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ABSTRACT: A new equation is derived for estimating the
sensitivity when the multivariate curve resolution-alternating least-
squares (MCR-ALS) method is applied to second-order multi-
variate calibration data. The validity of the expression is
substantiated by extensive Monte Carlo noise addition simulations.
The multivariate selectivity can be derived from the new sensitivity
expression. Other important figures of merit, such as limit of
detection, limit of quantitation, and concentration uncertainty of
MCR-ALS quantitative estimations can be easily estimated from
the proposed sensitivity expression and the instrumental noise. An experimental example involving the determination of an
analyte in the presence of uncalibrated interfering agents is described in detail, involving second-order time-decaying sensitized
lanthanide luminescence excitation spectra. The estimated figures of merit are reasonably correlated with the analytical features of
the analyzed experimental system.

Important analytical advantages are derived from multiway
analysis, such as increased sensitivity and selectivity, and

quantitative analyte determinations by processing calibration
samples together with samples carrying potential interferences,
i.e., the so-called second-order advantage.1−7 In the case of
analyzing three-way data, it is imperative to assess if the data
comply with the property of trilinearity, which in analytical
chemistry terms basically implies that (1) the constituent
signals are proportional to their concentrations, and (2) the
component profiles along both instrumental modes (or ways)
are unique and equal for all samples. Excitation−emission
luminescence data, for example, are usually trilinear, because
the signal intensity is directly proportional to concentration
(within reasonable ranges), excitation/emission profiles of a
given component are the same in all samples, and luminescence
profiles for different components are linearly independent. The
most common cause of trilinearity loss is the variation of the
profiles for a given component in one data mode, e.g., from
sample to sample.5 This usually occurs in chromatographic
three-way data, because of the presence of run-to-run changes
in both retention times and profile shapes.8,9

A popular method based on the trilinear model is parallel
factor analysis (PARAFAC)10 and its variants.11,12 Small
deviations from the trilinear model can be taken into account
by latent-variable based methodologies, such as unfolded and
N-way partial least-squares combined with residual bilineariza-
tion (U-PLS/RBL and N-PLS/RBL, respectively).13,14 How-
ever, when sample-to-sample profile changes occur, the latter
algorithms cannot in general be applied and an alternative in

such situations is the multivariate curve resolution-alternating
least-squares (MCR-ALS)15 method. MCR-ALS is usually
employed in works required to cope with deviations of the
trilinear model, while the bilinear model still holds. Figure 1
illustrates the difference between a trilinear and a nontrilinear
case when matrix chromatographic-spectral data are processed
with MCR-ALS.
A variant of PARAFAC named PARAFAC216 is also useful

for cases where the deviations of trilinearity are not large, i.e.,
mostly caused by factor profiles shifting in one of the data
modes.17 An additional situation where the trilinear model
breaks is produced when component profiles are identical in
one of the data modes. In this case, MCR-ALS still constitutes a
valid alternative,18,19 as well as the application of methods based
on the Tucker model are,20 or the recently discussed version of
U-PLS/RBL, which incorporates MCR-ALS to aid RBL in
resolving the interfering agent profiles.21

In one- and two-way calibration problems the estimation of
figures of merit is now firmly established, as documented in
IUPAC’s Technical Reports.22,23 The most relevant figure of
merit is the sensitivity, because it is the crucial element in most
expressions for estimating other figures, such as selectivity, limit
of detection, limit of quantitation, and uncertainty in predicted
concentrations.24 Sensitivity may be defined as the change in
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(net) response for a given change in analyte concentration.
While in univariate calibration, this is calculated as the slope of
the calibration curve,22 in two-way multivariate calibration, this
can be calculated as the slope of a pseudounivariate calibration
curve from the value of the net analyte signal (NAS), which is
estimated as the portion of the total signal uniquely ascribed to
the analyte of interest.25 An alternative definition, according to
the so-called sensitivity analysis,26 is based on the impact in the
output of a model caused by the uncertainty of the input, which
in analytical chemistry terms measures the sensitivity as the
inverse of the ratio of predicted concentration uncertainty to
signal uncertainty.27

In three-way data analysis, different sensitivity definitions
exist. In the framework of the PARAFAC model, for example,
two alternative expressions were developed, one by Messick,
Kalivas and Lang (MKL)28 and another one by Ho, Christian,
and Davidson (HCD).29 Recently, however, it was shown that
both of them are special cases of a general sensitivity definition
by Faber and Olivieri (FO).30 This somehow reflects the
difficulties found by the NAS concept in this field.31 The
extension of the latter approach to four-way data analysis and
beyond has been troublesome, although an improved closed-
form expression has recently been developed.32 In the RBL
methodologies, some advances have taken place, although the
picture is still far from being definite.14

In the case of MCR-ALS, some attempts have been made for
defining figures of merit, based on resampling techniques or
Monte Carlo noise addition approaches.33 An experimental
approach to figures of merit estimation can also be undertaken,
considering the pseudounivariate scores-concentration calibra-
tion graph generated by MCR-ALS and defining parameters
analogous to their univariate calibration counterparts.34 This
latter strategy allows one to estimate the limit of detection and
quantitation. However, although analytical concentrations are

proportional to the scores recovered by the MCR-ALS
algorithm, the latter have arbitrary units and do not reflect, in
general, the effect of the overlapping of the analyte profiles with
those for other samples components. Hence, the sensitivity
cannot be defined as the slope of the MCR-ALS pseudouni-
variate calibration graph.
In the present report, we employ a sensitivity definition

which is based on error propagation analysis as the inverse of
the ratio of predicted concentration uncertainty to signal
uncertainty.30−32 An expression suitable for MCR-ALS
analytical studies is derived and supported by Monte Carlo
noise addition simulations and experimental data. This may
help in assessing other important figures of merit for this
popular multivariate resolution methodology when used for
quantitative purposes and also in putting the MCR-ALS
sensitivity in perspective with the remaining second-order
calibration algorithms.

■ THEORY

MCR-ALS. A brief description of the so-called extended
MCR-ALS methodology is provided in the Supporting
Information, and a derivation of the expression to estimate
the sensitivity (SENMCR) is given in the Appendix:

= − −m J S SSEN [ ( ) ]n nnMCR
T 1 1/2

(1)

where n is the index for the analyte of interest in a
multicomponent mixture, mn is the slope of the MCR
pseudounivariate calibration graph for this analyte, ST is a
matrix containing the profiles for all sample components in the
nonaugmented MCR direction, and J is the number of channels
in the test sample data matrix in the augmented MCR direction.
For full details concerning these parameters see the Supporting
Information.

Software. All calculations were implemented with MAT-
LAB 7.10 routines,35 available from the authors on request. The
MCR-ALS algorithm was obtained from the Internet page
http://www.mcrals.info.

Data Simulations. The first step in the simulations of the
various data sets consists in creating data matrices for a number
of simulated samples. In these simulations, for each sample a
data matrix is created with dimensions J × K, where J is the
number of rows and K is the number of columns. The total
number of data samples to be simultaneously analyzed using
the extended MCR-ALS method is I (this includes the
calibration data matrices and a single test data matrix). Details
on the construction of the data sets and values of I, J, and K are
given below.
Notice that, as explained in the Supporting Information, the

discussed extended MCR-ALS model can be used to analyze
different types of analytical scenarios. Typically the augmented
data matrix is resolved into profiles contained in the C and ST

MCR matrices (see the Supporting Information) which may
adopt different interpretations. For example, in the trilinear data
sets B1, B2, T1, T2, T3, and Q1 to be discussed below, the C
matrix represents successive excitation fluorescence profiles
along the augmented mode and ST the emission spectra along
the nonaugmented mode. In the nontrilinear data set B3 (and
also in the experimental data set for the determination of the
analyte furosemide in the presence of uncalibrated flufenamic
acid), C represents successive time decay profiles and ST

luminescence excitation spectra. Finally, in the nontrilinear

Figure 1. Scheme illustrating the difference between a trilinear data set
and a nontrilinear data set, when chromatographic-spectral matrices
are processed with MCR-ALS. This algorithm decomposes the
augmented data matrix Daug leading to the retrieval of spectral (ST)
and elution (Caug) profiles for each component. In the trilinear case,
the retention time profiles for each constituent are identical in all
samples (submatrices C1, C2, and C3), only differing in the relative
scale (bottom-left plot). However, in the non-trilinear case, the elution
profiles for a given component may differ in position and/or shape
from sample to sample, as is evident in the figure (bottom-right plot).
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data set B4, C represents successive chromatographic retention
time profiles, while ST the detection absorption spectra.
To represent the two instrumental measurement modes for

each sample, noiseless Gaussian-shaped profiles for four
different constituents (1, 2, 3, and 4) were defined for the
two instrumental data modes. All pure component profiles were
normalized in both modes, so that their area under the profile
(the total signal for each pure constituent) was one (Figure 2).

Simulated data have 50 values in the column vector space
(Figure 2A) and 50 in the row vector space (Figure 2B), so that
J = K = 50. In all cases, the peak maxima for the Gaussian
profiles of constituent 1 (the analyte of interest) were fixed at
the center of each of the data ranges, i.e., at position 25 in the
column mode and at position 25 in the row mode (Figure
2A,B). The peak maxima for the remaining constituents were
placed in both modes at 100 different random positions (except
in system B3 in the column mode, see below). Figure 2 shows a
particular situation for the four possible constituents.
In all simulated data sets, 10 calibration samples were

created, with component concentrations taken at random and
uniformly distributed in the range 0−1. A single test sample
was produced, having component concentrations taken
randomly from the range 0.4−0.6. In the present simulations,
therefore, I = 11 (the 10 calibration samples plus the test
sample).
A first group of simulations corresponded to six data sets

fulfilling the trilinear model, where each component was
characterized by spectral profiles in each data mode which were
invariant from sample to sample. These data sets contain the
following constituents: data set B1 with analytes 1 and 2; data

set B2 with analyte 1 and interfering agent 2; data set T1 with
analytes 1, 2, and 3; data set T2 with analytes 1 and 2 and
interfering agent 3; data set T3 with analyte 1 and interfering
agents 2 and 3; and data set Q1 with analytes 1, 2, 3, and 4.
These simulated data are typical of excitation−emission
fluorescence data because usually the fluorescence excitation
and emission spectra are invariant throughout the samples. For
MCR-ALS analysis, the augmented mode was the column
mode, which represents the excitation spectral profiles, and the
non augmented mode was the row mode, which represents the
emission spectral profiles.
Two additional nontrilinear data sets were produced. In the

binary data set B3, analyte 1 occurs in all samples, while
interfering agent 2 appears only in the test samples. The
profiles for both components are invariant in all samples, as in
the trilinear models, but they are identical for the two
components in the column vector space. Specifically, the peak
maximum for component 2 was placed at position 25 in the
profile of the column mode in all samples, coincident with the
analyte, and at random positions in the profile of the row mode.
Since the profiles in the column mode are identical, the B3 data
set should not be considered strictly a trilinear model but a
degeneration of it.20 This simulation tries to mimic some
experimental systems, such as those based on time decay-
luminescence data matrices to be described below. For MCR-
ALS analysis, the augmented mode was the column mode, in
which the analyte and interfering agent profiles are identical,
and the nonaugmented mode was the row mode, where the
analyte and interefering agent profiles are different.
In the data set B4, the peak maximum for component 2 was

placed at 100 random positions in both modes, but in the
column mode the positions and peak widths varied from
sample to sample in each simulation, by random values within
the range ±5 units in peak position and ±10 units (full
peakwidth at half-maximum). In this way, the profiles for the
same component are not invariant in the augmented column
(concentration) mode, and thus it is not possible to define a
unique component profile for it in this mode because they
change along this mode, both in bandwidth and in position of
the maximum. This is similar to what usually happens in
chromatographic separations with spectroscopic detection,
where the elution peak retention times and shapes of the
same eluted component can change from run to run (in the
augmented column mode). For MCR-ALS analysis, the
augmented mode was the column mode, in which the
component profiles change from sample to sample, and the
non augmented mode was the row mode, where the profiles do
not change from sample to sample.
All data sets were analyzed by extended MCR-ALS, which

was applied with following the steps: (1) the whole data set
including the unknown sample data matrix were joined with the
calibration data matrices to create a new column-wise
augmented data matrix, (2) the column-wise augmented data
matrix was decomposed using a bilinear model, initializing the
algorithm with profiles in the row vector space estimated from
the purest variables in this mode36 and imposing suitable
constraints (see below), (3) MCR-ALS resolved scores for
component 1 (analyte of interest) in the calibration samples
were regressed against its nominal concentrations, and (4) the
test analyte score was interpolated in the calibration graph to
estimate its concentration. The following constraints were
applied during the ALS phase: non-negativity constraints to all
resolved profiles for all components; correspondence constraint

Figure 2. Noiseless component profiles used to build up the different
simulated data sets: (A) column component profiles and (B) row
component profiles. Black lines identify the analyte of interest
(component 1); remaining colors correspond to other sample
components: blue, component 2; green, component 3; red,
component 4.
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between profiles of the same component in the case of data sets
B2, T2, and T3 having uncalibrated interfering agents and the
trilinearity constraint37 in the case of data sets B1, B2, T1, T2,
T3, and Q1.
The sensitivity parameter is estimated in this report as the

ratio of the noise introduced in the signal and the uncertainty
obtained in the predicted concentrations (see below).30−32 For
this purpose, instrumental uncertainty was only added to the
test sample data matrices while keeping the calibration data
precise, as in previous studies.30−32 This is usually done when
estimating the sensitivity by Monte Carlo noise addition,
because in this way the concentration uncertainty depends only
on the sensitivity and on the signal uncertainty.30−32 If noise
were also added to the calibration signals, the concentration
uncertainty would also be a function of the sample leverage, a
dimensionless parameter which positions the test sample in the
calibration space.27,30 It would then be difficult to separate the
effect propagated by the test sample from those propagated by
the calibration samples in order to estimate the sensitivity. In
each of the analyzed data sets, the value of the signal
uncertainty (i.e., the value of sdtest, see the Appendix) was
0.01% of the mean of all values of the elements of the
corresponding calibration three-way data array.
This calibration/prediction procedure was repeated 1 000

times using different random seeds for the signal noise. The
variance in the estimated concentrations of the analyte of
interest (the constituent 1 in all cases) was calculated for the
test sample in each case after the 1 000 Monte Carlo cycles as

∑=
− ̅

=

c
c c

var( )
( )

999i

i
1

1

1000
1 1

2

(2)

where ci1 is the estimated concentration of analyte 1 at each
Monte Carlo cycle, and c1̅ is the mean estimated concentration
of this analyte across all Monte Carlo cycles. This leads to
Monte Carlo sensitivities SENMC toward analyte 1 through

= s sSEN /d cMC test 1 (3)

where sdtest is the standard deviation of the Gaussian noise
introduced in the test sample signals, and sc1 is the standard
deviation in the predicted analyte concentrations, i.e., [var-
(c1)]

1/2 or the square root of the value obtained in eq 2.
In all these calculations, it was assumed that rotation

ambiguities associated to the MCR-ALS bilinear decomposition
are removed or that they are low because of the applied
constraints, especially those related with trilinearity, species
correspondence, and local rank regions (see refs 15, 33,
37−39).

■ EXPERIMENTAL DATA
Lanthanide-sensitized luminescence signals were recorded on
an Aminco Bowman series 2 spectrofluorimeter (Urbana, IL)
equipped with a 7 W pulsed xenon lamp and a thermostatted
(20.0 °C) quartz cell, through the AB2 software operating
under Windows. Instrumental parameters were excitation and
emission slits, 8 nm; delay time, 300 μs; gate time, 4000 μs;
minimum flash period, 10 ms; photomultiplier sensitivity
(PMT), 650 mV; masked detector. Matrix data were registered
as a function of decay time and excitation wavelength, at a fixed
emission wavelength of 545 nm. The time decay range was
from 300 to 4000 μs each 100 μs (38 data points), and the
excitation range was from 230 to 380 nm each 5 nm (31 data
points). Each measured matrix was organized and saved as a

data matrix, in which the columns were the time decay profiles
at each wavelength and the rows were the excitation spectra at
each decay time.
All reagents were of analytical grade. Furosemide (Merck,

Darmstadt, Germany) and flufenamic acid (Fluka, Buchs,
Switzerland) were employed to prepare concentrated solutions
in methanol (Merck, Darmstadt, Germany) and by adequate
dilution with water for furosemide and with methanol for
flufenamic acid, 10.0 mg L−1 solutions. Terbium(III) (1.50 ×
10−2 mol L−1) was prepared by dissolving terbium chloride
hexahydrate (Fluka, Buchs, Switserland) in distilled water.
Trioctylphosphine oxide (TOPO) (2.00 × 10−2 mol L−1) was
made by dissolving the reagent (Aldrich, Gillingham, Dorset,
U.K.) in ethanol (Merck, Darmstadt, Germany). Triton X-100
(0.9% w/v) was prepared by direct dilution of the surfactant
(J.T. Baker) in water. A tris-(hydroxymethyl)-aminomethane
(Tris) buffer solution (0.05 M, pH = 6) was also prepared by
dissolving solid Tris (Merck, Darmstadt, Germany) in water,
adding diluted HCl to reach the desired pH value.
A total of 14 duplicate calibration samples were prepared

containing the analyte furosemide at 7 different concentration
levels, i.e., 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 mg L−1. Two
duplicate blank samples were added to the analysis. In total, 20
test samples were also prepared in duplicate, with analyte
concentrations within the calibration range, but different than
those employed for calibration, and flufenamic acid in the range
0.05−0.65 mg L−1. All samples contained Tb(III) 7.50 × 10−4

M, TOPO 1.60 × 10−4 M, triton X-100 0.060% w/v, and Tris
buffer 0.05 M (final pH value = 6).
Lanthanide-sensitized time decay-excitation matrices were

measured in random order for all samples. In these data
matrices, the time decay profiles for both constituents are
almost identical but the excitation profiles differ. Hence,
selectivity is only present in the spectral mode. Therefore, this
system can be analyzed with a few second-order multivariate
algorithms, the most usual being MCR-ALS. An additional
strategy has been recently described, based on a modified
version of U-PLS/RBL (which in fact incorporates MCR-ALS
within the RBL procedure).21

■ RESULTS AND DISCUSSION
Simulated Data. Simulated trilinear data sets B1, T1, Q1,

B2, T2, and T3 were analyzed using MCR-ALS, as described in
the corresponding section. In the first three cases, 2, 3, and 4
components occur both in calibration and test samples,
respectively. Constraints applied during the ALS phase were
non-negativity of profiles in both modes and trilinearity. After
finishing the calibration/prediction process, the concentration
of analyte 1 in the simulated test sample of 1 000 different
Monte Carlo replicates, and considering 100 different over-
lapping situations among the profiles in both data modes, was
estimated and the Monte Carlo sensitivity values, SENMC,
calculated according to eq 3. For each of these cases, analyte
sensitivities for component 1 were also estimated using eq 1.
Both sets of results are compared in Figure 3A−C. As it can be
seen, good agreement is found for these three investigated
cases, i.e., B1, T1, and Q1. It is interesting to note that the
sensitivity decreases when the number of overlapping
components increases, as expected. This is already observed
in Figure 3A−C but also numerically substantiated, since the
average of Monte Carlo sensitivity values were 0.39, 0.16, and
0.02 for data sets B1, T1, and Q1, with 2, 3, and 4 sample
components, respectively. It should be noticed that only eq 1 is
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able to successfully reproduce the values of sensitivity estimated
by the present Monte Carlo simulations. If the slope of the
MCR-ALS calibration graph mn were considered as a measure
of sensitivity, in the present simulations all sensitivities would
be equal and independent of the profile overlapping in the

nonaugmented mode, in contrast to the values furnished by eq
1.
For B2, T2, and T3 data sets, the test samples contained

interfering agent components which were not included in the
calibration set of samples, meaning that the second-order
advantage is needed for successful analyte prediction. In these
cases, not only the constraints mentioned above were applied
during MCR-ALS decomposition but also the one referred to
species correspondence. This is because some components are
known to be absent in the calibration samples in these systems,
and this (local) rank information is very useful for a successful
decomposition of the augmented data matrix without
ambiguities.38,39 The results, presented in Figure 3D−F, do
also show agreement between Monte Carlo simulations and the
new eq 1. As with the previous investigated systems B1, T1, and
Q1, the sensitivity decreases on increasing the total number of
components. For binary system B2, the average value is 0.38,
whereas for the ternary systems T2 and T3, they are both
∼0.16.
Concerning nontrilinear data sets B3 and B4, it should be

noticed that MCR-ALS can be successfully applied also to
model them as it has been shown before.15,38,39 In rank
deficient system B3, two components occur, with identical
column profiles and different (but partially overlapped) row
profiles. The analyte (component 1) is present in both the
calibration and test samples, but the interfering agent is only
present in the test samples. This creates severe complications
for some second-order multivariate algorithms, such as
PARAFAC and U-PLS/RBL.21 In data set B3, for example,
the PARAFAC sensitivity toward analyte 1 is known to be given
by the well-known HCD expression:

= − − −m S S C CSEN [( ) ( ) ]n nn nnHCD
T 1

test
T

test
1 1/2

(4)

where S and Ctest are the profile matrices retrieved by
PARAFAC in both data modes and mn the slope of the
pseudounivariate calibration graph (recall that in the trilinear

Figure 3. Comparison of sensitivities for analyte 1 using Monte Carlo
MCR-ALS results (eq 3) and sensitivities obtained using eq 1 in the
analysis of the trilinear data sets. Results for the (A) two-component
system B1, (B) three-component system T1, (C) four-component
system Q1, (D) two-component system (B2), (E) three-component
system T2, and (F) three-component system T3 (see the section Data
Simulations for the explanation of these systems).

Figure 4. Comparison of sensitivities obtained using Monte Carlo MCR-ALS results and of sensitivities obtained using eqs 1 and 3 in the analysis of
the nontrilinear data sets. (A) Comparison of sensitivities of analyte 1 in system B3. (B) MCR-ALS resolved column profile for component 2 in
system B3 for the test sample, which is identical to the theoretical one for analyte 1 (see Figure 1). (C) Comparison of sensitivities of analyte 1 in
binary system B4. (D) MCR-ALS resolved column profiles for analyte 1 in the five different samples of system B4, illustrating their changes in band
shapes and peak positions from sample to sample (see the section Data Simulations for the explanation of these systems).
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PARAFAC model both the ST and Ctest profiles are identical for
all samples). From eq 4, it is clear that rank deficiency in the
column vector space leads to SENHCD = 0, because the matrix
(Ctest

T Ctest) is singular and cannot be inverted. This means that
these types of data sets cannot be properly analyzed by regular
PARAFAC.18,19,40 An analogous result is obtained for the RBL
procedure, which cannot distinguish between the analyte and
the interfering agent signal, because the former is based on
principal component analysis of a rank one residual data matrix
having two contributions (analyte and interfering agent) with
an equal profile in one of the modes.21

Using MCR-ALS, successful analyte prediction is possible in
these cases because it takes advantage of the rank augmentation
obtained by the matrix augmentation procedure. Although the
selectivity in the column vector space for a single data matrix is
zero, a nonzero selectivity occurs in the augmented matrix,
which is built by augmentation along the column vector space.
The results from the present Monte Carlo simulations are
collected in Figure 4A, where the agreement between results
from simulations and from eq 1 is confirmed. Figure 4B shows
the MCR-ALS resolved profile for component 2 in the column
vector space in the test sample, which is identical to the analyte
profile shown in Figure 2B.
Finally, the simulated nontrilinear binary data set B4 poses

another challenge to second-order calibration algorithms, i.e.,
profiles in one data mode (the column vector space) varying for
different data matrices (from sample to sample), both in peak
shape and in peak position of its maximum. This is frequently
encountered in the chemical type of data (chromatography,
reaction based systems, etc.), and it is easily accounted for by
the bilinear matrix augmentation models like those used by
MCR-ALS, because the augmented concentration matrix
retrieved by this algorithm allows component profiles in
successive data submatrices to be different and specific for each
data submatrix corresponding to each sample. To compute the
sensitivity in this case, however, only the S profiles (row
profiles) are required according to eq 1. Figure 4C confirms the
adequacy of the presently proposed approach in reproducing
Monte Carlo sensitivities for system B4. In Figure 4D, in turn,
the different column profiles for component 1 in the five
different data matrices (samples) were correctly resolved by
MCR-ALS.
In summary, Monte Carlo simulations give support to the

adequacy of eq 1 for the estimation of analyte sensitivities when
MCR-ALS is employed for data processing in scenarios of
different complexity. For a variety of systems with different
degrees of overlapping, and also different number of calibrated
analytes and uncalibrated interfering agents, good agreement
has been found between the Monte Carlo estimated sensitivity
and the values provided by eq 1. This confirms that the slope of
the pseudounivariate MCR-ALS calibration graph (mn) is not
the correct measure of the sensitivity.
Experimental Data. In the experimental data set, a single

analyte occurs (the diuretic furosemide) while all test samples
contain an interfering agent (the anti-inflammatory flufenamic
acid). The data structure is close to that of the simulated system
B3, i.e., the profiles of both components in the time decay
domain (the column mode of each data matrix) are almost
identical, while one of the components only exists in the test
samples. Selectivity is present in the excitation spectral mode,
which corresponds to the row vector space of each data matrix.
A typical calibration set employed in quantitative analytical
studies was prepared, with all calibration samples as duplicates

and spanning the range of analyte concentrations with seven
different concentration levels. Two duplicate blank samples
were also added to the analysis. Test samples were prepared in
duplicate, with analyte concentrations at random values within
the calibration range.
Test samples were processed individually, by joining each of

them in turn with the calibration samples, creating the new
column-wise augmented data matrix, and analyzing it by MCR-
ALS. The direction of matrix augmentation was the unselective
time decay mode (the column space), and the more selective
excitation spectral mode (the row space) was the non-
augmented mode in all data matrices. In this way, the chemical
rank of the augmented data matrix was two, because matrix
augmentation with different data matrices provided a full
chemical rank (mathematical rank in absence of noise) of two
and selectivity in the augmented time decay mode. If
augmentation had been made in the row mode, i.e., in the
excitation spectral mode, the augmented data matrix would
have been rank deficient with a chemical rank of one, because
the time decay profile for both sample components are
practically identical.
During the ALS optimization, non-negativity constraints

were applied to both spectral and concentration profiles, taking
into account the correspondence between the different
components of the samples. For instance, the interfering
agent (flufenamic acid) was only present in the test samples;
therefore, it was absent in the calibration samples. This
decreases considerably the rotation ambiguity for the analyte
and provides more efficient bilinear decompositions of all
augmented data matrices. Figure 5A,B shows the MCR-ALS
results after the processing of a typical test sample. The
resolved excitation spectra of the analyte (in blue) and of the
interfering agent (in red) in the column vector space are shown
in Figure 5A. On the other hand, Figure 5B shows the
successive time profiles in the augmented time decay data mode
for the test sample, a blank sample, and seven calibration
samples (as indicated). Important issues to be noticed in this
latter figure are (1) time decay profiles for analyte and
interfering agent (the latter one is only present in the test
sample) were almost identical and they required appropriate
matrix augmentation in the time decay direction to avoid rank
deficiency, (2) absence of the interfering agent in the
calibration samples (red line), which allowed to use the
component correspondence constraint during the ALS
optimization, and (3) successive time decay profiles for the
analyte in calibration samples (blue line) showed a proper
linear relationship with increasing nominal analyte concen-
tration in calibration samples.
Once decomposition was accomplished, a pseudounivariate

calibration graph was plotted with analyte scores as a function
of nominal analyte concentrations, as shown in Figure 6. Notice
the good linear correlation and the low dispersion of values for
duplicate samples. From the calibration graph in Figure 6, some
figures of merit were estimated, in the same way as proposed in
ref 34. For example, the limits of detection and quantitation
were assessed using modern IUPAC’s definition,41 as 0.04 and
0.11 mg L−1, respectively. However, sensitivity cannot be
obtained from Figure 6, because the vertical scale is based on
scores in arbitrary units, which do not represent analytes signals
and do not take into account the effect of the profile
overlapping between analyte and other sample components
and interfering agents. In fact, the slope of the calibration graph
in Figure 6 is numerically equal to mn, but this is only one of
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the parameters required in eq 1 to give a more reliable
estimation of this figure of merit.
Interpolation of the analyte score for the test sample in this

calibration graph leads to analyte prediction for all test samples,
as collected in Table 1. As it can be seen, reasonable recovery
results were obtained, with a mean prediction error of 0.04 mg
L−1 and a good correlation coefficient between nominal and

predicted values for the 20-sample test set. Duplicate analysis
for all test samples did also provide an experimental estimation
of the uncertainty in the predicted analyte concentration, which
was ∼0.01 mg L−1. These values are also quoted in Table 1 for
each concentration level in the test samples.
Equation 1 implies that the sensitivity depends on the

number of repeated measurements in a given data matrix in the
time-decay mode where augmentation is performed (the value
of J in eq 1), and on the degree of spectral overlapping in the
excitation spectral mode (the row vector space which is the
nonaugmented mode), measured by [(STS)nn

−1]−1/2 (n identifies
the component number corresponding to the analyte). Both
terms tend to decrease the value of the final sensitivity from the
initial theoretical value in absence of interfering agents
evaluated from the slope value mn. Inserting the appropriate
parameters in eq 1, the sensitivity is computed as 600
luminescence intensity units L mg−1.
Using the latter value of SENMCR, crude estimations of the

limit of detection (LOD), limit of quantitation (LOQ), and
concentration uncertainty can be made (these estimations
ignore the effect of the calibration uncertainty) as23

= = −sLOD 3.3 /SEN 0.03 mg Ldtest MCR
1

(5)

= = −sLOQ 10 /SEN 0.09 mg Ldtest MCR
1

(6)

= = −s S /SEN 0.01 mg Lc dtest MCR
1

(7)

where the parameter 3.3 follows from 5% probability assigned
to both Type I and Type II errors.41 The value of sdtest was
estimated as 5 arbitrary luminescence units, from statistical
analysis of samples replication. The resulting LOD, LOQ, and sc

Figure 5. Excitation (A) and time decay (B) profiles resolved by
MCR-ALS in the simultaneous analysis of the experimental system
constituted by one typical test sample, a blank sample, and seven
calibration samples (as shown in part B). Blue lines, analyte
(furosemide); red lines, interfering agent (flufenamic acid).

Figure 6. Pseudounivariate calibration plot of analyte scores vs
nominal concentrations for calibration samples in the analysis of the
experimental system involving time-decaying excitation luminescence
data matrices for the determination of furosemide in the presence of
flufenamic acid. Error bars correspond to tα,ν × s, where t is the
Student coefficient at a confidence level of 100 × (1 − α)% (α = 0.05)
with ν degrees of freedom (ν = 16−2), and s is the average standard
error at each calibration point. The best least-squares regression line is
also given as a solid line.

Table 1. Analytical Results for the Experimental Example
Using MCR-ALS

furosemide/mg L−1

samplea nominal predictedb flufenamic acid/mg L−1

1 0.00 0.05(1) 0.15
2 0.00 0.06(1) 0.30
3 0.08 0.14(1) 0.15
4 0.10 0.14(1) 0.10
5 0.10 0.12(1) 0.15
6 0.10 0.13(1) 0.20
7 0.15 0.22(1) 0.05
8 0.15 0.19(1) 0.15
9 0.24 0.26(1) 0.10
10 0.24 0.26(1) 0.20
11 0.30 0.37(1) 0.14
12 0.30 0.37(2) 0.65
13 0.34 0.34(1) 0.20
14 0.35 0.38(4) 0.35
15 0.45 0.44(2) 0.20
16 0.45 0.43(1) 0.60
17 0.50 0.54(1) 0.25
18 0.50 0.52(1) 0.60
19 0.55 0.52(1) 0.15
20 0.55 0.51(1) 0.35
RMSE 0.042
REP % 14.0
R2 0.9883

aRMSE = root-mean-square error, REP % = relative error of
prediction based on mean calibration concentration, R2 = correlation
coefficient. bExperimental standard deviation in parentheses.
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are reasonable and consistent with those obtained from the
pseudounivariate calibration, indicating that the value of
SENMCR provided by eq 1 is an appropriate approximation to
the analyte sensitivity in this system.
Finally, the selectivity can be assessed using eq 23 (see the

Appendix), which renders a value of 0.41 (the maximum
selectivity value would be 1.0 or 100%). Notice that this
parameter cannot be computed from the pseudounivariate
calibration graph, which assumes the analyte signal has been
totally isolated from the interfering agents. In any case, a
selectivity of ∼40% is consistent with the large degree of
spectral overlapping occurring in the spectral mode (see Figure
5A).

■ CONCLUSIONS
The presently proposed approach provides a useful and reliable
way of estimating the sensitivity in MCR-ALS, when
quantitative estimations are made in cases where rotation
ambiguities have been practically suppressed by a proper
application of constraints like trilinearity, species correspond-
ence, and local rank constraints. The estimated sensitivity
allows the calculation of other figures of merit such as detection
capabilities, from the knowledge of the sample component
properties and instrumental noise, as an alternative to other
empirical approaches.

■ APPENDIX

Calculation of the Sensitivity
In extended MCR-ALS, the calibration scores are employed to
build a pseudo-univariate calibration line, leading to an
estimation of the corresponding slope (mn) and offset (nn)
(see the Supporting Information). The analyte score atest,n in
the test sample is then interpolated in the calibration line to
yield the predicted analyte concentration cn:

= −c a n m( )/n n n ntest, (8)

The sensitivity of the analyte determination in this case
cannot be defined simply as the slope of the pseudo-univariate
calibration graph, because the vertical scale of the latter is
arbitrary and the scores are neither true analyte signals nor net
analyte signals (because they do not take into account the
overlapping among sample components). We therefore employ
the more general definition of sensitivity, which is given by the
ratio of predicted concentration uncertainty to signal
uncertainty, as shown in eq 3. This definition is fully consistent
with those successfully employed in first-order multivariate
calibration,27 and in other second- and higher-order multi-
variate algorithms.30−32

The estimation of the uncertainty in the predicted
concentration assumes that the calibration is precise. This is
usual in sensitivity studies from error propagation theory, where
only the test sample is considered to carry instrumental noise,
unlike the data for the calibration samples. This is done in order
to leave the concentration uncertainty as only depending on the
sensitivity and on the signal to noise ratio.30 Thus in eq 8, the
uncertainty in the predicted concentration cn comes mainly
from the test sample score atest,n:

= −c m avar( ) ( ) var( )n n n
2

test, (9)

where var( ) indicates variance. The score atest,n is equal to the
sum of the elements of the analyte profile in the test sample in
the augmented mode (see the Supporting Information). Hence,

the variance in atest,n will depend on the variance of these
elements. The latter are estimated by least-squares during
MCR-ALS data processing, and thus they may be mutually
correlated. Therefore, to estimate var(atest,n), not only the
variances of each summed element should be taken into
account but also the covariances between all individual row
values of the resolved profile for component n. From eq 9:

∑ ∑= ′−

= ′=

c m V j jvar( ) ( ) ( , )n n
j

J

j

J

n
2

1 1 (10)

where Vn (j,j′) are elements of the J × J variance-covariance Vn
matrix, which is a sub-matrix of the full V matrix for all values of
the elements of all the resolved component profiles. The latter
matrix can be estimated from the Jacobian matrix as follows.
First assume a test data matrix Dtest for a test sample composed
of the analyte of interest and an additional component, defined
as a function of the component profiles as

= = +D C S c s c stest test
T

1 1
T

2 2
T

(11)

where Ctest = [c1 c2] and

=
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥S

S

S
T 1

T

2
T

Unfolding Dtest into a vector leads to

= = ⊗ + ⊗d D s c s cvec( )test test 1 1 2 2 (12)

where the ⊗ symbol is the Kronecker product (see the
Supporting Information for a detailed definition of the latter
operation).
It can be shown that the required Jacobian J matrix for the

elements of c1 and c2 in eq 12 contains a first block of J
columns with the derivatives ddtest/dc1, followed by a second
block of J columns with the derivatives ddtest/dc2:

= ⊗ ⊗J s I s I[ ]1 c 2 c (13)

where Ic is a J × J identity matrix. From eq 13, the (2J × 2J)
variance-covariance matrix for all estimated parameters is

= −dV J Jvar( )( )test
T 1

(14)

where var(dtest) is the variance in the measured data (provided
the noise is identically and independently distributed). A
convenient way of obtaining the J × J sub-matrix V1 of V,
corresponding to analyte 1, involves three steps. First a
projection matrix is defined, orthogonal to the second block of
J, i.e., (s2 ⊗ Ic) in eq 13. This matrix is orthogonal to the space
spanned by component 2 in the column mode:32

= − ⊗ ⊗ +P s I s II ( )( )s2 2 c 2 c (15)

Second, the first block of J is projected onto Ps2 to yield J1
+:32

= ⊗+J P s I( )1 s2 1 c (16)

Finally, the required V1 matrix is given by32

= + +dV J Jvar( )( )1 test 1
T

1 (17)

Inserting this result in eq 10 leads to
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∑ ∑= ′

= || ||

−

= ′=

−

c m V j j

m d J P s

var( ) ( ) ( , )

( ) var( )

j

J

j

J

1 1
2

1 1
1

1
2

test s2 1
2

(18)

where || || indicates the Euclidean norm. Equation 18 can be
conveniently re-written by noting that the product (Ps2 s1) is
the projection of s1 orthogonal to s2, i.e., the first row of the
generalized inverse matrix S+, leading to

= || ||

=

− +

− −

c m d J

m d J

S

S S

var( ) ( ) var( ) first row of

( ) var( ) ( )

1 1
2

test
2

1
2

test
T

11
1

(19)

where the shorthand notation “Ann
−1” indicates the (n,n) element

of the inverse of the square matrix A (in this case n = 1). From
eq 19, the uncertainty in predicted concentration can be
estimated simply by taking the square root of both sides:

= −s s m J S S( / )[ ( ) ]c d1 test 1
T

11
1 1/2

(20)

The sensitivity towards analyte 1 is the ratio of signal
uncertainty to concentration uncertainty, and thus

= = − −s s m J S SSEN ( / ) [ ( ) ]d cMCR test 1 1
T

11
1 1/2

(21)

An interesting conclusion to be drawn from this result is that
the sensitivity is lower than the slope of the pseudo-univariate
calibration graph (m1) and decreases with increasing overlap
between the profiles of the sample components (profiles in the
nonaugmented mode vector space or ST spectral vector space
in this case), as measured by the overlapping factor
[(STS)11

−1]−1/2. Equation 21 can be easily generalized to any
number of sample components, leading to

= − −m J S SSEN [ ( ) ]n nnMCR
T 1 1/2

(22)

where n indicates the analyte of interest, mn is the slope of the
pseudo-univariate calibration graph for analyte n, ST contains
the profiles for all sample components in the non-augmented
direction, and J is the number of channels in the sample data
matrix in the augmented direction.
Finally, from eq 22 it is easy to define the selectivity (SEL) as

the ratio between actual sensitivity and the value in the absence
of interfering agents:

= −S SSEL [( ) ]nn
T 1 1/2

(23)
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Anal. Chem. 2011, 30, 607−617.
(6) Bro, R. Crit. Rev. Anal. Chem. 2006, 36, 279−293.
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