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ABSTRACT 38 

Carbapenems are “last resort” β-lactam antibiotics, used to treat serious and life-39 

threatening healthcare-associated infections caused by multidrug resistant Gram-negative 40 

bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among 41 

these bacteria is threatening these life-saving drugs. Metallo-β-Lactamases (MβLs) are the 42 

largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active 43 

against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving 44 

substrate specificity have been matter of intense debate. The active sites of MβLs are 45 

flanked by two loops, one of which, loop L3, was shown to adopt different conformations 46 

upon substrate or inhibitor binding, and thus being expected to play a role in substrate 47 

recognition. However, the sequence heterogeneity observed in this loop in different MβLs 48 

has limited the generalizations about its role. Herein we report the engineering of different 49 

loops within the scaffold of the clinically relevant carbapenemase NDM-1. We find that the 50 

loop sequence dictates its conformation in the unbound form of the enzyme, eliciting 51 

different degrees of active site exposure. However, these structural changes have a minor 52 

impact on the substrate profile. Instead, we report that the loop conformation determines 53 

the protonation rate of key reaction intermediates accumulated during the hydrolysis of 54 

different β-lactams in all MβLs. This study demonstrates the existence of a direct link 55 

between the conformation of this loop and the mechanistic features of the enzyme, bringing 56 

to light an unexplored function of active site loops on MβLs. 57 

 58 

59 
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INTRODUCTION 60 

β-Lactams are the most frequently prescribed class of clinically available antibiotics, 61 

used to treat infections caused by both Gram-negative and Gram-positive bacteria. β-62 

Lactams inhibit bacterial cell wall synthesis by targeting transpeptidases and 63 

carboxypeptidases (bacterial cell wall synthesizing enzymes) (1). The main mechanism of 64 

bacterial resistance against β-lactams in Gram-negative bacteria is the expression of β-65 

lactamases, enzymes that selectively hydrolyze the β-lactam ring, rendering the antibiotic 66 

ineffective (2, 3). Two distinct types of β-lactamases are currently known: serine-β-67 

Lactamases, which employ a Ser residue as the active nucleophile in catalysis, and 68 

metallo-β-Lactamases (MβLs), which are metal-dependent hydrolytic enzymes. MβLs are of 69 

medical concern given their ability to hydrolyze and confer resistance to virtually all classes 70 

of β-lactam antibiotics. Notably, all MβLs show hydrolytic capacities against carbapenems, 71 

the most potent β-lactam antibiotics to date, routinely used as ”last resort drugs” (1). 72 

Although some compounds have been found to be effective as MβL inhibitors (4-12), none 73 

of them are available to treat clinical infections yet, giving rise to a crisis in antimicrobial 74 

chemotherapy (13-18). 75 

MβLs are subdivided in 3 subclasses (B1, B2 and B3) based on the identity of active site 76 

essential residues, Zn(II) requirements and substrate profile (15, 16, 19-22). B1 MβLs are 77 

those of major clinical concern, because they are broad substrate spectrum β-lactamases 78 

and are encoded on mobile genetic elements in pathogenic and opportunistic bacteria. The 79 

most clinically relevant B1 lactamases belong to the NDM (New Delhi Metallo-β-80 

Lactamase), VIM (Verona Integron-encoded MβL), and IMP (Imipenemase MβL) families, 81 

with NDM-1, VIM-2 and IMP-1 being the most widespread allelic variants. In particular, 82 

NDM-1 is a membrane-anchored enzyme (23) and is one of the most widespread MβLs 83 
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with a potent carbapenemase activity (16, 24, 25). 84 

Two Zn(II) ions are required for the catalytic activity of B1 MβLs (26, 27). Both Zn(II) 85 

atoms are bound to a conserved ligand set: one Zn(II) ion is coordinated to three His 86 

residues (116, 118 and 196, after the standard BBL numbering (28)) and a hydroxide 87 

molecule (3H site), whereas the other is bound to the same (bridging) OH, an extra water 88 

molecule and residues Asp120, Cys221 and His263 (DCH site) (29-31). The metal ion at 89 

the DCH site has been shown to be essential in stabilizing key reaction intermediates 90 

during hydrolysis of chromogenic cephalosporins (32) and carbapenems (33, 34). This 91 

active site is located in a shallow and broad groove flanked by two loops: active site loop 92 

L10, and active site loop L3. Amino acid substitutions in both loops are associated with 93 

changes in the substrate profile in B1 MβLs (35-40). Despite different families of B1 MβLs 94 

present a conserved active site and global protein fold, these β-lactamases share very low 95 

sequence identity. This diversity has posed additional challenges for the development of an 96 

MβL inhibitor. Thus, the identification of common and distinct features is crucial for the 97 

understanding of their mechanism and substrate recognition profile.  98 

Loop L3 has been the focus of several studies in MβLs. Crystallographic and NMR 99 

studies identified variable conformations of this loop in many B1 MβLs (38, 41-45), and its 100 

role in specific interactions with their substrates is well documented (36, 39, 44, 46). 101 

Moreover, an increase of the dynamics of this loop was hypothesized with the broadening 102 

of the substrate profile in an in vitro evolved lactamase (37). The consensus identifies loop 103 

L3 as a mobile flap able to adapt its conformation upon small molecule binding in the active 104 

site. However, the sequence heterogeneity observed in the loop L3 from different MβLs has 105 

limited generalizations about its specific role. 106 

To explore the role of the loop L3 in the scaffold of NDM-1, we designed a series of 107 
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variants in which we replaced the native loop by those of IMP-1 or VIM-2, and a third one in 108 

which a Pro residue was introduced at the C-terminus of the loop. Herein we show that the 109 

substrate spectra and the active site structure display minor perturbations in these chimeric 110 

proteins, despite previous expectations. Crystal structures of two of the obtained chimeras 111 

show that different loops in the same scaffold adopt quite different conformations, spanning 112 

from an open to a close active site in the unbound form of the enzyme. However, the loop 113 

conformation cannot correlate to the substrate profile observed for the different variants. 114 

Instead, the loop conformation directly impacts on the accumulation of the anionic reaction 115 

intermediates, disclosing an auxiliary structural determinant of the mechanism of hydrolysis. 116 

These findings suggest a new role of this mobile loop in the catalytic mechanism of MβLs.  117 

 118 

RESULTS 119 

Loop L3 engineering gives rise to active and stable NDM variants 120 

A closer look at the primary sequence of the loop L3 of IMP-1, VIM-2 and NDM-1 121 

reveals significant differences (Fig. 1). For instance, the loop L3 of IMP-1 displays the same 122 

length as that from NDM-1, but it contains more polar residues. In contrast, the VIM-2 loop 123 

L3 shows a similar charge distribution but is one residue shorter and less hydrophobic than 124 

NDM-1 loop L3. Also, a proline residue is located at the C-terminus of the loop in all cases, 125 

except in NDM-1. To study the function of loop L3 in NDM-1, we designed two chimeric 126 

proteins in which the NDM-1 loop was replaced by the loops of IMP-1 and VIM-2 (including 127 

the Pro residues). These variants were designated as L3IMP and L3VIM, respectively. In 128 

order to assess how an insertion could impact in the function of loop L3, we also 129 

engineered an extra MβL in which a Pro residue was inserted at the base of the NDM-1 130 

loop, the L3Pro variant. 131 
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We used both in bacteria and in vitro approaches to analyze the L3 variants. 132 

Escherichia coli cells expressing the chimeric proteins were used to analyze MβLs 133 

properties in a natural background. We evaluated the expression levels in whole cells, 134 

spheroplasts and periplasmic extracts by immunoblotting (Fig. 2A). All variants were 135 

expressed including the native leader peptide of NDM-1, containing the canonical lipidation 136 

sequence LSGC (lipobox), which anchors the protein to the inner leaflet of the outer 137 

membrane (23, 43). None of the variants was in the periplasmic extracts, revealing an 138 

adequate processing of the leader peptide. The analysis of whole cell extracts and 139 

spheroplasts showed that NDM-1 and variants L3IMP and L3Pro showed similar expression 140 

levels and that the L3VIM variant was expressed at lower levels, but without compromising 141 

protein stability (Fig. 2A). These experiments show that our loop L3 engineering has been 142 

successful in eliciting stable proteins.  143 

We next tested the susceptibility of E. coli cells expressing the three NDM-1 L3 variants 144 

against a broad panel of β-lactam antibiotics. Minimal inhibitory concentration (MIC) 145 

analyses (Table 1) reveal that the L3 variants confer somehow lower levels of resistance 146 

against all tested substrates. In the case of cefepime, the impact of the mutations in the 147 

MIC values is larger. MβLs with reduced Zn(II) binding capabilities provide lower levels of 148 

resistance because metal binding takes place in the periplasmic space where Zn(II) 149 

availability is limited (26, 47, 48). We tested the effect of Zn(II) deprivation on protein 150 

expression levels by treating E. coli cells expressing NDM-1 variants with the metal chelator 151 

dipicolinic acid (DPA). This chelator strongly affected the expression of L3Pro and L3VIM 152 

variants, while the impact was moderate for variant L3IMP and wild type NDM-1 (Fig. 2B). 153 

We also tested the ability of our NDM-1 variants to bind Zn(II) within the cell by determining 154 

the impact of DPA in the MIC values against cefotaxime. The sensitivity of L3IMP to Zn(II) 155 
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deprivation resembled that of NDM-1, whereas it was increased for L3Pro and even more 156 

for the L3VIM variant (Fig. 2C).  157 

We then expressed and purified all variants in the soluble form, a truncated version in 158 

which the first 38 residues, including the signal peptide and the lipidation site, were 159 

removed (Δ38). All variants were obtained by expression in rich (LB) medium with similar 160 

yields as the wild type NDM-1, except for L3VIM, for which yields one order of magnitude 161 

lower were obtained. Also, the Zn(II) affinity of L3VIM was lower than the other variants 162 

(Table S1). This could explain the higher sensitivity of L3VIM when challenged with DPA 163 

(Fig. 2C) and the lower metal content (Materials and Methods section).  164 

We measured the stability of the purified variants and their apo-derivatives by thermal 165 

shift analysis (Table 2). The L3 variants were slightly less stable than the wild type enzyme, 166 

with TM values spanning a narrow range (4 °C). Instead, the non-metallated forms displayed 167 

a more pronounced destabilization effect. The L3VIM variant features the largest gap 168 

between the TMs of metallated and non-metallated forms, indicating that in this case the 169 

Zn(II) ions play a crucial role in stabilizing the MβLs. These results added to the differences 170 

on the expression levels under DPA addition, demonstrate that the stability of the non-171 

metallated form determines steady state protein expression levels and confirms that the 172 

metal uptake in the periplasm is crucial for MβLs stability. 173 

The activity of the enzymes was then studied by steady-state kinetics using purified 174 

MβLs. The determined kcat/KM values were within the same range of those measured for 175 

NDM-1 and all variants showed broad substrate spectra (Table 3). In general, the L3Pro 176 

variant displayed the lowest catalytic efficiencies, and L3IMP was the only variant that was 177 

catalytically more efficient compared to NDM-1 against some penicillins and 178 

cephalosporins. We stress that L3Pro displayed both elevated KM and kcat values, with 179 

 on D
ecem

ber 7, 2018 by guest
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org/


Mobile loop tunes reaction mechanism of metallo-β-lactamases 

9 

 

larger increases in KM resulting in overall lower catalytic performances. The kinetic 180 

parameters measured for L3VIM, in contrast, are closer to those of NDM-1. As L3VIM 181 

present a lower expression level than NDM-1 (Fig. 2A), it is likely that the MICs values 182 

obtained may have been lower due to a decreased expression level or Zn(II) uptake in the 183 

periplasm. The hydrolysis parameters for nitrocefin were practically unaltered upon loop 184 

replacement. On the other hand, for carbapenem hydrolysis both KM and kcat values 185 

presented differences within the variants: L3IMP parameters were lower than the wild type 186 

values, and for L3VIM and L3Pro these values were higher than in the wild type enzyme. 187 

Notwithstanding these changes in the substrate preferences, a clear trend in the substrate 188 

profile elicited by the loop replacement could not be identified in the chimeric proteins. 189 

Loop L3 conformation models the active site cavity size and accessibility with minor 190 

alterations on metal ligands 191 

Although residues in loop L3 do not directly interact with the Zn(II) ions, the different 192 

sensitivities to Zn(II) deprivation prompted us to test whether the loop L3 replacements 193 

induced changes in the metal binding sites in the variants. For that purpose, we used Co(II) 194 

as a spectroscopic probe of the metal site coordination geometry, replacing the 195 

spectroscopically silent Zn(II) ion (49). Fig. 3 shows the electronic absorption difference 196 

spectra in the UV-Vis range of all Co(II) derivatives. These spectra are characterized by 197 

distinctive features in two regions: (1) the Laporte-forbidden d-d transitions in the visible 198 

range (450−650 nm), which provide information on the metal site geometry (mainly of the 199 

3H site); and (2) a ligand-to-metal charge transfer transition (LMCT), ca. 330 nm, which 200 

reports on the Cys-Co(II) interaction at the DCH site (29). The band pattern and intensity of 201 

the d-d bands were preserved in all variants, revealing that the geometry at the 3H site was 202 

conserved (Fig. 3). The Co(II) derivatives displayed subtle changes on the position and 203 
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intensity of the LMCT band, which reflects minor changes in the Co(II)-thiolate interactions 204 

at the DCH site, especially for the L3Pro and L3VIM variants. These results suggest that 205 

loop replacement did not significantly alter the coordination sphere of the metal ion in the 206 

active site.  207 

To rationalize the impact of changes in loop L3, we performed X-ray crystallographic 208 

studies. The L3IMP and L3Pro variants were crystallized, and both structures were solved 209 

at a resolution of 1.65 and 1.80 Å, respectively (Table S2). Attempts to obtain crystals of the 210 

L3VIM variant were unsuccessful. The structures of both variants are very similar to the 211 

previously reported crystal structure of native NDM-1 (PDB code: 3SPU) (43). The overall 212 

structure of the enzymes and their active sites are highly conserved (Fig. 4A), as accounted 213 

for the low rmsd values of the core structure without considering the loop L3 (< 0.60 Å over 214 

all Cα). The active sites of L3IMP and L3Pro displayed bimetallic occupancy, i.e., with metal 215 

ions at the 3H and the DCH sites. The presence of Zn(II) was verified by anomalous 216 

diffraction. In the case of L3Pro, peaks of 40-50 rmsd were observed at the 3H site, 217 

confirming the presence of Zn(II), while no signal was observed at the DCH site (Fig. S1). 218 

Instead, the electron density could be properly accounted for by assuming the presence of 219 

Cd(II) (from the crystallization buffer) at this position. This metal substitution with a 220 

preserved geometry at the active site has already been reported for NDM-1 (3ZR9) (41). 221 

The structures did not reveal significant changes in the metal binding sites (Fig. 4B). 222 

The position of the Zn(II) ion and the three ligands in the 3H site remains unaltered among 223 

the L3 variants. In the DCH site, despite the different identity of the metals (Zn(II) in L3IMP 224 

and Cd(II) in L3Pro), a variation of only 0.5 Å for the metal ion position was observed, with 225 

the ligand residues displaying identical conformations. This observation agrees with the 226 
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spectroscopic data on the Co(II)-substituted enzymes that reveal a slightly perturbed DCH 227 

site, and a conserved geometry at the 3H site.  228 

The conformation of loop L3, instead, is considerably different among the variants (Fig. 229 

4C). The electron density is well defined in these loops in both variants, with B-factors 230 

slightly higher than those in the protein core (around 20 and 30 Å2 higher for L3IMP and 231 

L3Pro, respectively) (Fig. S2). In L3Pro, the interactions among the residues shaping the β-232 

sheet at the base of loop L3 are disrupted by the insertion of a Pro residue, giving rise to a 233 

more open loop conformation. In the case of L3IMP, the loop is stabilized by hydrophobic 234 

interactions of Trp64 with residues His263, Val67 and Val61, which pull Trp64 towards the 235 

active site inducing a more closed conformation of the loop (Fig. S3). The angle subtended 236 

by Zn1, the Cα atom of Ser69 (located on the base of loop L3) and the Cα atom of Gly63 237 

(located on the tip of the loop), provides a bona fide description of the loop 3 conformation 238 

(the larger the angle, the more open the loop), varying from 68° (L3IMP), 88° (NDM-1) to 239 

110° (L3Pro) (Fig. 4C). Thus, the L3 sequence dictates the conformation of the loop in the 240 

unbound form of this enzyme within the same protein scaffold.  241 

Loop L3 determines the accumulation of catalytic reaction intermediates 242 

The catalytic mechanism of MβLs takes place by accumulation of an anionic 243 

intermediate that has been characterized for the hydrolysis of the chromogenic 244 

cephalosporin, nitrocefin, and several carbapenems (33, 34, 50, 51). The rate-determining 245 

step of the reaction is, in both cases, the protonation of this intermediate, leading to the final 246 

product. Moali et al. reported that changes in loop L3 altered the accumulation of the 247 

intermediate during nitrocefin hydrolysis (39). Thus, we decided to study the hydrolysis of 248 

nitrocefin and carbapenems by our variant MβLs under pre-steady-state conditions with a 249 

photodiode array (PDA) detector coupled to a stopped-flow mixing device (32, 33). 250 
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Three absorption bands are observed during nitrocefin hydrolysis at 390, 485 and 251 

605 nm, which correspond to the substrate, product, and the anionic intermediate of the 252 

reaction, respectively (Fig. 5A) (32, 50). When we performed the hydrolysis reaction with all 253 

the L3 variants, the three bands were evidenced with similar maximum absorbance 254 

intensities (Fig. 5B). An analysis of the time course of the reaction (Fig. 5C) reveals that the 255 

time frame for accumulation and decay of the intermediate is similar for NDM-1 and the 256 

L3IMP variant, with L3IMP displaying the intermediate with the longest accumulation time. 257 

Instead, the intermediate is less stable in the L3VIM and, specially, L3Pro variants. 258 

Supporting this line, product formation is evidently faster in L3Pro, followed by L3VIM, 259 

NDM-1 and L3IMP; indicating that the decrease on the accumulation of the reaction 260 

intermediate is due to an increment on the protonation rate. Substrate consumption is also 261 

slower in NDM-1, and L3IMP, which could also contribute to a decrease in the rate of the 262 

reaction catalyzed by these enzymes. 263 

Carbapenem hydrolysis by MβLs of the three subclasses takes place by a branched 264 

mechanism with two anionic intermediate species (EI1 and EI2, Fig. 6A) (33, 34, 52). Both 265 

species are productive, but the final product and the nature of the proton donor differ. EI1 is 266 

the first intermediate produced, absorbs at 390-375 nm (in the case of imipenem and 267 

meropenem hydrolysis by NDM-1, respectively), and its N-protonation is produced by a 268 

water molecule bridging the Zn(II) ions (33). This species could give rise either to product or 269 

to a second intermediate species, EI2. This second intermediate species absorbs at 340-270 

336 nm (for imipenem and meropenem, respectively) and is later protonated by a bulk 271 

water molecule (not bound to the metal site) leading to the formation of an EP complex 272 

lacking a metal-bound water and, later, to a product stereoselectively protonated at C-2 273 

(33).  274 

As shown in Fig. 6B, the formation of both reaction intermediates was detected 275 
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during the hydrolysis of imipenem catalyzed by NDM-1 and the L3IMP variant, being more 276 

abundant in the second case. However, in the reaction catalyzed by L3VIM or L3Pro, we 277 

could not detect the accumulation of any of those intermediates, indicating that the 278 

protonation occurred too fast for the species to accumulate to a detectable amount. As 279 

accumulation of EI1 also depends on the formation and consumption of EI2, the decrease on 280 

the accumulation of the first intermediate species could be due only to an alteration of the 281 

protonation rate of EI2, by a bulk water molecule. For meropenem hydrolysis the formation 282 

of both reaction intermediates was detected with NDM-1 and the L3IMP variant, being, 283 

again, more abundant in the second case (Fig. 6C). On the contrary, the hydrolysis by 284 

L3VIM and L3Pro evidenced accumulation of only one intermediate (EI1 in L3VIM and EI2 in 285 

L3Pro), and to a minor extent than in the wild type enzyme (Fig. 6C). As these results 286 

resemble the pattern observed for imipenem, we conclude that these data evidence a 287 

general behavior for the hydrolysis of carbapenems (33). Our observations correlate with 288 

the steady state parameters for carbapenems where kcat values in L3IMP were lower than 289 

the ones of wild type NDM-1, indicating that the reaction rate is diminished, probably due to 290 

a decrease in the protonation rate. L3VIM and L3Pro present higher kcat values for 291 

carbapenems, correlating with the increased protonation rate. 292 

 293 

DISCUSSION 294 

A series of experimental studies of the loop L3 in B1 MβLs performed herein have 295 

provided critical information on its role, mostly regarding substrate recognition and mobility. 296 

Substitutions at this loop in IMP-1, IMP-12, IMP-43, IMP-18 (36), IMP-2 (45) and VIM-31 297 

(38) elicited changes in the substrate profile. Moali and coworkers reported changes in the 298 

catalytic efficiency of BcII by engineering the loop of IMP-1 (39). However, a definitive 299 
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structural description of the effect of the alterations in this loop is not available. An 300 

increased mobility of loop L3 in BcII variants was correlated to a broadening in the substrate 301 

profile (37). DEER spectroscopy studies in NDM-1 have demonstrated that loop L3 closes 302 

over the active site during catalysis, returning to its original position after hydrolysis (53, 54). 303 

Theoretical calculations have predicted a correlation between the movement of loop L3 and 304 

the catalytic efficiency in IMP-1 and IMP-6 (55, 56). NMR studies have described in detail 305 

the flexibility of loop L3 in different B1 enzymes (37, 57-59), while crystal structures of 306 

enzyme-inhibitor or enzyme-product adducts have pointed out how this loop reacts upon 307 

small molecule binding to the active site of these MβLs (5-7, 44, 45, 58-62). Here we show 308 

that loop replacement in the scaffold of NDM-1 gives rise to stable, folded proteins, and 309 

does not shape the substrate profile of this enzyme. Instead, loop engineering affects the 310 

catalytic mechanism, governing the accumulation of key reaction intermediates based on its 311 

conformation.  312 

Loop replacement induced distinct levels of destabilization in the NDM-1 scaffold. 313 

Surprisingly, the largest destabilizing effects in vitro were evident in the apo (non-314 

metallated) variants, particularly in L3VIM. The destabilization induced in this variant also 315 

correlates with a decreased affinity of the protein toward Zn(II), a higher sensitivity to Zn(II) 316 

deprivation in bacteria, and lower expression levels. Some of us have recently reported 317 

that, under conditions of Zn(II) deprivation, soluble periplasmic MβLs are degraded in the 318 

apo forms (23). Our previous results account for the link between the reduced Zn(II) affinity 319 

and the phenotype observed in the case of L3VIM. Overall, these data highlight the role of 320 

Zn(II) binding for the stabilization of MβLs. 321 

The crystal structures and spectroscopic data point to a structurally conserved metal 322 

site, with a minor perturbation in the DCH site. Although crystals for the L3VIM variant could 323 
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not be obtained, the good agreement of Co(II)-substitution experiments with the crystal 324 

structures allow us to extrapolate the spectroscopic results on this variant with confidence 325 

to the native Zn(II) enzyme. We therefore expect the metal site in L3VIM to be less 326 

perturbed compared to NDM-1. Under this assumption, the observed changes could be 327 

attributed to changes in loop L3, as observed for the other two variants. 328 

Major changes in the reported structures in this analysis are related to the conformation 329 

of the engineered loops (Fig. 4). Importantly, our results show that different loops can adopt 330 

a wide range of conformations within a given MβL scaffold and reveal details on how the 331 

loop L3 sequence defines its conformation. The loop L3 in IMP-1 is closer to the one 332 

observed in the engineered L3IMP in the NDM scaffold, while inhibitor binding to IMP-1 333 

does not alter the loop conformation as here reported. The same holds for NDM-1, for 334 

which inhibitor binding (bisthiazolidines or captopril) does not affect the loop conformation 335 

as much as loop engineering does (5-7, 44, 60). We conclude that the loop L3 sequence 336 

(regardless of the MβL scaffold) strongly determines its conformation.  337 

The catalytic performances of the engineered variants do not reveal a substantial 338 

change in the substrate profile of NDM-1. Instead, we report a significant impact on the 339 

catalytic mechanism as witnessed by changes in the accumulation of reaction intermediates 340 

in the hydrolysis of nitrocefin, imipenem and meropenem. The stability of these reaction 341 

intermediates depends on electrostatic interactions with the metal ions, particularly with the 342 

DCH site (33, 34, 63, 64) and it has been shown that subtle changes on the MβL active site 343 

could tune the stability of these species (26, 63, 65-68). However, the structure of the 344 

catalytic Zn(II) center is not perturbed by loop replacement, indicating that other structural 345 

features modulate the half-life time of the intermediate species.  346 
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The conformation of loop L3 directly affects the stability of these intermediates: a more 347 

closed loop (as in L3IMP) leads to an enhanced accumulation of the intermediate, while a 348 

more open active site (such as in L3Pro) decreases the amount of intermediate (Fig. 6). As 349 

the half-life of the anionic reaction intermediates depends on their protonation rates (33, 350 

64), these results suggest that the protonation step could be modulated by the solvent 351 

accessibility in the different mutants. This also suggests that it is likely that the presence of 352 

residues in loop L3 that favor interactions with active site residues (such as Trp64 in L3IMP) 353 

could disfavor water accessibility, making the protonation process less effective. We cannot 354 

discard the presence of specific interactions of loop L3 with the intermediate species that 355 

may increase its stability. This effect may account for the lower kcat values observed for this 356 

variant for carbapenem hydrolysis. Overall, these findings show that loop L3 plays an 357 

important role in the mechanism of β-lactam hydrolysis by MβLs by tuning the rate of the 358 

rate-limiting step and controlling the accumulation of key reaction intermediates according 359 

to its conformation. 360 

 361 

MATERIALS AND METHODS 362 

Bacterial Strains and Cloning 363 

Escherichia coli DH5α was used for construction and expression of plasmid pMΒLe, as 364 

well as for all microbiological and biochemical studies. pET26-blaNDM-1 was kindly provided 365 

by Dr. James Spencer (University of Bristol, UK). The construction of pMΒLeblaNDM-1 has 366 

been described previously (23) and the same procedure was used for variants cloning. The 367 

full-length blaNDM-1 gene (including its native peptide leaders) was amplified with addition of 368 

a C-terminal Strep-tag sequence (for comparative protein detection and quantification), and 369 

subcloned into the pMΒLe plasmid. The expression of bla was induced by the addition of 370 
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100 μM IPTG. Addition of the Strep-tag at the C-terminus does not affect MΒL ability to 371 

confer resistance (23).  372 

Construction of the L3 variants 373 

blaNVIM, blaNIMP and blaNPro containing the blaNDM-1 gene with the loop L3 of VIM-2, IMP-374 

1 and a Pro residue introduced at the base of the loop, respectively, were custom 375 

synthesized (Celtek Genes). The region exchanged comprised residues between Ser57 376 

and Ala68 of the NDM-1 structure. 377 

MβL Detection 378 

MβL expression was measured by immunoblotting of cell extracts as described 379 

previously (23). Briefly, 5 mL cultures of E. coli DH5α cells carrying the pMΒLe blaNDM-1, 380 

blaNVIM, blaNIMP, and blaNPRO plasmids were grown aerobically at 37 °C in LB broth with 20 381 

μg/ml gentamicin to log phase (OD600nm = 0.4). MβL expression was then induced with 100 382 

μM IPTG, and cultures were left to grow to an OD600 of 1. Cultures were pelleted and cells 383 

were washed once with 20 mM Tris, 150 mM NaCl, pH 8.0. An aliquot of cell crude extract 384 

were separated on this step. The rest of the washed cells were pelleted again and were 385 

resuspended in 20 mM Tris, 0.1 mM EDTA, 20% w/v sucrose, 1 mg/mL lysozyme (from 386 

chicken egg white, Sigma-Aldrich, protein ≥90%), 0.5 mM PMSF, pH 8 (resuspension 387 

volume was normalized based on OD600nm). The cells were incubated with agitation at 4ºC 388 

for 30 min. The cells were pelleted and the periplasmic extract was obtaining in the 389 

supernatant. The pellet consisting of spheroplasts was washed in 20 mM Tris, 0.1 mM 390 

EDTA, 20% w/v sucrose, pH 8 and resuspended in the same volume of this buffer. A total 391 

of 120 µL of the different extracts were mixed with 30 µL loading dye and separated by 392 

SDS-PAGE (10 µL of whole cells lysate, 25 µL spheroplasts and 25 µL periplasmic 393 

extracts) and transferred to a polyvinylidene difluoride membrane (Novex, Life 394 
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Technologies, Carlsbad, CA) by electroblotting. Strep-Tag® II monoclonal antibodies (at 395 

1:1000 dilution from 200 μg/ml solution, Novagen) and immunoglobulin G-alkaline 396 

phosphatase conjugates (at 1:3000 dilution) were used to detect MβL expression. GroEL 397 

and MPB antibodies were added as loading controls. Protein band intensities were 398 

quantified from PVDF membranes with ImageJ software (69).  399 

Cell-Based Assays 400 

To test the phenotypic effect of the loop L3 substitutions, the minimal inhibitory 401 

concentrations (MICs) of piperacillin, ceftazidime, cefotaxime, cefepime, imipenem, and 402 

meropenem were determined for each clone in the LB medium using the agar macrodilution 403 

method according to CLSI guidelines (70). Protein expression was induced with 100 µM 404 

IPTG, except for ceftazidime where induction was performed with 20 µM IPTG. In order to 405 

measure the effect of Zn(II) availability on antibiotic resistance, the growth medium was 406 

supplemented with varying concentrations of the metal chelator dipicolinic acid (DPA, 407 

Merck, >98%). In all cases, plasmid expression was induced with 100 μM IPTG (71). An 408 

extra measurement was performed with 500 μM of ZnSO4 to reach the maximum activity of 409 

the proteins (100%). DPA or ZnSO4 were added to the LB plate along with gentamicin and 410 

IPTG.  411 

On the steady-state expression of proteins in cells treated with DPA, after 1 h of 412 

induction with 100 μM IPTG, E. coli DH5α cells expressing the NDM variants were 413 

incubated during 15 min with or without 250 μM DPA. Protein expression was detected from 414 

10 μl of whole cell lysates by western blot, as previously described.  415 

Protein Purification 416 

For kinetic studies, mature MβLs (residues 39 to 270) were produced in E. coli BL21 417 

(DE3) and purified as previously published for NDM-1 (5), with the following two 418 

modifications. Firstly, LB supplemented with 50 μg/ml kanamycin was used instead of 419 
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minimal media. Secondly, MβL production was induced by addition of 0.25 mM IPTG. 420 

Protein concentration was measured spectrophotometrically using ε280 = 27960 M-1 cm-1 for 421 

NDM-1, L3VIM, and L3Pro, and ε280 = 31970 M-1 cm-1 for L3IMP. Metal content was 422 

measured using the colorimetric reagent 4-(2-pyridylazo) resorcinol (PAR) under denaturing 423 

conditions (72). The average metal content of the variants were somehow lower (1.5 for 424 

L3VIM, 1.6 for L3Pro and 1.65 for L3IMP) compared to the wild type protein (1.8 425 

equivalents of Zn(II) per enzyme) (33). 426 

Determination of Zn(II) Affinity Constants  427 

Dissociation constants for Zn(II) were estimated by competition with the chromophoric 428 

chelator PAR, as previously described (26). Briefly, PAR is a metallochromic compound, 429 

whose UV-Visible absorption spectrum is modified upon metal uptake, as reflected by a 430 

shift of its maximum absorption wavelength from 414 to 500 nm. Using the previously 431 

published molar absorption coefficients of free PAR (εPAR414nm = 36868 ± 1843 M-1 cm-1; 432 

εPAR500nm = 1289 ± 65 M-1 cm-1), PAR-Zn(II) complex (εPAR2Zn414nm = 12788 ± 576 M-1 cm-1; 433 

εPAR2Zn500nm = 80000 ± 4000 M-1 cm-1) and the disassociation constant (Kd) for the PAR-434 

Zn(II) complex (2.6 ± 0.2 10-12 M), we were able to quantify the amount of PAR at each 435 

state in a given sample (73).  436 

Disassociation constants for NDM-1 and all the L3 variants were determined at 25 °C 437 

by titrations curves on 40 mM MOPS, 0.1 M NaCl, pH 7.3 (previously treated with Chelex) 438 

supplemented with 1.5 μM ZnSO4 and PAR at 3 and 6 μM. Apo enzyme was added at 439 

increasing amount at each point, until a final concentration of 3 μM was reached, and the 440 

absorption spectra between 300 and 600 nm were recorded. Absorbances at 414 and 500 441 

nm were corrected by subtracting the absorbance at 600 nm, which was taken as baseline. 442 

Metal binding to wild-type NDM-1, L3VIM and L3IMP could be described by a two-step 443 

binding model. Data were fit with DynaFit 3 (Biokin) (74) to the equilibrium shown in 444 
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Scheme 1; were Kd1 and Kd2 are the disassociation constants of the enzyme:Zn(II) complex, 445 

and KdPAR corresponds to the dissociation of the PAR:Zn(II) complex. For the L3Pro variant 446 

a second model with one Kd (Kd1,2, Table S1) for the enzyme-Zn(II) complex was proposed 447 

(Scheme 2). 448 

 449 

Steady-state Kinetics 450 

β-Lactamase activity was measured in a JASCO V-670 spectrophotometer at 30 °C in 451 

10 mM HEPES pH 7.5 and 200 mM NaCl supplemented with 20 μM ZnSO4 and 20 μg/mL 452 

bovine serum albumin (BSA). Substrates were used in the µM range, whereas the enzymes 453 

were used in the nM range in order to ensure pseudo-first-order kinetics. It was only 454 

considered the concentration of metallated protein. The following differential extinction 455 

coefficients were used: nitrocefin, Δɛ482 = 17400 M−1 cm−1; PenG, Δɛ235 = − 775 M−1 cm−1; 456 

piperacillin, Δɛ235 = − 820 M−1 cm−1; ceftazidime, Δɛ256 = −7600 M−1 cm−1; cefepime, Δɛ260 = 457 

−750 M−1 cm−1; imipenem, Δɛ300 = −9000 M−1 cm−1; meropenem, Δɛ300 = − 6,500 M−1 cm−1; 458 

ertapenem, Δɛ299 = −9970 M−1 cm−1. 459 

Stopped-Flow Experiments 460 

The variations in the visible spectra of NDM-1 and its L3 variants during hydrolysis of 461 

nitrocefin, imipenem and meropenem were followed with an Applied Photophysics SX.18-462 

MVR stopped-flow system associated to a photodiode-array detector (Applied 463 

Photophysics, U.K.). The measurements were performed in 100 mM HEPES, pH 7.5, 200 464 
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mM NaCl and 0.3 mM ZnSO4, at 6 °C. Data were corrected for the instrument dead time (2 465 

ms). In all cases, a 1:1 ratio of metallated enzyme and substrate was used. 466 

Thermal denaturation assays 467 

Protein stability to thermal denaturation was determined on both holo and apoprotein 468 

by using the Protein Thermal Shift™ Assay (Applied Biosystems, Carlsbad, CA), following 469 

manufacturer’s instructions. Data were fit to a two-step model, as previously described (75). 470 

Preparation of Apo and Co(II) substituted enzymes 471 

The non-metallated forms of Apo-NDM-1, apo-L3VIM, apo-L3IMP, and apo-L3Pro, 472 

were prepared by successive dialysis of the purified holoproteins against chelators, as 473 

described previously (49). All buffer solutions used to prepare the apoenzymes were treated 474 

by extensive stirring with Chelex 100 (Sigma). Metal content of the apoprotein preparations 475 

was checked using PAR, as described above. Co(II) substituted enzymes were obtained 476 

after titration on apo derivatives with CoSO4 (49). 477 

X-ray crystallography 478 

The proteins were purified as described before with an additional size-exclusion 479 

chromatography step, in final buffer HEPES 10 mM pH 7.5, NaCl 200 mM, and 480 

concentrated to 30 mg/ml. Crystals were grown with the hanging-drop vapor diffusion 481 

method at 18 oC. Drops were set by mixing equal volumes of protein and reservoir solution. 482 

L3IMP crystals were grown in 100 mM HEPES pH 7.55, 0.1 M NaCl, 1.35 M (NH4)2SO4 483 

applying microseeding. L3Pro crystals were grown in 100 mM HEPES pH 7.0, 500 mM 484 

(NH4)2SO4, 5 mM CoCl2-NiCl2-MgCl2-CdCl2 and 12-30% (w/v) PEG 3350. All crystals were 485 

flash-frozen, either in mother liquor supplemented with 35% glycerol or 50% paraffin oil, and 486 

stored in liquid nitrogen. 487 

X-ray diffraction data were collected at 100 K at the Proxima 1 beamline (Synchrotron 488 

Soleil, Saint-Aubin, France). Data reduction was carried out using XDS (76) and Aimless 489 
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from the CCP4 program suite (77). The crystal structures of both proteins were solved by 490 

molecular replacement using the programs Molrep (78) or Phaser (79) and a previously 491 

determined NDM-1 structure (PDB entry 3SPU, chain C) as search probe. The final 492 

crystallographic models were obtained through iterative rounds of refinement with Buster 493 

(80) and manual rebuilding with COOT (81). Data collection and refinement statistics are 494 

summarized in Table S4. Both crystallographic models were validated with MolProbity (82) 495 

and the rmsd calculations were performed with PDBeFold (83). Illustrations were made with 496 

PyMOL (Schrödinger, New York, USA). 497 

To ascertain the presence of Zn metal ions in the active site of L3Pro crystals, two 498 

complete datasets were collected at the ESRF beamline id23eh1 using X-ray wavelengths 499 

immediately above (hr, =1.27241 Å) and below (lr, =1.28348 Å) the Zn K-edge as 500 

determined with a fluorescence scan. Using phases from the refined protein model, double 501 

difference anomalous maps (Dano(hr) – Dano(lr)) were produced with the programs 502 

SFTOOLS and FFT from the CCP4 suite (77) (Supplementary Figure 4). The presence of 503 

Ni(II) ions (from the crystallization buffer) mediating protein-protein interactions in L3Pro 504 

was confirmed in a similar way (hr, =1.48030 Å; lr, =1.48840 Å). In all cases, data 505 

processing and reduction were carried out as described before (Table S4). 506 

 507 

Accession numbers 508 

Structural data are available in Protein Data Bank database under the accession codes 509 

6C6I (L3IMP) and 6CAC (L3Pro). 510 
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TABLES 797 

Table 1. Antimicrobial susceptibility profiles of E. coli DH5α pMΒLe producing NDM-1 and 798 

its variants at loop L3. Minimum Inhibitory Concentrations (mg/L). 799 

Variant Imipenem Meropenem Piperacillin Cefotaxime Ceftazidime Cefepime 

NDM-1 4 2 128 64 1024 16 

L3IMP 2 1 64 16 256 16 

L3VIM 1 1 64 32 256 2 

L3Pro 1 1 16 64 256 0.5 

DH5α pMBLe 0.25 0.03 2 0.03 0.25 0.016 

 800 

801 
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Table 2. Melting temperatures (TM) of apo- and holo-enzymes measured by thermal shift 802 

assay. 803 

 804 

Variant TM (°C) Δ TM (°C) 

NDM-1 
Holo 56.6 ± 0.1 

18.3 ± 0.1 
Apo 38.3 ± 0.1 

L3IMP 
Holo 55.3 ± 0.1 

24.4 ± 0.4 
Apo 30.9 ± 0.3 

L3VIM 
Holo 55.2 ± 0.1 

31.5 ± 0.1 
Apo 23.7 ± 0.1 

L3Pro 
Holo 52.5 ± 0.1 

19.0 ± 0.2 
Apo 33.5 ± 0.1 

 805 

806 
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Table 3. Steady-state kinetic parameters for the NDM-1 and its L3 variants. Experimental 807 

conditions: buffer 10 mM HEPES pH 7.5, 200 mM NaCl, 20 μM ZnSO4, 20 μg/mL bovine 808 

serum albumin (BSA); 30 °C. ND, not determined. 809 

Substrate Variant KM (μM) kcat (s
-1) kcat/KM (μM-1s-1) 

Imipenem 

NDM-1 150 ± 30 570 ± 30 4 ± 1 

L3IMP 60 ± 10 160 ± 6 2.7 ± 0.5 

L3VIM 136 ± 7 631 ± 9 4.6 ± 0.3 

L3Pro 780 ± 90 1200 ± 60 1.5 ± 0.2 

Meropenem 

NDM-1 140 ± 20 960 ± 40 7 ± 1 

L3IMP 90 ± 10 39 ± 1 0.4 ± 0.1 

L3VIM 540 ± 50 1810 ± 70 3.4 ± 0.4 

L3Pro 1100 ± 200 2500 ± 200 2.3 ± 0.6 

Ertapenem 

NDM-1 25 ± 2 420 ± 10 17 ± 2 

L3IMP 29 ± 6 29 ± 1 1.0 ± 0.2 

L3VIM 110 ± 20 750 ± 40 5 ± 1 

L3Pro 270 ± 20 710 ± 20 2.6 ± 0.3 

Penicillin G 

NDM-1 80 ± 10 690 ± 20 8 ± 1 

L3IMP 13 ± 1 272 ± 4 21 ± 2 

L3VIM 40 ± 5 323 ± 9 8 ± 1 

L3Pro 690 ± 99 755 ± 49 1.1 ± 0.1 

Piperacillin 

NDM-1 120 ± 10 1190 ± 40 10 ± 1 

L3IMP 67 ± 8 232 ± 6 3.5 ± 0.5 

L3VIM 410 ± 30 1820 ± 70 4.4 ± 0.5 

L3Pro 700 ± 100 630 ± 70 0.9 ± 0.2 

Ceftazidime 

NDM-1 60 ± 10 620 ± 20 10 ± 2 

L3IMP 60 ± 10 131 ± 5 2.2 ± 0.4 

L3VIM 58 ± 8 250 ± 8 4.1 ± 0.7 

L3Pro 90 ± 20 120 ± 10 1.3 ± 0.4 

Cefepime 

NDM-1 50 ± 10 300 ± 20 6 ± 2 

L3IMP 6.1 ± 0.6 178 ± 2 28 ± 3 

L3VIM ND ND 1.2 ± 0.1 

L3Pro ND ND 0.9 ± 0.5 
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Nitrocefin 

NDM-1 1.3 ± 0.3 38 ± 2 29 ± 8 

L3IMP 2.9 ± 0.9 67 ± 7 23 ± 3 

L3VIM 4.0 ± 0.9 48 ± 3 12 ± 3 

L3Pro 2.6 ± 0.5 85 ± 4 32 ± 1 

810 
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FIGURE LEGENDS 811 

Fig. 1. Engineered substitutions of loop L3 in NDM-1. Sequence alignment of the L3 812 

variants, highlighting the differences at the loop L3 region, including the standard BBL 813 

numbering (28).  814 

 815 

Fig. 2. Expression levels and Zn(II) limitation susceptibility of NDM-1 and the L3 variants. 816 

(A) Immunoblot demonstrating steady-state expression in E. coli DH5α. Proteins were 817 

detected from whole cell lysates (lanes 2-5 and 14), spheroplasts (lanes 6-9) and 818 

periplasmic extracts (lanes 10-13). Wild type NDM-1 (W) corresponds to lane 2, 6 and 10; 819 

L3IMP (I) lanes 3, 7 and 11; L3VIM (V) lanes 4, 8 and 12; L3Pro (P) lanes 5, 9 and 13, and 820 

empty plasmid (E) lane 14. Lane 1 shows protein ladder marker. GroEL molecular weight is 821 

60 kDa and MBP 47 kDa (B) Immunoblot demonstrating steady-state expression of wild 822 

type NDM-1 and the L3 variants in E. coli DH5α treated with DPA. After induction, cells 823 

were incubated with (+) or without (-) DPA and protein expression was detected from of 824 

whole cell lysates. Wild type NDM-1 (W) corresponds to lane 2-3, L3IMP (I) lanes 4-5, 825 

L3VIM (V) lanes 6-7, L3Pro (P) lanes 8-9 and empty plasmid (E) lanes 10-11. Untreated 826 

cells were loaded before treated ones. Lane 1 shows protein ladder marker. (C) 827 

Antimicrobial susceptibility profiles of E. coli DH5α pMΒLe producing β-lactamases against 828 

cefotaxime at increasing DPA concentrations. E. coli DH5α expressing NDM-1 is shown in 829 

blue; L3IMP in green, L3VIM in red; and L3Pro in orange. 830 

 831 

Fig. 3. Difference spectrum of Co(II)-substituted wild type NDM-1 and of the L3 variants. 832 

The difference spectrum of the Co(II)-substituted MβLs were obtained by subtraction of the 833 
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spectrum of the non-metallated β-lactamase from the one corresponding to the final bi-834 

Co(II) substituted variant. The difference spectrum of the wild type NDM-1 is shown in blue; 835 

L3IMP in green, L3VIM in red and L3Pro in orange.  836 

 837 

Fig. 4. X-ray crystal structures of the L3IMP and L3Pro variants compared to NDM-1. 838 

Crystal structures of NDM-1 (PDB code: 3SPU, chain D) in blue, L3IMP in green (PDB 839 

code: 6C6I, 1.65 Å) and L3Pro in orange (PDB code: 6CAC, 1.80 Å). The images were 840 

generated after the complete alignment of NDM-1 and the two L3 variants. (A) The loop L3 841 

position is highlighted in a darker color. (B) Relevant conserved amino acids from the active 842 

sites of NDM-1 (blue), L3IMP (green), and L3Pro (orange) are represented by sticks; metal 843 

ions (Zn(II) in grey and Cd(II) in light orange) and water molecules (red) are represented as 844 

spheres. The position and orientation of the metal ligands is conserved among the three 845 

structures. The distances between the ions in the two sites are very similar ( 3.8 Å) among 846 

the different proteins. The position of the ions in the DCH site displays a slight variability 847 

among the structures while in the 3H site the position is unchanged. (C) Angle determined 848 

by the loop L3 and the plane of the active site of each mutant. The angles were calculated 849 

between the Zn1, Cα of Ser69 and Cα of Gly63. The values obtained for each loop L3 were: 850 

L3IMP = 68°, NDM-1 = 88°, and L3Pro =110°.  851 

 852 

Fig. 5. Photodiode array stopped-flow spectra and traces of nitrocefin hydrolysis by NDM-1 853 

and its L3 variants. (A) Reaction mechanism for nitrocefin hydrolysis by NDM-1, adapted 854 

from Yang et al (32). (B) Electronic absorption spectra upon the reaction of 10 μM nitrocefin 855 

and 10 μM enzyme in 100 mM HEPES, pH 7.5, 0.2 M NaCl and 0.3 mM ZnSO4, at 6 °C. 856 

The reaction progresses from black to color: NDM-1 in blue, L3VIM in red, L3IMP in green 857 
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and L3Pro in orange. Absorption bands with peaks at 390, 485 and 605 nm correspond to 858 

maximum absorption of the substrate, product, and the anionic intermediate of the reaction, 859 

respectively. (C) Temporary profiles of substrate (390 nm), intermediate (665 nm) and 860 

product (485 nm) during the reaction described in (A). Traces from NDM-1 are shown in 861 

blue; L3VIM in red; L3IMP in green and L3Pro in yellow.  862 

 863 

Fig. 6. Photodiode array stopped-flow spectra of carbapenems hydrolysis by NDM-1 and 864 

the L3 variants. (A) General reaction mechanism for carbapenems hydrolysis by MβLs, 865 

adapted from Lisa, Palacios et al. (33). The ES complex does not accumulate and is hence 866 

depicted in a lighter color (grey). (B) Sequence of difference spectra collected upon the 867 

reaction of 100 μM imipenem and 100 μM β-lactamase. The reactions progress from black 868 

to color: NDM-1 blue, L3VIM red, L3IMP green and L3Pro orange. The ionic intermediates, 869 

EI1 and EI2, were detected as absorption bands with maximum at 390 and 343 nm. The 870 

time interval spans up to 0.2 s. (C) Sequence of difference spectra upon the reaction of 100 871 

μM meropenem and 100 μM enzyme. The reactions progresses from black to color: NDM-1 872 

in blue, L3VIM in red, L3IMP in green and L3Pro in orange. The ionic intermediates, EI1 873 

and EI2, are detected as absorption bands with maximum at 390 and 330 nm. The time 874 

interval spans up 0.2 s. 875 
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