexc ¼ 340 nm). Fig. 4 shows the data matrix D built using five

calibration spectra and eight test sample spectra (size of 13 �
101). As it can be seen, significant differences are observed for

several samples, especially in the spectral region 440–485 nm.

These spectral differences can be ascribed to both endogenous

serum components (not present in the serum sample employed to

build the calibration set) and to the possible interferences added

to the test samples. For each kind of sample serum being

analyzed, the number of components was estimated by visual

inspection of a PCA plot and also by cross-validation analysis.

As an example, Fig. 5 shows the three MCR-ALS profiles
Table 2 Predictions obtained by U-PLS/RBL and MCR-ALS on serum
samples spiked with know concentrations of tetracycline

Sample

Nominal
U-PLS/RBL
predictions

MCR-ALS
predictions

(mg mL�1) (mg mL�1)
Recovery
(%) (mg mL�1)

Recovery
(%)

1 1.30 1.44 110.8 1.02 78.5
2 1.30 1.52 116.9 1.26 96.9
3 1.30 1.52 116.9 1.27 97.7
4 2.80 3.23 115.4 3.20 114.3
5 2.80 3.24 115.7 3.07 109.6
6 2.80 3.23 115.4 3.04 108.6
7 2.80 3.28 117.1 3.21 114.6
8 2.80 3.40 121.4 3.37 120.4
RMSE (mg mL�1) 0.4 0.3
REP (%) 17.0 14.7
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obtained in this experiment when analyzing one of the most

complex samples (number 6 in Table 2).

For the predicted concentrations of tetracycline in the test

samples (Table 2), the RMSE values was 0.3 mg mL�1, corre-

sponding to a 14.7% of relative error of prediction (REP) with

respect to the mean calibration concentration (2.1 mg mL�1).

Table 2 also shows that these values obtained are even better

than those previously obtained by implementation of U-PLS/

RBL on second-order data for the study of the same system.20

These results therefore confirm the power of the proposed

approach and are in agreement also with the preliminary results

reported previously about the use of the correlation constraint in

the MCR-ALS method.
Conclusion

From the results obtained in the analysis of the three present data

examples, it can be concluded that the extension of the MCR-

ALS method, including the proposed correlation constraint,

allowed for the accurate quantitative determination of analyte

concentrations using spectrophotometric or fluorescence first-

order data, even in the presence of unexpected interferences. This

allows for the design of calibration procedures where the samples

used at the calibration stage do not contain the unknown inter-

ferences, i.e., when only external standard mixture samples of the

analytes are available, not containing the interferents. An addi-

tional advantage of the MCR-ALS method (either when the

correlation is applied or not) is the possible recovery of the

spectral information of analytes and of possible unknown

interferences in the analyzed samples. This extra information is

not available in most of the other multivariate first order cali-

bration methods, except for the causal modelling using a classical

least squares (CLS) multi-component calibration method where

all the spectra of the components in the calibration and test

mixtures are known, or where all the concentrations of compo-

nents in the mixtures are known in the calibration step. The

presence of unknown interferences in the samples disturb this

type of data analysis in practice and precludes its use in the

analysis of natural samples where interferents are ubiquitous,
Analyst, 2010, 135, 636–642 | 641



such as in different examples shown in this work. The general-

ization of the conditions where the second-order advantage can

be extended to uncalibrated interferences using the proposed

approach is difficult, because it will depend on the complexity of

the system under study. For instance, it will be difficult to achieve

for the interferences in a many-component system with signifi-

cant unresolved rotational freedom, and with strong overlap of

their profiles in the two modes. On the contrary, it will be much

easier to be achieved for simpler systems, with a few number of

components and with interferences having additional selectivity

in their profiles. Many intermediate situations are then possible

and more work is needed to clarify this aspect completely.
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