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Objective To perform a two-stage study to explore the role

of gene variants in the risk of insulin resistance and arterial

hypertension.

Methods and results The selection of variants was

performed by a first stage of in-silico analysis of the original

genome-wide association data sets on genes involved in

metabolic syndrome components, granted by the Diabetes

Genetics Initiative and the Wellcome Trust Case–Control

Consortium. We started by identifying single-nucleotide

polymorphisms with a cutoff for association (P < 0.05) in

both data sets after the application of a computational

algorithm of gene prioritization. Among the more promising

variants, six single-nucleotide polymorphisms in IGF1R

(rs11247362, rs10902606, rs1317459, rs11854132,

rs2684761, and rs2715416) were selected for further

evaluation in our population. Altogether, 1094 men, aged

34.4 W 8.6 years, were included in a population-based study.

Genotypes of rs2684761 showed significant association

with insulin resistance (as a discrete trait, odds ratio per G

allele 1.27, 95% confidence interval 1.03–1.56, P U 0.026;

and homeostasis model assessment-insulin resistance as a

continuous trait, P U 0.01). A significant association of

rs2684761 with arterial hypertension was also observed

(odds ratio per G allele 1.29, 95% confidence interval 1.02–

1.64, P U 0.037) after adjusting for age and homeostasis

model assessment-insulin resistance.
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Conclusion Our study suggests for the first time

a putative role of IGF1R variants in individual

susceptibility to metabolic syndrome-related

phenotypes, in particular on the risk of having insulin

resistance and arterial hypertension. J Hypertens 28:1194–

1202 Q 2010 Wolters Kluwer Health | Lippincott Williams &

Wilkins.
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Introduction
The metabolic syndrome is characterized by insulin

resistance and includes a constellation of complex dis-

eases such as type 2 diabetes (T2D), dyslipidemias,

central obesity, arterial hypertension, prothrombotic

and proinflammatory states, ovarian polycystosis, and

fatty liver disease. The current evidence indicates that

each main component of metabolic syndrome has a

genetic basis, but the genetics of each of these diseases

is complex by itself, and vary in spectrum from mono-

genic and syndromic forms, usually rare, to the most

common polygenic and multifactorial forms [1].

Advances in genome analysis, including the first wave

of large-scale, high-density genome-wide association

(GWA) studies, have significantly contributed to the

understanding of the genetic architecture of human com-

plex diseases, including metabolic syndrome-related

phenotypes. Although genome-wide platforms yielded

several promising signals of association between gene
variants and either human disease or related quantitative

traits, some challenges still remain. For example, the

selection of statistically significant associations with

those single-nucleotide polymorphisms (SNPs) that show

the most extreme P value (as small as 10�7) followed by

a robust replication that enables identification of a true-

positive signal [2] is not cost-effective. Unfortunately,

although the application of stringent statistical thresholds

in GWA studies is needed to safely confirm association, it

may dismiss many SNPs that will not be carried forward

in the second stage of the analysis.

An additional disadvantage to constraining the variant

selection to those with small P values for association is

the potential exclusion of those SNPs that are bio-

logically important for the pathogenesis of the disease.

Hence, another approach to circumvent the drawbacks of

genome-wide significance may be the strategy of gene

prioritization offered by several bioinformatic tools that

prioritize SNPs based on the biological plausibility of a
rized reproduction of this article is prohibited.

DOI:10.1097/HJH.0b013e328337f6d5

mailto:pirola.carlos@lanari.fmed.uba.ar
mailto:cpirola@ciudad.com.ar
http://dx.doi.org/10.1097/HJH.0b013e328337f6d5


C

IGF1R, insulin resistance, and hypertension Sookoian et al. 1195
gene–disease association, an approach we have used that

rendered new loci associated to T2D [3].

In view of the evidence described above, we performed a

two-stage study to explore the role of gene variants in

metabolic syndrome-related phenotypes, in particular

insulin resistance and arterial hypertension. The first

stage included an in-silico exploratory assessment of

the original GWA data sets on genes implicated in

common human diseases, granted by the Diabetes

Genetics Initiative (DGI) and the Wellcome Trust Case

Control Consortium (WTCCC), and available at public

websites after obtaining a prioritized gene list based on a

bioinformatic tool. The second stage was a candidate-

gene association study focused on specific variants of

interest in a sample of Argentinean young men.

Research design and results
First stage: in-silico analysis of genome-wide
association open data
The methodology for obtaining the prioritized gene list

and the in-silico analysis of the GWA data sets was carried

out as we previously described [3]. Briefly, from the web

site http://www.broad.mit.edu/diabetes/, we downloaded

the results of the GWA study in 3000 Scandinavian

individuals about the genetic variants that influence

the risk of T2D and related metabolic traits (1464

patients with T2D and 1467 matched controls). We also

included in the in-silico analysis the results of the GWA

study on seven common diseases performed by the

WTCCC (1930 patients and 2936 control samples), which

were downloaded for free from http://www.wtccc.org.uk/

info/summary_stats.shtml. We focused our analysis on

the open data about metabolic syndrome-related traits

available in each data set as follows: homeostasis model

assessment (HOMA) to evaluate insulin resistance index,

calculated as fasting serum insulin (mU/ml)� fasting

plasma glucose (mmol/l)/22.5; BMI calculated as

weight/height2 (kg/m2); and the dichotomous hyper-

tension trait and systolic blood pressure (SBP) data. Data

on BMI and SBP in patients and controls, and HOMA

in controls were only available from the DGI database.

Both data sets enable the analysis of the dichotomous

hypertension trait.

We incorporated a total of 386 731 and 459 653 gene

variants from the original analysis of the DGI and

WTCCC studies, respectively [including those SNPs

that passed the quality control filters and had a study

minor allele frequency (MAF) >1%] [4].

A comprehensive analysis of candidate regions was gener-

ated by the freely accessible ENDEAVOUR software [5]

available at http://homes.esat.kuleuven.be/�bioiuser/

endeavour/endeavour.php (K.U. Leuven Research &

Development. Leuven, Belgium), as we previously

described [3]. ENDEAVOUR is a software application

for the computational prioritization of candidate genes
opyright © Lippincott Williams & Wilkins. Unauth
underlying biological processes or diseases based on their

similarity to previously known genes involved in a disease

[5]. The hypothesis of prioritization by ENDEAVOUR is

that candidate test genes are ranked based on their

similarity with a set of known training genes. Details

about the training genes were previously published [3].

Briefly, the training genes were automatically down-

loaded from the software from a list generated by the

following key words: obesity, hypertension, type 2 dia-

betes, and dyslipidemias. The training set was created

by choosing 70 genes involved with either metabolic

pathways related with metabolic syndrome components

or with data about genes that are known to be connected

with associated biological processes [3].

Results of the in-silico analysis and gene prioritization
After applying the ENDEAVOUR algorithm for gene

prioritization, we performed a search in the GWA open

data for the prioritized genes that showed, in both data

sets, a P value smaller than 0.05 for the test of association

with metabolic syndrome-related phenotypes (we further

name this P value as screening P value). This is the step

in which we merged both data sets, and the screening P
value was a condition required to be simultaneously

present in both data sets to continue further with the

analysis.

The results of the first 10 ranked genes from the whole-

genome prioritization (23 712 genes) by the ENDEA-

VOUR software are shown in Table 1. In first stage, we

analyzed on the GWA data sets the results regarding all

the SNPs in the first 10 prioritized genes to look for

association with metabolic syndrome-related phenotypes

at the screening P value. From all the evaluated SNPs, we

selected for the candidate-gene association study in our

population, the variants located in the insulin-like growth

factor 1 receptor (IGF1R) precursor, a gene that ranked

fifth in the whole-genome prioritization list. IGF1R var-

iants were chosen because they consistently exhibited

the screening P value for association with several meta-

bolic-related phenotypes in both GWA data sets. Results

for the IGF1R variants with P values less than 0.05 for

association with metabolic syndrome-related phenotypes

either in the DGI or in the WTCCC-GWA data set are

shown in Table 2. The remaining nine genes of our

whole-genome prioritization list did not show SNPs with

a P value smaller than 0.05 for the test of association with

metabolic syndrome-related phenotypes.

Second stage: a candidate gene association study –
subject ascertainment, physical, anthropometric, and
biochemical evaluation
Healthy individuals recruited from a factory in the

Buenos Aires metropolitan area who underwent annual

health examination were invited to participate in this

study. Altogether, 1094 men of self-reported European

ancestry were included in this study. The study group
orized reproduction of this article is prohibited.
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Table 1 List of the top 10 genes prioritized from the whole genome by the ENDEAVOUR identification tool

Ranking order (HGNC symbol) Gene function Genomic location/mapping in chromosome Tissue distribution

1 HNF4A Regulates expression of genes required for
glucose transport and metabolism

42.463.324–42.493.444. 20q12–q13.1 Digestive, reproductive,
respiratory, and urinary

2 CYP3A43 Major drug-metabolizing subfamily 99.263.572–99.302.109. 7q21.1 Liver, gastrointestinal tract,
and kidney

3 IRS4 Mediates the biological response to insulin
stimulation by binding and activating various
enzymes or adaptor molecules

107.862.368–107.866.295. Xq22.3 Muscular

4 GYS2 Rate-limiting enzyme of the insulin-induced
glycogenesis

21.580.392–21.648.821. 12p12.2–p11.2 Liver

5 IGF1R Insulin-like growth factor 1 receptor with high affinity 97.010.302–97.319.034. 15q26.3 Ubiquitous
6 PPARA Transcriptional activator activity 44.925.163–45.018.317. 22q13.31 Ubiquitous
7 INSRR Mediates the action of a ligand that is identical

with or very similar to insulin
155.076.479–155.095.434. 1q21–q23 Kidney

8 AKT3 Key regulator for cell growth, cell survival,
and metabolic insulin action

241.718.158–242.080.053. 1q43–44 Ubiquitous

9 ADIPOQ Regulates energy homeostasis and glucose
and lipid metabolism

188.043.157–188.058.944. 3q27. Adipose tissue

10 NOS1 Nitric oxide biosynthesis, electron transport,
synaptic transmission, muscle contraction,
and cell–cell signaling

116.135.362–116.283.965. 12q24.2–q24.31 Ubiquitous

HGNC, HUGO Gene Nomenclature Committee
was composed of individuals who were randomly enrolled

and were willing to participate in a study of the genetic

susceptibility of metabolic syndrome disease com-

ponents. None of them were enrolled on the basis of

phenotype.

Medical history was investigated using a self-administered

questionnaire. In addition, the responses were confirmed

by individual interviews conducted by occupational phys-

icians. Health examinations included anthropometric

measurements, a questionnaire on health-related beha-

viors, and biochemical determinations.

After a 30-min rest in a quiet room, the SBP and diastolic

blood pressure (DBP) was measured on the right arm

with a standard mercury sphygmomanometer while the

patient was in sitting position. The blood pressure (BP)

values were the means of three different measurements.

BP in the fasting state was taken by the same trained
opyright © Lippincott Williams & Wilkins. Unautho

Table 2 Results for IGF1R variants with P values less than 0.05 for ass
Diabetes Genetics Initiative or Wellcome Trust Case–Control Consorti

NCBI SNP
reference Type

P value by
genomic control DGI

P value for the additive
genetic model WTCCC

IGF1R-SNPs with P values less than 0.05 for association with BMI in patients in the
rs10902606 Intronic 0.0009 NA
rs4284619 Intronic 0.050 NA
rs11854132 Intronic 0.02 NA
rs11247362 Intronic 0.01 NA

IGF1R-SNPs with P values less than 0.05 for association with the dichotomous hype
rs1317459 Intronic 0.01593 0.00235

IGF1R-SNPs with P values less than 0.05 for association with HOMA in patients in t
rs2684761 Intronic 0.04 NA
rs1317459 Intronic 0.04 NA
rs2715416 Intronic 0.04 NA

Contig annotation of all the SNPs in the NCBI reference assembly: IGF1R. DGI, Diabete
assessment; IGF1R, insulin-like growth factor 1 receptor; NA, not available; NCBI, Nat
WTCCC, Wellcome Trust Case–Control Consortium. a The WTCCC study included 2
number of hypertensive patients included in the analysis.
person in the morning, using a mercury sphygmoman-

ometer and an appropriately sized cuff according to

standard procedures.

BMI was calculated as weight/height2 (kg/m2) and was

used as the index for relative weight. In addition, trained

staff assessed waist circumference in the standing pos-

ition, midway between the highest point of the iliac crest

and the lowest point of the costal margin in the mid-

axillary line. Hip circumference was measured at the

level of the femoral greater trochanter by the same

observer. Those with a BMI of 30 or more were classified

as obese.

All participants were asked to fast for at least 8 h, and

blood was drawn from participants who had lain in

supine resting position for at least 30 min. Serum insulin,

total cholesterol, high-density lipoprotein (HDL) and

low-density lipoprotein (LDL)-cholesterol, triglycerides,
rized reproduction of this article is prohibited.

ociation with metabolic syndrome-related phenotypes either in the
um Genome-wide association data set

P value for the general
genetic model WTCCC

Physical position
(according to NCBI build 35)

Minor
allele

Major
allele

DGI-GWA data set
NA 97034517 G C
NA 97040205 G A
NA 97046853 A G
NA 97028354 C T

rtension trait in the DGI and WTCCC-GWAa data sets
0.00235 97046102 G C

he DGI-GWA data set
NA 97181893 A G
NA 97046102 G C
NA 97271554 C G

s Genetics Initiative; GWA, Genome-wide association; HOMA, homeostatic model
ional Center for Biotechnology Information; SNP, single-nucleotide polymorphism;
936 controls and 1930 hypertensive patients. The DGI study did not disclose the



C

IGF1R, insulin resistance, and hypertension Sookoian et al. 1197
and plasma glucose were measured by standard clinical

laboratory techniques. HOMA was used to evaluate the

insulin resistance index and was calculated as fasting

serum insulin (mU/ml)� fasting plasma glucose (mmol/

l)/22.5.

Metabolic syndrome was defined as the presence of three

of the five main components (elevated levels of BP,

serum triglycerides, waist circumference, fasting glucose

level, and HDL-cholesterol) according to the National

Cholesterol Education Program (NCEP) Adult Panel III

guidelines [6]. Specifically, elevated BP was defined as a

SBP of at least 130 mmHg and/or DBP 85 mmHg and/or

receipt of antihypertensive medications. Low HDL-

cholesterol was defined as less than 40 mg/dl, high serum

triglycerides as at least 150 mg/dl, elevated total choles-

terol as at least 200 mg/dl, and elevated plasma glucose as

at least 110 mg/dl. We included a measure of insulin

resistance, as it has been shown to provide incremental

information regarding atherosclerotic cardiovascular dis-

ease beyond the current NCEP Adult Treatment

Panel III metabolic syndrome definition [6]. Insulin

resistance as a dichotomous variable was defined as a

HOMA index of at least 2.4 [7]. Finally, abdominal

obesity was defined as a waist circumference of at least

102 cm. We also considered the sum of the number of

individual metabolic syndrome components as an addi-

tional trait.

A summary of the clinical features, anthropometric vari-

ables, and laboratory findings of the participants is shown

in Table 3. In the whole population, 178 individuals were

classified as hypertensive and 33 were prescribed anti-

hypertensive medication (either beta-blockers or angio-

tensin I-converting enzyme inhibitors), 221 were classi-

fied as having insulin resistance, and 136 were obese,

according to the aforementioned definitions.
opyright © Lippincott Williams & Wilkins. Unauth

Table 3 Clinical and biochemical characteristics of the patients in
the candidate-gene association study

Variables Mean�SE

Age (years) 34.3�0.26
BMI (kg/m2) 26.7�0.15
Waist circumference (cm) 92.7�0.39
Waist–hip ratio (cm) 0.93�0.002
SBP (mmHg) 121.7�0.44
DBP (mmHg) 76.1�0.30
Leukocyte count (cells/ml) 6862.1�54.04
Erythrocyte sedimentation rate (mm/1 h) 7.2�0.11
Fasting plasma glucose (mmol/l) 5.02�0.02
Fasting plasma insulin (pmol/l) 59.0�1.8
HOMA index 1.9�0.06
Total cholesterol (mmol/l) 4.98�0.03
HDL-cholesterol (mmol/l) 1.19�0.01
LDL-cholesterol (mmol/l) 3.12�0.03
Uric acid (mmol/l) 286�2
Triglycerides (mmol/l) 1.46�0.03
Cardiovascular riska (%) 2.5�0.12
Metabolic syndrome 1.1�0.03

HDL, high-density lipoprotein; HOMA, homeostatic model assessment; LDL, low-
density lipoprotein. All measurements are in SI units. a Risk for developing coronary
heart disease outcomes using Framingham risk scoring.
All the investigations performed in this study were

conducted in accordance with the guidelines of The

Declaration of Helsinki. Written consent from individ-

uals had been obtained in accordance with the procedures

approved by the Ethical Committee of our institution.

Genotype and haplotype analysis in the candidate-gene
association study
The genetic analyses were done on genomic DNA

extracted from white blood cells by a standard method,

as previously described [8].

Genotyping was performed by a high-throughput geno-

typing method involving PCR amplification of genomic

DNA with two-tailed allele-specific primers that intro-

duce priming sites for universal energy-transfer-labeled

primers, as previously described [9], (PreventionGe-

netics, Marshfield, Wisconsin, USA). To ensure genotyp-

ing quality, we included DNA samples as internal con-

trols, hidden samples of known genotypes, and negative

controls (water). No genotype with a signal below a

negative control was scored. The error analysis was

performed by replicating a blinded sample (always

belonging to the same individual) across the templates

of the project six times. Of the 248 genotypes for the

‘blinded sample’, we had only one nonmatched genotype

(0.40% error); then the observed error rate is estimated to

be less than 0.5%. Overall genotype completion rate was

nearly 100%.

Haplotype frequencies, and SNP linkage disequilibrium

measures and plots were performed by using the Haplo-

viewsoftware(http://www.broad.mit.edu/mpg/haploview/)

[10]. The PLINK software (http://pngu.mgh.harvard.

edu/purcell/plink/) was used for assessing the association

of SNPs and their haplotypes with the affection status

and related quantitative traits, and for testing for Hardy–

Weinberg equilibrium [11].

To explore a possible stratification in the population, we

used a collection of 13 SNPs at different loci (located in

chromosomes 4, 15, 17, 13, 1, and 3), then we analyzed the

data with the Structure program version 2 [12] and

computed the sum of x2 tests from each locus with a

number of DF equal to the sum of the number of

individual loci [13]. We found no evidence of stratifica-

tion in our sample because patients and controls showed

similar Q values and were assigned a similar distance to

clusters by the program structure, with no further

improvement in the fitting model by adding up to four

clusters (the log-likelihood was maximum for K¼ 1) [14].

Statistical analysis in the candidate-gene association
study
Quantitative data were expressed as mean�SE. For

univariate analysis, differences between groups were

assessed by analysis of variance on log-transformed
orized reproduction of this article is prohibited.
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Fig. 1

Basic linkage disequilibrium plot between the studied single-nucleotide
polymorphisms across the IGF1R gene in our population. The white
horizontal line depicts a 243.2-kb DNA segment of chromosome
15q26.3. The locations of the six SNPs genotyped in this study are
indicated by hatch marks. A linkage disequilibrium plot is depicted in
the bottom of the figure. Each diamond represents the magnitude of
linkage disequilibrium for a single pair of markers, with black indicating
strong linkage disequilibrium (r2¼1.0) and white indicating no linkage
disequilibrium (r2¼0) as the extremes (gray tones indicate intermediate
linkage disequilibrium). Numbers inside the diamonds stand for
D0 �100. SNP, single-nucleotide polymorphism.
variables when the variable variance was homogenous as

assessed by Levene’s test.

For testing the association between genotypes and the

number of metabolic syndrome components, we used

analysis of covariance (ANCOVA) for an ordinal multi-

nomial distribution (Probit Link function) for the number

of metabolic syndrome components as the dependent

(response) variable coding controls to fully metabolic

syndrome patients as 0, 1, 2, 3, 4, and 5, respectively,

with age as a continuous predictor variable and genotype

as a categorical factor variable.

Logistic regression was used to test the multivariate

association among insulin resistance (as a dichotomous

trait as defined above), obesity or arterial hypertension as

dichotomous variables, and genotypes and haplotypes,

adjusting for covariates as indicated. We used the CSS/

Statistica program package StatSoft V 6.0 (Tulsa,

Oklahoma, USA) to perform these analyses.

We used ANCOVA for a normal distribution of log-

transformed quantitative variables, such as HOMA-insu-

lin resistance (HOMA-IR), and genotype as a categorical

factor variable, adjusting for covariates as indicated.

Results of genotyping of the IGF1R variants in the
candidate-gene association study
No marker showed a departure from Hardy–Weinberg

equilibrium (P> 0.1), indicating robust genotyping per-

formance. The genotyping success rate was 98% for

rs11247362, 97% for rs10902606, 97% for rs1317459,

96% for rs11854132, 96% for rs2684761, and 97% for

rs2715416. Figure 1 shows a basic linkage disequilibrium

plot between the studied SNPs across the IGF1R gene in

our population.

The minor allele frequencies of the evaluated SNPs in

our population were as follows: rs11247362, 13.3%;

rs10902606, 6.6%; rs1317459, 8.0%; rs11854132, 27.6%;

rs2684761, 47.8%; and rs2715416, 42.7%.

We evaluated the putative association of metabolic syn-

drome components with these IGF1R variants. We

observed that rs2684761 was associated with the cumu-

lative number of metabolic syndrome components, with

G being the risk allele (Wald statistic 8.13, P¼ 0.017,

adjusted for age). The mean�SE of the number of

metabolic syndrome components by genotype were AA

0.94� 0.08 (n¼ 252), AG 1.19� 0.06 (n¼ 496), and

1.19� 0.07 (n¼ 293). No significant association was

observed with any of the other SNPs.

Although no significant association was observed

between the IGF1R variant genotypes and BMI, waist

circumference, fasting plasma glucose, and plasma trigly-

cerides, genotypes of rs2684761 were significantly associ-

ated with insulin resistance as a discrete trait [odds ratio

(OR) per G allele 1.27, 95% confidence interval (CI)

1.03–1.56, P¼ 0.026] and HOMA-IR as a continuous
opyright © Lippincott Williams & Wilkins. Unautho
trait. HOMA-IR values according to the rs2684761 gen-

otypes were: AA 1.67� 0.14 (n¼ 251), AG 2.04� 0.10

(n¼ 498), and GG 2.00� 0.12 (n¼ 297), P¼ 0.01 (logar-

ithmically transformed HOMA-IR values adjusted for

age using ANCOVA). The proportion of the total vari-

ance attributed to the rs2684761 genotypes was 0.9%.

Similarly, fasting insulin levels were higher (P¼ 0.009,

using ANCOVA on fasting insulin values logarithmi-

cally transformed and adjusted for age) in GG (61.5�
3.5 pmol/l) and AG (61.1� 2.8 pmol/l) vs. AA genotype

patients (51.5� 3.5 pmol/l); genotypes explained 0.5% of

the total fasting insulin level variance.

From visual inspection, it is obvious that a dominance

model best fitted the data (data not shown). In fact,

although in the genotypic additive model, obesity

was marginally associated with the rs2684761 G allele

(P¼ 0.076), under the dominant model, G carriers showed

a 1.7-fold higher risk of being obese than homozygous

for the A allele (OR: 1.73, 95%CI: 1.04–2.88, P¼ 0.035,

adjusted for age and arterial hypertension).

We further evaluated the linkage disequilibrium pattern

for the previously mentioned SNPs, and among all the
rized reproduction of this article is prohibited.
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haplotypes, the association with HOMA-IR was even

stronger with the haplotype TCGGGG, formed by

rs11247362, rs10902606, rs1317459, rs11854132,

rs2684761, and rs2715416 in that order (P¼ 0.00259).

In an attempt to dissect the association signal, we per-

formed the analysis, removing individual markers one by

one. The association was lost by removing either

rs2684761 (P¼ 0.062) or rs2715416 (P¼ 0.115). Then,

we observed that the IGF1R haplotype frequency of

rs2684761-G/rs2715416-G explains much of the observed

effect (b¼ 0.10, P¼ 0.01). Similarly, the haplotype com-

posed of rs2684761-G/rs2715416-G was significantly

associated with the HOMA index as a discrete trait

(P¼ 0.039).

Finally, we studied the putative association of the IGF1R
variants with arterial hypertension as a dichotomous trait.

A significant association of rs2684761 with arterial hyper-

tension was observed (OR per G allele 1.29, 95% CI

1.02–1.64, P¼ 0.037) after adjusting for age and HOMA-

IR.

In the analysis of the linkage disequilibrium pattern

among the studied SNPs, we observed that the haplotype

TCGGGC, composed of rs11247362, rs10902606,

rs1317459, rs11854132, rs2684761, and rs2715416 in that

order, was significantly associated with hypertension

(P¼ 0.031). Again, in attempt to dissect the association

signal, we performed the analysis, removing individual

markers one by one. The above-mentioned association

was lost by removing either rs2684761 (P¼ 0.198) or

rs2715416 (P¼ 0.077). Then, we observed that the

IGF1R haplotype frequencies of rs2684761-G/

rs2715416-C, or conversely, rs2684761-A/rs2715416-G,

explain much of the observed effect (P¼ 0.015).

Discussion
We performed a two-stage study to identify SNPs associ-

ated with metabolic syndrome-related phenotypes,

including a first stage of in-silico exploratory assessment

of a prioritized gene list using the original GWA data sets

on genes implicated in common human diseases and a

second stage focused on specific variants of interest.

IGF1R exhibited several promising variants associated

with metabolic syndrome-related phenotypes in both

GWA data sets at the initial screening P value. In second

stage, we evaluated six SNPs in IGF1R in a sample of

1094 Argentinean men enrolled in a population-based

setting.

We observed that the rs2684761 G allele was significantly

associated with the number of metabolic syndrome com-

ponents, suggesting a putative role of IGF1R in individ-

ual susceptibility to these metabolic syndrome-related

phenotypes. The major effects seem to be on the risk of

having insulin resistance and arterial hypertension. This

effect is not dependent on fasting glucose alteration but

probably due to an increase in fasting insulin levels.
opyright © Lippincott Williams & Wilkins. Unauth
We did not observe an association of IGF1R variants

with SBP, DBP, or both, which may be explained by

the effect of antihypertensive medication or simply a lack

of power to detect a minor effect. In univariate analysis,

the rs2684761-G allele was marginally associated with

obesity, defined as having BMI of more than 30 kg/m2, in

the additive genotypic model, but the association was

stronger and persisted after adjusting for age and arterial

hypertension in the dominant model (AGþGG vs. AA).

In both insulin resistance and arterial hypertension find-

ings, the analysis of variant haplotypes indicated a minor

contribution of another variant, rs2715416, because the

haplotype composed of the two variants (rs2684761 and

rs2715416) was significantly associated with insulin resist-

ance and arterial hypertension. Conversely, the removal

of either SNPs from the haplotypes constructed with six

variants induced loss of the positive signal. These results,

along with a lack of association for the variant rs2715416

alone, probably indicate that the haplotypes composed of

these two markers are associated with another functional

variant(s). Because the significantly associated variants

are intronic and have no obvious functional effects,

further studies are necessary to identify the causal var-

iant(s). Nevertheless, it is important to mention that

intronic SNPs are not necessarily nonfunctional. They

may affect gene regulation, RNA splicing, or be in

linkage disequilibrium with variants that affect regulation

or splicing [15]. However, annotation of nearby SNPs

in linkage disequilibrium (proxies) with the rs2684761

variant based on HapMap data shows that the putatively

associated variant is in fact in the IGF1R locus and not in a

nearby locus, although a long distance effect cannot be

ruled out (Fig. 2).

Moreover, it is worth mentioning that the lack of signi-

ficant associations of rs10902606 and rs1317459 with

phenotypes may be false-negative results due to the

low MAF in our population (6.6 and 8.0%, respectively),

as the analysis did not have sufficient power to detect

associations according to our sample size (27 and 39%,

respectively, under the multiplicative model).

The first comment about our findings is on the biological

plausibility of the gene–disease association that we are

reporting. The IGF1R is a tyrosine kinase class II receptor

with potent mitogenic, antiapoptotic, and transforming

activities required for oncogenic transformation. In

addition, IGF1R has also an important role in the insu-

lin-signaling pathway. In fact, after binding its ligand,

IGF1R initiates metabolic cascades resulting in glucose

intake, glycogen synthesis, and lipid storage. The sus-

pected participation of IGF1R in the regulation of these

metabolic cascades is in addition supported by previous

evidence from animal models. Mutant mice lacking

IGF1R specifically in pancreatic b cells exhibit age-

dependent impairment of glucose tolerance [16]. In

addition, transgenic mice with a dominant-negative
orized reproduction of this article is prohibited.
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Fig. 2

Regional linkage disequilibrium plot for single-nucleotide polymorphism rs2684761 at chromosome 15. The SNP is plotted with their proxies (based
on HapMap data for CEU (Utah HapMap samples)) as a function of genomic location, annotated by the recombination rate across the locus
(blue-line) and nearby genes (in green). We can conclude that there are no observed variants in other loci close to IGF1R with any appreciable
single-nucleotide polymorphism to rs2684761. The regional association plot of rs2684761 was performed by the SNAP (SNP annotation and proxy
search) server available at http://www.broad.mit.edu/mpg/snap/. SNP, single-nucleotide polymorphism.
IGFIR specifically targeted at the skeletal muscle

develop insulin resistance that results in T2D [17].

Kloting et al. [18] demonstrated the existence of a nega-

tive IGF1R-mediated feedback mechanism of IGF-1 on

its own gene expression in adipocytes, indicating an

important role for adipose tissue IGF-1 signaling in the

regulation of IGF-1 serum concentrations.

In addition, apart from its ubiquitous pattern of expres-

sion, IGFIR is expressed on vascular smooth muscle cells

(VSMCs), being a critical determinant of the VSMCs

growth response [19]. Hence, additional experimental

evidence supports our findings about the putative influ-

ence of common variants in IGFIR on arterial hyperten-

sion. For example, alterations of the IGF1 system were

reported in association with the pathophysiology of vas-

cular diseases in a model of aortic coarctation hyperten-

sion in rats [20]. Indeed, Telgmann et al. [21] reported

that the common variant �1411C>T in the IGF1 pro-

moter might play a key role in local IGF1 bioavailability,

and the T allele of this molecular functional variant was

associated with a decrease in DBP and SBP levels and a

lower prevalence of essential hypertension.

The second comment is about the potential role of

genetic variability at the human IGF1R in genetic

susceptibility to metabolic syndrome-related pheno-

types. IGF1R has been a candidate gene for insulin

resistance and T2D in two previous studies. One report

in a Finnish population evaluated common variants in

several genes regulating the insulin-signaling pathway
opyright © Lippincott Williams & Wilkins. Unautho
and observed that the silent polymorphism at exon

GAG1013GAA of the IGF1R was associated with fasting

serum insulin levels [22]. The other report is a mutational

analysis of the coding regions of IGF1R performed on

genomic DNA from probands of 82 Danish T2D families

[23]. In this study (a population-based sample of 349

young healthy individuals), no significant relationships

between the GAG1013GAA variant and the insulin sen-

sitivity index was detected. In agreement with these

observations, IGF1R mutations were found associated

with intrauterine and postnatal growth retardation

[23,24]. These data are of particular interest, as there

is accumulating evidence showing that impaired intra-

uterine growth is an important factor that contributes

to the pathogenesis of T2D [25] and other metabolic

syndrome components in adult life [26].

A putative role of the IGF1R variants influencing arterial

BP is shown in our study. Interestingly, a previous

genome-wide linkage study in a large number of pedi-

grees in a Chinese population showed that a region on

chromosome 15q was strongly associated with DBP [27].

This region (15q25.1–15q26.1) was later confirmed in a

genome-wide linkage analysis of SBP in white indivi-

duals [28].

The very recently published GWA study reporting

SNP hits that achieve genome-wide statistical signifi-

cance in association with arterial BP revealed eight gene

regions [29]. As stated by the authors, the causal gene

could be any of the genes around the associated signal in
rized reproduction of this article is prohibited.
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each described locus, including 15q24. In addition, the

eight described loci explained a small proportion of the

total variation in either SBP or DBP, which suggests that

some other gene variants should contribute to genetic

susceptibility to arterial hypertension. Unfortunately,

this hypertension GWA data set is not freely available,

so we cannot explore the possibility of an association

between the IGF1R variants and arterial hypertension

even with a less-stringent cutoff for association. In

addition, sex-specific association analysis was not per-

formed, as details about the sex of the population in

the original GWA dataset are not available. This would

be of interest as our study was focused only on a male

population.

In conclusion, the identification of genes associated with

complex diseases has enormously benefited from high-

throughput functional genomic technologies, in particu-

lar GWA studies and genome-wide expression profiling

evaluation. Nevertheless, the GWA strategy itself is still

too expensive for routine use, and it is beyond the reach

of most research groups worldwide. Moreover, large

sample sizes are required. An alternative approach to

circumvent these drawbacks is to provide access to full,

gene-annotated GWA data sets, which could be used for

further querying, analyses, or integration with other

genomic information. In addition, specific biological

hypotheses and candidate-gene association studies can

be tested by an in-silico evaluation of the GWA data sets.

This strategy was initially applied in this report, and

IGF1R was found as a candidate gene significantly associ-

ated with two important traits related to metabolic

syndrome: arterial hypertension and insulin resistance.

Although IGF1R was not previously evaluated as a can-

didate gene for these clinical entities, either its role in the

insulin signaling or its multiple physiologic effects on

the vasculature, including proliferative, hypertrophic,

and vasomotor effects, reinforce the plausible biological

relevance of the association. In addition, IGF1R may be

considered a remarkable candidate gene for further stu-

dies because of its role in the regulation of whole-body

metabolism, and a potential target for therapeutic inter-

ventions.
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