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a b s t r a c t

A multiple response optimization of styrene–butadiene rubber (SBR) emulsion batch polymerization is
proposed. Several properties of latex and rubber were optimized to obtain a particular grade of SBR,
namely 1712. Artificial neural networks (ANNs) were employed for the modelling of the following prop-
erties: solid content of latex, Mooney viscosity and polydispersity. The training was done by feeding the
ANNs with experimental data obtained from a central composite design in which the concentration of
some of the polymerization reagents (initiator, activator and chain transfer agent) was varied. The one-
dimensional desirability function was used for optimization, in order to obtain a single set of reaction con-
ditions for the multiple responses. With optimum conditions, polymerization experiments were carried
out and good agreement was found between predicted and experimental values of the required properties.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Styrene–butadiene rubber (SBR) is one of the most important
synthetic polymers. It accounts for about 40% of the total synthetic
elastomer production, its major consumption being in tyres and
tyre products. SBR can be obtained by styrene and butadiene emul-
sion copolymerization. Since its first industrial scale appearance in
1937, a high number of research studies have been aimed at pro-
ducing a rubber with specific properties, suitable to each use and
application (White & Soos, 1993).

The structural properties of the produced polymer represent an
essential point in the production process. Such characteristics will
determine the physical properties and the processability of the final
rubber to be obtained, which are usually targeted to some prede-
termined quality specifications.

On the other hand, variations in polymer structure are the
result of changes in polymerization conditions, which include the
employed reagents. Therefore, for the final rubber properties to be
optimized, it is necessary to control a number of process conditions;
among which, the amount of key chemicals that participate in the
polymerization reaction are to be considered.

∗ Corresponding author. Tel.: +54 3476 438400x3565;
fax: +54 3476 438400x3784.
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In process control issues, it is necessary to take into account that
most chemical process systems are nonlinear. Particularly, poly-
merization reactors can be among the most nonlinear, and a great
deal of nonlinear control strategies has been developed in this field
(Schork, Deshpande, & Leffew, 1993). Because of this nonlinear-
ity, and in some cases, the lack of a reliable first-principle model,
the use of artificial neural networks (ANNs) has shown a sustained
increase in the field of polymerization control; its ability to simulate
a high number of results in short computer time, and to accurately
describe a system, makes ANNs particularly suitable for optimiza-
tion and on-line applications (Nascimento, Giudici, & Guardani,
2000).

Some of the first illustrative examples for the use of ANNs were
shown in batch systems (Joseph & Wang Hanratty, 1993); in this
typical nonlinear process, it was possible to correlate certain poly-
mer composite quality parameters with curing process variables
and conditions.

In the rubber industry, most ANN applications have been devel-
oped for the polymerization stage, and only a few were reported for
rubber end-use properties and processability prediction (Schwartz,
2001).

The control of polymerization process through ANN models is
a well established strategy. Tsen, Jang, Wong, and Joseph (1996)
developed a methodology based on hybrid ANN models, and
applied it to the emulsion polymerization of vinyl acetate. It was
possible to control polymer dispersity, number average molecular
weight and time in a batch reactor, and it was shown a better pre-
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dictive ability for molecular weights than employing a theoretical
model.

A different and interesting approach is to define the reac-
tor operating conditions based on some desired polymer quality.
Application of ANNs to that problem has been presented for
the development of polyethylene resins in a fluidized bed poly-
merization reactor (Fernandes & Lona, 2002). Optimal operating
conditions in emulsion polymerization of vinyl acetate were
also found using ANNs and polymer final properties as inputs
(Fernandes, Lona, & Penlidis, 2004). In this work, a large data set
was used, in which the polymer properties corresponding to each
operating condition were obtained by running an extensively tested
mathematical model for this emulsion system. As a result, it was
possible to define the monomer, initiator and emulsifier concen-
tration and the operating temperature, in order to obtain a given
molecular weight, polydispersity, particle diameter and branching
frequency. The results were compared to those predicted with the
detailed model (Gao & Penlidis, 2002).

Also for emulsion polymerizations, Zhang, Morris, Martin, and
Kiparissides (1998) employed the combination of multiple neural
networks (stacked neural network) to simulate a batch methyl-
methacrylate polymerization reactor, avoiding the development
of complex polymerization kinetic models. It was shown that the
technique could accurately predict trajectories of polymer quality
variables even in the presence of reactive impurities. The technique
has been used in designing optimum recipes for a batch polymer-
ization process. It can also be used for the prediction, control, and
monitoring of batch polymerization processes.

In addition, there are studies that use hybrid models for con-
trol and optimization of polymerization reactions. Among them,
Dı̌Anjou, Torrealdea, Leiza, Asua, and Arzamendi (2003) made use
of a combination of a first-principle model and ANNs in order to
predict the polymerization rate, monomer conversion and average
molecular weight in emulsion polymerization. The polymerization
rate and the instantaneous weight-average molecular weight were
calculated by means of ANNs. This reduced model can be integrated
faster than the first-principle one, making the hybrid model suitable
for on-line optimization.

For solution polymerizations, Padmavathi, Mandan, Mitra, and
Chaudhuri (2005) developed a reliable model that predicts prod-
uct quality like Mooney and fluid viscosity in polybutadiene as
a function of process parameters using neural networks, permit-
ting an on-line implementation. From plant historical database,
the values of process variables within a wide operating range,
along with Mooney and solution viscosities of the corresponding
samples, were collected; these values were used for the network
training. Hanai, Ohki, Honda, and Kobayashi (2003) assumed that
the physicochemical characteristics such as the ratio of cis form to
total polymer and the polydispersity index represent the quality of
polybutadiene and a fuzzy neural network (FNN) model was con-
structed to estimate the physicochemical characteristics and the
conversion ratio from the initial conditions. Using the constructed
FNN model and a genetic algorithm, the process conditions for tar-
get physicochemical characteristics were calculated finding good
agreement between the calculated results and the target values,
although no experimental corroboration was done.

In the present work, an SBR emulsion polymerization reaction
was optimized employing chemometric tools, in order to obtain
grade 1712 SBR by means of the bottle polymerization technique
(Fryling, 1954). This grade of SBR represents 50% of total SBR pro-
duction at Petrobras PGSM site, and thus it was chosen for this
study. The properties used as quality parameter were: solid con-
tent of latex, polydispersity and Mooney viscosity. These properties
were selected because they are raw polymer properties generally
accepted to be directly related to processability and mixing per-
formance (Ninomiya & Yasuda, 1969; Smith, 1976); there are some

other factors that modify the processability of a compounded rub-
ber, but they refer to mix composition or mixing procedures, and
not to the polymer itself (Norman & Johnson, 1991). It is worth
to mention that there is no mathematical model able to predict
Mooney viscosity, hence it is impossible to get a set of mathemati-
cally derived data points in order to train the ANNs.

For the optimization stage, Havel, Peña, Rojas-Hernández,
Doucet, and Panaye (1998) proposed a powerful tool for the analyt-
ical area; in this work it was possible to predict optimal separation
conditions in capillary zone electrophoresis, by the combination
of experimental design and artificial neural networks with the
back-propagation algorithm. This approach was found to be a
general optimization methodology, and therefore its application
was expanded and reported in several areas (Moreira, Micheloud,
Beccaria, & Goicoechea, 2007; Spanilá, Pazourek, Farková, & Havel,
2005; Wang et al., 2001).

In this work, ANNs were used for response modelling, because a
surface response methodology approach, in which each response
is fitted to polynomial model, was first employed with unsatis-
factory results. Since several properties had to be optimized a
multiple response simultaneous optimization was needed. This was
accomplished by means of the desirability function (Derringer &
Suich, 1980). The combined use of neural networks and desirability
function constitute a methodology that allows the optimization of
complex processes, which is the case of the rubber polymerization.

1.1. Artificial neural network

Artificial neural networks are mathematical models having the
ability to learn the correlation between input and output values
by means of an iterative mechanism of test and error (Zupan &
Gasteiger, 1999). Neural networks are composed of basic units
called neurons or nodes distributed in different layers. In this work,
the architecture of the employed network consists of three layers:
input, hidden and output layer. As in the nervous system, each arti-
ficial neuron receives the output from the previous neurons and
each connection between neurons carries an assigned weight. For
the network training the experimental data X or inputs enter into
the input layer, and then propagate through the network. Each neu-
ron of the hidden layer receives and adds the outputs from all of the
neurons in the input layer. After that, the resulting summation is
passed through a transfer function, commonly a sigmoid function,
which means that the output for the jth neuron in the hidden layer
(yj) equals to:

yj = 1
1 + enetj

(1)

being netj the net input to the jth neuron in the hidden layer, which
is given by the expression:

netj =
n∑

i=1

wjixi (2)

where n is the number of neurons in the input layer, wji is the con-
nection weight from the ith neuron in the input layer to the jth
neuron in the hidden layer and xi is the input to the ith neuron in
the input layer.

For the network training, a back-propagation learning algorithm
was used. In this method, the error between the output vector of the
network (outcalc) and the experimental vector (outexp) is calculated
and then all weights are corrected throughout the entire network
from the last layer to the first one. After weight correction, the pro-
cedure is repeated until an acceptable error is reached. The error
is calculated as the root mean square error of correlation (RMSEC),
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according to:

RMSEC =

√∑
(outcalc − outexp)2

I
(3)

where I is the total number of responses.

1.2. Multiple optimization

The usual method to optimize a response or property is the step
by step procedure, which consists in modifying one factor while
holding the others constant, and observing the effect that this mod-
ification produces. Another approach is to make an optimization
using experimental designs and a surface response analysis, deter-
mined by least-squares fit, in order to set the conditions in which
the response takes a certain value, either a maximum or a mini-
mum one. This approach also considers possible interactions among
the studied factors. Such analysis may not be enough for a process
involving rubber, because at the time of being compounded the
rubbery behaviour cannot be accurately predicted from a single
property. In this case it is useful to employ a simultaneous property
optimization by means of tools such as the Desirability Function
(Del Castillo, Montgomery, & McCarville, 1996; Derringer & Suich,
1980; Harrington, 1965); this function transforms a problem of
multiple responses into a single response case, denoted as simulta-
neous desirability (D). In this method the values of each estimated
response is transformed into a dimensionless desirability value di.
These latter values range from zero to one, i.e. from an unacceptable
to an optimum response, respectively.

In this work, the three responses (solid content, Mooney viscos-
ity and polydispersity) are required to take a certain target value
each (ti). Therefore, to set the di values it is necessary to define the
following continuous function:

di = 0 if yi ≤ mini or yi ≥ maxi (4)

di =
[

yi − mini

ti − mini

]w1

if mini < yi < ti (5)

di =
[

maxi − yi

maxi − ti

]w2
if ti < yi < maxi (6)

where yi is the predicted response of the fitted model, and mini,
maxi represent the minimum and maximum acceptable value of yi,
respectively. The dis are affected by a weight (w1, w2) that empha-
size either the target value or the minimum and maximum limits.

For a process with n responses, the simultaneous desirability is
a geometric mean of all transformed responses:

D = (dr1
1 × dr2

2 × · · · × drn
n )1/

∑n

i=1
ri =
(

n∏
i=1

dri
i

)1/
∑

ri

(7)

where ri is a relative importance assigned to each transformed
response di. Notice that if any of the responses is unacceptable, that
is di = 0, the overall function becomes zero.

The values assumed by the rubber responses are continually
related to the initial conditions in the polymerization reaction; with
the dis being a function of those responses, thus it can be established
that the simultaneous function D is also a continuous function of
the initial reaction conditions. As a result, a shift from multivariate
to univariate optimization problem is achieved, and the optimum
polymerization conditions can be set now by standard techniques.

2. Software

Design Expert version 7.0.3 trial (Stat-Ease Inc., Minneapolis,
USA) was used for performing experimental design, polynomial fit-

ting and ANOVA results. ANN and desirability calculations were all
performed with in-house MATLAB 7.0 routines.

3. Experimental

All polymerization experiments were made in bottles at 10 ◦C
with constant rotation in a water bath. Reagents styrene (98%),
butadiene (98.5%), soap, chain transfer agent (CTA), initiator and
redox activator were taken from production lines at Petrobras.
Styrene was washed with 5% Na(OH) solution to remove 4-tert-
butylcatechol, used as inhibitor. Before the addition of butadiene
and activator, all reagents were purged in the bottle with N2 for
oxygen elimination.

All polymerizations were carried out during 8 h and short-
stopped with hydroxylamine. In each case initiator, activator
and CTA concentrations were varied. The used ranges were
0.008–0.027 phm (parts per hundred of monomer) for initiator,
0.010–0.017 phm for activator and 0.188–0.425 phm for CTA. These
ranges were dictated by the central composite design employed, as
explained in the next section.

The properties measured for the obtained SBR were solid con-
tent on latex, polydispersity and Mooney viscosity.

Solid content measurement technique (ASTM D1417, 1993) con-
sists in taking a latex sample from the bottle at a reaction time of
8 h. Butadiene was eliminated under vacuum and then a weighted
latex aliquot was precipitated with isopropyl alcohol and placed in
oven at 145 ◦C for styrene and water removal, until constant weight
was obtained. Solid content was calculated as weight ratio.

Molecular weight distributions were determined by size exclu-
sion liquid chromatography. A Varian ProStar 210 pump with a
Varian 350 refractive index detector was used. A set of four Toso-
Haas TSKgel columns (106 to 104 Da) was employed. Calibration was
done with narrow polystyrene standards (Waters Corp., Milford,
USA). Mobile phase was THF at 1 mL/min flow rate. SBR samples
were dissolved in THF and filtered through 0.45 �m membrane
before injecting 200 �l into the columns.

Mooney viscosity was measured with a MV 2000 Alpha Tech-
nologies viscometer under standard conditions (ASTM D1646,
1993). For thermal stabilization, each sample was preheated dur-
ing 1 min at 100 ◦C, and Mooney viscosity was measured 4 min after
stabilization.

4. Results

SBR 1712 is a polymer with a typical Mooney viscosity between
110 and 120. In addition, it is advisable for the polymerization reac-
tion to be stopped at conversions not much higher than 60% (Quirk
& Morton, 1994). Larger values decrease rubber processability since
chain branching becomes important. This conversion value repre-
sents a solid content on latex of ca. 25 wt%.

On the other hand, in order to have suitable processability
it is required the presence of short chains that act like plasti-
cizers or lubricants, which can be accommodated between the
longest chains and favor the mixing process with fillers (Hoffman,
1989). As a consequence, a convenient polydispersity value of 3 is
assumed for emulsion SBR, which affords a compromise between
good mechanical properties and adequate processability for rubber
compounding.

Therefore, the optimization target values required to obtain SBR
1712 are 115 for Mooney viscosity, 25% for solid content at 8 h reac-
tion time and 3 for polydispersity.

In order to perform a multiple optimization, a relationship
between polymerization reagents and properties under optimiza-
tion must be established. For that purpose a central composite
design with three factors (initiator, activator and CTA) was applied.
The criterion to use this design was to obtain the maximum useful
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Table 1
Complete set of polymerizations and experimental responses.

Experiment Initiator (mL) Activator (mL) CTA (mL) Solid content (wt%) Mooney D

1 0.030 2.00 0.60 23.9 147.9 2.92
2 0.080 2.00 0.60 22.8 153.6 3.09
3 0.055 2.00 0.40 21.8 158.9 3.08
4 0.055 2.00 0.80 21.4 59.4 3.06
5 0.055 1.50 0.60 17.2 157.0 2.81
6 0.055 2.50 0.60 23.0 47.1 3.46
7 0.040 1.70 0.48 16.9 79.2 3.28
8 0.070 1.70 0.48 18.0 48.9 3.61
9 0.040 1.70 0.72 17.0 21.3 3.14

10 0.070 1.70 0.72 18.0 26.7 3.06
11 0.040 2.30 0.48 21.3 145.2 3.44
12 0.070 2.30 0.48 24.9 160.1 3.48
13 0.040 2.30 0.72 20.6 68.7 3.19
14 0.070 2.30 0.72 23.3 105.0 3.23
15 0.055 2.00 0.60 23.3 160.7 2.80
16 0.090 2.67 0.78 25.6 106.8 3.04
17 0.090 2.50 0.65 26.5 133.2 3.42
18 0.098 2.50 0.78 27.5 99.6 3.09
19 0.085 2.40 0.70 26.3 119.2 3.32
20 0.090 2.50 0.78 27.3 97.1 3.71
21 0.085 2.40 0.85 25.9 71.0 3.23
22 0.095 2.40 0.85 25.9 59.0 3.40
23 0.082 2.50 0.78 24.5 94.8 3.59
24 0.090 2.50 0.90 27.2 97.3 3.33
25 0.085 2.60 0.85 26.8 105.6 3.20
26 0.095 2.60 0.85 27.2 108.0 3.27
27 0.090 2.33 0.78 24.4 83.4 3.11
28 0.095 2.40 0.70 26.1 114.3 2.91
29 0.095 2.60 0.70 27.8 129.4 3.20
30 0.085 2.60 0.70 26.0 141.3 2.89

information with the minimum number of experiments. A single
point was used in the center of the design, making a total of 15
experiments.

In a first attempt, the experimental design ranges were selected
from standard polymerization conditions employed in rubber
plants (i.e. initiator: 0.030–0.080 mL; activator: 1.5–2.5 mL; CTA:
0.4–0.8 mL). The corresponding measured properties for this set
were not suitable for the optimization; for example, too high or too
low Mooney values were found, both far from the target. Therefore,
it was decided to expand the experimental set with a second cen-
tral composite design, changing all factor ranges for the next 15
experiments (initiator: 0.082–0.098 mL; activator: 2.33–2.67 mL;
CTA: 0.65–0.90 mL).

The conditions of the entire set of experiments and their respec-
tive responses are detailed in Table 1.

After all polymerization experiments were completed, the
obtained experimental data were subjected to a multiresponse
optimization, in order to obtain the conditions in which the
involved factors determine the target values.

A surface response methodology was used for the proper-
ties being modelled. In this method, the functional relationship
between the observed response and the experimental factors takes
the form of a second-order polynomial equation:

Yi = ˇ0 +
3∑

i=1

ˇiXi +
3∑

i=1

ˇiiX
2
i +

2∑
i=1

3∑
j=i+1

ˇijXiXj + εi (8)

where Yi represents the optimized responses, Xi the analyzed
factors (initiator, activator and CTA), ˇ0 is a constant intercept,
ˇi, ˇii and ˇij represent the coefficients of linear, quadratic and
cross-product terms and εi is the experimental error. Statistical
parameters of the fitted models (F-Model and P-Model) are shown
in Table 2. For the model to be significant, that is, not generated by
noise, P-Model values should be less than 0.05. As it can be seen,
the only significant model was the solid content (P-Model < 0.05)
while for Mooney viscosity and polydispersity the models were not

Table 2
Statistical results of fitted quadratic models.

Statistical parameter Solid content Mooney viscosity Polydispersity

Fitted model Quadratic Quadratic Quadratic
F-Model 21.93 1.42 0.70
P-Model <0.0001 0.24 0.69
R2 adjusted 0.8747 0.1237 −0.1093
R2 predicted 0.6867 −1.3865 −1.0603

significant (P-Model > 0.05). Based on these results, the optimiza-
tion cannot be accomplished by means of quadratic polynomials
because of the poor reliability of the fitted models.

Following the same methodology, and taking into account that
the number of experimental data was sufficiently large, a cubic
model fitting was also tried; however, P values less than 0.05 for
Mooney viscosity and polydispersity were obtained, indicating that
the models were not significant.

As the surface response methodology showed poor fitting
results, probably due to the complex behaviour of the Mooney vis-
cosity and polydispersity, an alternative approach was required.
The use of artificial neural networks was recently employed for the
modelling of properties in multiresponse optimization problems
(Moreira et al., 2007).

First, it was necessary to establish the architecture of the
employed artificial network. As usual, the number of neurons in
the input layer is the same as the number of factors in the design.
In this case three neurons were used, corresponding to initiator,
activator and CTA. In addition, to determine the number of output
nodes, two strategies can be considered; Schimidt, Cornejo-Ponce,
Bueno, and Poppi (2003) tested two variations of Back Propagation,
BP-SC (for a single component) and BP-MC (for multiple compo-
nent) in ANN training. Best performance was achieved when the
network was built with a single output for each application, rather
than when a single network was employed to correlate all responses
at the same time. Therefore, three neural networks were built with
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only a neuron in the output layer, corresponding to solid content,
Mooney viscosity and polydispersity, respectively.

To decide the number of neurons in the hidden layer, the crite-
rion employed was to train each network with a different number
of neurons until the RMSEC (Eq. (3)) decreased to a value close to the
property measurement error, using the minimum possible number
of training epochs. Estimated measurement errors were 3% for solid
content, 4% for Mooney viscosity and 6% for polydispersity.

For each of the three studied properties, one network was
trained using the experimental design of Table 1 as input signals,
and the values of solid content, Mooney viscosity and polydispersity
as output values. In Table 3 the architecture and resulting RMSEC
values of the trained ANNs are shown.

Employing the trained networks, response models were made
for each property, with the corresponding graphical results shown
in Figs. 1–3. Fig. 1(a) shows the surface response for solid content

Table 3
Details of ANN models.

Solid content Mooney viscosity Polydispersity

Net architecturea 3/6/1 3/6/1 3/4/1
Epochs 30,000 10,000 30,000
Learning rate 0.5 0.5 0.5
Momentum coefficient 0.5 0.5 0.5
RMSEC % 3 4 6

a Net architecture is expressed as: input neurons/hidden neurons/output neurons.

as a function of initiator and activator, with CTA at its optimum
value, and Fig. 1(b) shows the predicted vs. nominal values of solid
content. Similarly, Fig. 2(a) shows the surface response for Mooney
viscosity as a function of activator and CTA, with initiator at its opti-
mum value, while Fig. 2(b) shows the predicted vs. nominal values

Fig. 1. Graphical results for solid content: (a) surface response; (b) predicted vs. nominal values; symbols: , training; , ideal.

Fig. 2. Graphical results for Mooney viscosity: (a) surface response; (b) predicted vs. nominal values; symbols: , training; , ideal.

Fig. 3. Graphical results for polydispersity: (a) surface response; (b) predicted vs. nominal values; symbols: , training; , ideal.



Author's personal copy

G. Martinez Delfa et al. / Computers and Chemical Engineering 33 (2009) 850–856 855

Table 4
Desirability function parameters (see Eqs. (4)–(6)).

Parameter w1 w2 mini maxi ti

Solid content 1 1 16.9 27.8 25
Mooney viscosity 1 1 −13 192.5 115
Polydispersity 1 1 2.5 3.9 3

Fig. 4. Simultaneous desirability surface response with CTA at its optimum value.

Table 5
Comparison between expected and experimental values obtained with optimized
conditions (initiator = 0.08 mL; activator = 2.50 mL; CTA = 0.85 mL).

Response Target value Experimental value

Solid content 25 25.1 ± 0.5
Mooney viscosity 115 114.8 ± 3.4
Polydispersity 3 3.1 ± 0.2

of Mooney viscosity. Finally, Fig. 3(a) shows the surface response
for polydispersity as a function of initiator and CTA, with activator
at its optimum value, and Fig. 3(b) shows the predicted vs. nominal
values of polydispersity.

Theoretically produced data were used to calculate associated
desirabilities di (see Eqs. (4)–(6) and Table 4 for parameter values)
and simultaneous desirability D (taking ri = 1 in Eq. (7)).

The optimum D value was found to be 0.94, which corresponds
to 0.08 mL of initiator, 2.50 mL of activator and 0.85 mL of CTA.
Fig. 4 shows the surface response for D as a function of initiator
and activator, with CTA at its optimum value.

Once the optimum factor values were obtained, a new bottle
polymerization was carried out in duplicate following the gen-
eral procedure described above, and setting the three factors at
their optimum values. As it can be seen in Table 5, experimental
results for solid content, Mooney viscosity and polydispersity were
in agreement with the target values, and the differences that were
found are in the order of the analytical measurement error.

5. Conclusions

A multiple response optimization of SBR emulsion polymer-
ization is shown, having used experimental design, ANNs, surface
response and the desirability function.

Application of ANNs is a well established methodology for
optimization problems; nevertheless, its use on emulsion SBR, sup-
ported by experimental results, is a strong point in the present work.
This experimental verification confirms that the employed strategy
is suitable for the modelling of latex solid content, polydispersity
and Mooney viscosity.

The ANN methodology might not be the first option for this
problem but, as it is demonstrated in the work, surface response
with polynomial models gave unsatisfactory results for the above-
mentioned properties.

Particularly for Mooney viscosity, the challenge was to get a reli-
able set of calibration data, which is known to be a critical point for
ANN training (Nascimento et al., 2000). Considering that there is
no first-principle model from which Mooney viscosity data could
be derived, it was necessary to get experimental results. For this
reason, the training was done by feeding the ANNs with bottle
polymerization data, working under standard industrial labora-
tory conditions, taking the reagents and solutions directly from the
production plant, and using routine analytical methods of process
control from the same laboratory. Furthermore, the bottle poly-
merization is the method of choice when testing new reagents or
conditions for the production scale.

Following this point of view, the aim of the optimization
was placed on end-use properties like processability and Mooney
viscosity; these properties, despite being related with polymer
structure at molecular level, appear more feasible to be modelled
by a black box strategy than by a first-principle model.

The possibility to estimate reaction conditions based on required
final properties has been exemplified on other polymers (Fernandes
et al., 2004). In the present work, a simultaneous optimization stage
has been added to the ANN model, using the information obtained
from the surface response and the desirability function. The ana-
lytical methodology followed here on SBR emulsion is novel in the
area of polymerization optimization.

Finally, optimized polymerization conditions for SBR 1712 were
experimentally tested, and good agreement between target values
and experimental results was achieved.

To sum up, the combination of chemometric tools and multi-
ple response optimization showed its effectiveness to model and
control molecular properties. Considering that the input variables
chosen for optimization, i.e. initiator, activator and CTA, are individ-
ually added and easily controlled at production scale, it is therefore
possible to set these reaction conditions, according to the required
quality for every different SBR grade to be made. In this way, a
quality focused production strategy is established.
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