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Abstract— Two novel adaptive notch filters
are presented. The updating algorithms are
based on the Steiglitz-McBride error criterion
minimization and the basic realizations of the
notch filters are all-pass based lattice filters.
The proposed realizations represent an exten-
sion of a previous ad-hoc scheme for adaptive
notch filtering and avoid finding the roots of a
high order polynomial to obtain the unknown
frequencies of interest. Since the structure is
based on the lattice realization, suitable prop-
erties with finite length precision realizations
can be expected. Computer simulations are in-
cluded to verify the adaptive filter performance
when compared with alternative realizations.

Keywords— Frequency estimation, lattice
notch filter, Steiglitz-McBride method.

I. INTRODUCTION

The input signal model u(n) considered in this work
is composed of N sinusoids with unknown amplitude
pr and frequency wy, immersed in additive Gaussian
noise r(n), written as

M
u(n) = Zpk sin(wgn + @) + r(n),
k=1

where ¢, is the corresponding phase of sinusoid k.

The problem of estimating the frequencies of multi-
ple sinusoids can be traced back to the Adaptive Line
Enhancer (Widrow et al., 1975) where MSE minimiza-
tion using a k-step FIR prediction filter was the basic
structure. The computation of the unknown frequen-
cies requires the evaluation of the roots of the associ-
ated polynomial. Other higher precision alternative,
with considerable higher complexity, were based in
the eigenvalue decomposition of input statistics (Ljung
and Soderstrom, 1983). General FIR solutions have
proven to be inefficient to recover sinusoids in noise,
mainly because the modeling of deep notchs requires
high order filters.

Due to its natural efficiency IIR based notch filters
or their duals, i.e, narrow passband filters with a very
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selective frequency characteristic, are becoming more
attractive for this application. An ideal notch filter
transfer function H(z), evaluated on the unit circle, is
described by

H(e™™) = {

Although it is not possible to obtain an exact so-
lution, nice and efficient approximations can be ob-
tained using ITR notch realizations of adequate or-
der. A general IIR notch model, proposed by Nehorai
(1985), contemplates a canonical (minimum number of
parameters corresponding to each unknown frequency
to estimate) direct-form realization of order 2M. The
zeros of the notch filter are located on the unit circle
and the module of the poles (at the same radius but,
logically, inside || = 1) is a user defined parameter.
The properties and accuracy of this adaptive notch fil-
ter have been extensively studied in the literature (Ng,
1987; Stoica and Nehorai, 1988). Despite that classi-
cal estimation properties can be related to this model,
no direct availability of the estimated frequencies is
obtained except by finding the roots of a high-order
(2M) polynomial. Alternative realizations using the
same model but with a lattice structure were also stud-
ied in the past (Cho et al., 1989) with no particular
advantages for the multiple sinusoids case. A differ-
ent notch filter model based on second-order allpass
lattice sections, that has interesting numerical prop-
erties (Regalia et al., 1988), was presented in Regalia
(1991). In this case, individual notch frequencies are
independent of the corresponding pole module. This
property has shown to be useful to extend the model
application, from the single sinusoid recovering, to the
multiple sinusoid case of interest.

This work presents a natural extension of the so-
lution in Regalia (1991), that uses either a direct or
a factorized allpass lattice realization to deal with the
problem of direct availability of the estimated frequen-
cies. In contrast to what was proposed as an ad hoc so-
lution in Regalia (1991), the proposed adaptive notch
filter minimizes a well defined criterion, the Steiglitz-
McBride (SM) error.

The paper presentation is organized in the following

1 w=wg
0 otherwise



Latin American Applied Research

u{n) A(2) e(n)

A(pz)

Figure 1: Notch filter representation.

manner. In Section II some available models for adap-
tive notch filtering and their respective updating algo-
rithms are reviewed. Particularly, direct-form realiza-
tions, using both Recursive Prediction Error (RPE)
and Steiglitz-McBride (SM) error minimization, are
discussed. The novel adaptive lattice-based notch fil-
ters are introduced in Section III, where some of their
properties are also discussed. A general discussion and
comparison of the proposed notch filter with other re-
alizations is presented in Section I'V, where some com-
puter simulations to verify the expected properties are
included. Finally in Section V some conclusions are
presented.

II. RPE AND SM METHODS FOR
ADAPTIVE NOTCH FILTERING

As introduced in Nehorai (1985), one of the desirable
properties of adaptive notch filters is that their trans-
fer function has zeros on the unit cirele in such a way
that the corresponding input frequency components
can be zeroed. A necessary condition to satisfy this
property is that the numerator polynomial of the notch
has to be of the form

1

AR)=1+4az '+ +apmz" M +.... Faiz M g 72

=2"MAGETY, &y

where z is the complex variable (in the time domain,
a unit delay is z7'u(n) = u(n — 1)) and 2M is the
number of zeros of A(z). This restriction also limits
the number of parameters to a minimum of M. A
second requirement for the adaptive notch filter is that
its poles have to be on the same radial line as the zeros,
but slightly shifted to the origin. This can be obtained
using A(pz) as denominator, where p < 1. The notch
filter proposed in [Nehorai, 1985] has the form
_ AR
HE = % 2
If w(n) is the input signal and H(z) is modeled as
in (2) the design of the notch filter can be formulated
as the following optimization problem: find the coef-
ficients a; of H(z) that minimize the variance of the
output signal e(n), as depicted in Fig. 1. This mini-
mization can be performed using Recursive Prediction
error methods (RPE), as detailed in Nehorai (1985).
Essentially, this method requires the computation of
the gradient that is obtained using filtered versions
(using the denominator of the notch filter) of the in-
put and output signals. This is a well known model
for notch filtering applications, and has many remark-
able properties (precision, numeric robustness, stabil-
ity, fast convergence, etc.).

2M
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Figure 2: Systerﬁ identification reformulation for notch
filter design.
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Figure 3: SM method for adaptive notch filtering
(SMM-ANFY).

This work focuses on overcoming two possible draw-
backs of this model: i) in order to obtain the sinusoid
frequencies, the roots of a high order polynomial must
be found, and ii) direct-form realization does not re-
sult in the most practical implementation (if numerical
properties are a concern) when compared with other
structures, such as the lattice realization for instance.

As a first alternative to the RPE method it is possi-
ble to reformulate the previous minimization problem
to one of system identification. Using the approach
proposed in Cheng and Tsai (1998) consider the fol-
lowing algebraic manipulation

AR) | Ap2)—A() . B() )

A(p2) Alp2) Ap2)’
where B(z) = z71[A(pz) — A(z)]. Note that, since
A(z) and A(pz) are monic polynomials, B(z) is strictly
causal. With this reformulation, depicted in Fig. 2,
the minimization problem was changed to one of sys-
tem identification. Many different methodologies can
now be applied to the design problem. Most inter-
esting to the purposes of this work is the Steiglitz-

‘McBride method (SM) (Steiglitz and McBride, 1965;

Regalia, 1995). Due to its modeling capabilities and
simplicity, the SM method has been used in many ap-
plications of adaptive IR filtering. Using this method-
ology, Cheng and Tsai (1998) obtained an adaptive
notch filter (SMM-ANF), different to the approach of
[Nehorai, 1985]. The SMM-ANF is illustrated in Fig.
o 3 '

As can be noticed, the SMM-ANF has the same
problems of the RPE methodology so a different ap-
proach is followed and introduced in the next section.

Another model is the all-pass based notch filter
model (Regalia, 1991) given by

H(z) =51+ V(2), @)
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Figure 4: Second-order normalized lattice all-pass fil-
ter.
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Figure 5: Allpass based notch filter, multiple sinusoids.

where V(z) is a second-order allpass filter. Note that
(4) does not necessarily satisfy (2). A suitable strue-
ture for the allpass filter is the normalized lattice re-
alization, that has very good properties in terms of
stability in a time varying context and also good nu-
merical properties. The parameters are the rotational
angles 0, k = 1,2 (see Fig. 4). For the unique si-
nusoid detection case, and if wq is the corresponding
frequency and B is the 3 dB bandwidth attenuation of
H(e’™), then (Regalia et al., 1988)

1 —tan(B/2)

= TtwnBp) O

0y =wo—7/2 wo € (0,m), 62
The independence of wy and B is a very important
property if adaptive filtering applications are the main
objective. In order to update the parameter 8, the
following algorithm was proposed (Regalia, 1991)

61(n+1) = 01(n) + p(n)e(n)er(n) p(n) >0,  (6)

where e(n) is the notch filter output, while the regres-
sor

z cos(#,) cos(6s)
1+ sin(61)(1 + sin(62))z + sin(6) 22 u(n)  (7)

is available in the lattice realization. B (i.e., 62)
can be fixed or controlled dynamically. The prod-
uct e(n)zq(n) is not the gradient estimation (given by
dE[e%(n)]/86,), and as a consequence, (6) does not
represent a recursive minimization of the output sig-
nal variance. In spite of that, convergence of this al-
gorithm can be proved using the differential equation
associated to (6) and the methodology of Ljung and
Soderstrom (1983). The most remarkable property of
this approach is its low computational complexity if
compared with the other alternatives.

For the multiple sinusoids detection case, there is
not an obvious way to extend the previous approach
from second-order V/(z) to higher orders, since the re-
gressor z1(n) is an ad-hoc choice aiming a low com-
plexity realization. Despite of that, [Regalia, 1991]
proposed to use in this case a cascade of second-order
sections, justifying the proposal in the independence

z1(n) =
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es(n)

of the each frequency and their corresponding band-
width. This basic scheme is illustrated in Fig. 5 for
the detection of three sinusoids.

Although the application of this approach to the
multiple sinusoids case presents reasonable results, it
can be expected that the use of a global error, in place
of the local errors, can result in a better accuracy in
frequency estimation. This can be inferred from the
fact that local errors imply the solution of several prob-
lems of insufficient order. On the other hand, using
a global error a sufficient order problem results. In
addition, a way to overcome the problem of root com-
putation must be found. Possible solutions to these
problems will be introduced in the proposal of the next
section.

III. A NEW ADAPTIVE NOTCH FILTER

In this section the allpass based notch filter is modified
to introduce two novel adaptive notch filtering algo-
rithms. A first algorithm uses the allpass based model
with a global error minimized using the SM method.
The basic limitation of this algorithm is that is not
trivial to obtain a minimal parameterization for the
particular case of notch filtering applications. This
motivates the introduection of a second algorithm, a
second-order cascaded lattice notch filter that shows,
as illustrated by examples in the next section, a suit-
able behavior.

A. SM based adaptive lattice notch filter
(SM-ALNF)

To introduce the algorithm it is considered a struc-
tural interpretation of SM method based on a modi-
fied state space representation of the notch filter (Re-
galia, 1992). The corresponding transfer function is
H(2) = 3 [1+V(2)] where V(z) is an 2M-order all-
pass filter. The modified state space representation is
given by

z(n+1) | _ x(n)
| " | = e e ] ’ “”
and
) =t | ZAD ], )
where z(n) = [z1(n),z2(n),---,zn(n)]® is the state

vector, w(n) is the allpass output, h(n) is the tap
vector and Q(n) (N + 1 x N + 1) is an orthogonal
matrix, that for the lattice realization takes the form
Q(n) =Uj(n)---Un(n), ie., Q(n) is the product of
N givens rotations U(n), such that @ '(n) = Q*(n).
{6x(n)}, & = 1,---, N determines the elements of
Q(n). The m unknown notch frequencies are re-
lated to the 2M-order allpass V(z). Then, N = 2M
and h(n) = [0,0,0,---,0,1]%, such that y(n) = w(n).
The structural interpretation of the SM for the lattice
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Figure 6: Structural interpretation of the SM method
for the notch filter.

notch filter is illustrated in IFig. 6. The a posteriori
prediction error is given by
} + w(ﬂ)} ]

(10)

Then, defining Vi = 8/80x(n+ 1) and gy, (n +
1)=[0---01]Q"(n+ 1), results

x(n+1)

ik f)= %{[0---01]Q‘(n+1) [ o2

xz(n+1)
s(n) } - L

Using an a priori version of the prediction error and
Lemma 2 of Regalia (1992), after some manipulations,
it is possible to obtain

Vie(n+1) = %[VkQEv+1(ﬂ-‘*' 1)] [

Vie(n)/B1(n)
Vae(n)/Ba2(n) 1 [ )
Q’ [ u(n) } ) (12)
Ve(n)/Bn(n)
d(n)/2

where x(n) determines the required regressor. Using
the fact that cos(f) > 0 if 6 € (—7/2,7/2), it is
possible to use a simplified version given by
U;(n) = —Vie(n) = ——%a:.,;(n), 1=1,2,---,N, (13
that results in the following update equation for the
SM based adaptive lattice notch filter (SM-ALNF)
Ooi—1(n+1) = ba;—1(n) + u(n)¥;(n)e(n), (14)
where u(n) is the step size. Note that for the partic-
ular case of M = 1, the SM-ALNF reduces to that
of Regalia (1991), discussed in the previous section.

In this way, the algorithm presented allows to give a
formal interpretation of the previous ad-hoc result.

)
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Figure 7: Alternative model for the notch filter, mul-
tiple sinusoids.
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The main problem with this kind of parameteriza-
tions is that the independence between notch frequen-
cies and the corresponding bandwidth is not simple.
Indeed, since the relationship between the parameters
and the notch frequencies is not linear, the realization
is not minimal in the number of parameters. The fol-
lowing Lemma can be used to overcome this problem.
Lemma: Given an all-pass V (z) of order 2M obtained
using the normalized lattice parameterization, if fy; —
7/2,1=1,2,---, M, then

O3i—1 =w; —w/2, w;€[0,n], 1=1,2,---,M. (15)7
Proof: using induction (Scoppa, 2002).

With this result at hand, and to avoid the updat-
ing of 2M parameters, it is possible to update éy;_1,
i=1,2,--+,M and give to 8,1 =1,2,---, M, a vari-
ation law that makes fo; — #/2. In this way, the
characteristics of this algorithm can be summarized
as: i) linear relationship between the filter parameters
and the notch frequencies, ii) utilization of a global
error, iii) minimum number of parameters to update.
In spite of these nice properties, this algorithm exper-
iments problems in a time varying context, when the
poles and zeros of V(z) approach the unit circle.

B. SM based Adaptive Cascade Lattice Notch
Filter (SM-ACLNF)
The problem of the previous algorithm can be solved
using a second-order cascaded all-pass normalized lat-
tice realization, as illustrated in Fig. 7, where
sin(fa2;) + sin(@a:—1)(1 + sin(@2:))z + 2° ,
Vi(z) = —= , : . (16
(z) 1+ Sln(ggi_ﬂ(l + sm(t?gi})z + sm(Ggi)zZ (1 }
The SM method can also be applied to minimize the
prediction error'and due to the particular realization
used, the independence between notch frequencies and
bandwidths for each pole pair is maintained. In this
case

1— ta,n(B,-/fa)
1 +tan(B;/2) a7
Instead of using the structural interpretation of the
SM, a direct approach is used to minimize the predic-
tion error using the SM method. Then, with the help
of Fig. 8, it is possible to obtain

D (2)
(2) =
Di(z)
sin(0y;) + sin(@o;_1)(1 + sin(6a:))z + 22
1 4 sin(@2i—1) (1 + sin(fa:)) z + sin(@a;) 22"
(18)

Oi1 =w; —m/2 w; € (0,7), Hau=

v
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Figure 8 SM method for the SM-ACLNF.

The a posteriori error can be written as
m -—-—-n,+
Dy (2)

D”(z)

Ot (e)

Di) | v

(19)

e(n+41) = % [

k=1
Then, using the a priori error, as usual for an on-line
SM version,

e(n) = {1 4 H ?’: Ezg )
and
de(n) Dy {z)
Sem) 14 H RO)
Fa;&i
a +Sin(92ig2gz;3(82i*l(n)) u(n —1).
(21)

If 02,1 € (—m/2,7/2), then cos(82—1) is a scale
factor that can be introduced in the step size u(n).
The same can be said if (1 + sin(f9;)) > 0. Finally,
using these simplifications, the regressor is given by

Dk (2‘.’) 1
D;(2) | D)

W, (n) u(n —1)(22)

—1+H

ksti

and the following upgrade equation for the SM based
adaptive cascaded lattice notch filter (SM-ACLNF) re-
sults
Bai_1(n+1) = Ba_1(n) + p(n)e(n)Ti(n). (23)
Some characteristics of the SM-ACLNF" are the fol-
lowing: i) due to the lattice realization, its numerical
properties are robust. Indeed, there is a linear relation
between parameters and notch frequencies (that elim-
inates the requirement of solving a high order polyno-
mial), ii) the algorithm allows control of the notch fre-
quencies and bandwidths separately; and in this sense
it is unique. iii) The complexity required for the com-
putation of the regressor is higher than with the other
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SMM-ANF | SM-ALNF | SM-ACLNF
mean wi 0.40003 0.39970 0.40000
mean s 0.30000 0.30021 0.30002
mean ws 0.19990 (.19978 0.20001
mean wy 0.99980 0.10033 0.10002
var wy 1.00 E-09 2.00 E-08 1.70 E-09
var um 1.40 E-09 1.00 BE-07 1.20 E-09
var ws 1.40 E-09 1.00 E-07 9.00 E-10
var g 1.30 E-09 3.00 E-08 2.00 E-10
Iterations 500 900 400

Table 1: Simulation 1: stationary context, SNR = 10
dB, p fixed.

approaches. Further research is being performed in or-
der to overcome this problem. Also, it is expected that
due to the utilization of a global error, a better fre-
quency estimation can be obtained, if compared with
the adaptive notch filter of Cheng and Tsai (1998).

IV. DISCUSSION AND COMPARISONS

To compare the algorithms two simulation contexts for
the detection of four sinusoidal signals in AWGN are
considered: stationary and non stationary. A recur-
sive least square version of the algorithms was imple-
mented, using different predefined variation laws for
p. The comparisons include the following algorithms:
SM-ANF, SM-ALNF and SM-ACLNF.

Simulation 1, Stationary context. The results are
summarized in Table 1. As can be observed, the SMM-
ANF and the SM-ACLNF have similar performance ei-
ther in convergence speed or mean and variance of the
estimated frequencies, with the advantage in the last
case of the direct availability of the estimated param-
eters. It was observed in general that, in this context,
the SMM-ANF and the SM-ACLNF have comparable
convergence speed.

Simulation 2. Non stationary context. One of
the four sinusoidal signals switches its frequency in
cycles of 2000 samples (from 0.35 to 0.25), periodi-
cally. In this case since the SMM-ANF uses a similar
p for all the poles, a poor performance is expected.
Figures 9, 10 and 11 illustrate the performance of the
SMM-ANF, SM-ALNF and SM-ACLNF, respectively.
Due to the linear relationship between the parameters
and the frequencies to be estimated, the SM-ALNF
and SM-ACLNF have superior performance in a non
stationary context, as can be concluded from the fig-
ures. Indeed, the algorithm with lower variance in the
estimated frequencies was the SM-ACLNF.

V. CONCLUSIONS

Two new algorithms were introduced as alternative
to the SM based adaptive notch filter: the SM
based adaptive lattice notch filter (SM-ALNF) and the
SM based adaptive cascade lattice notch filter (SM-
ACLMF). This family of algorithms represents an al-
ternative to the classical RPE based methods for adap-
tive notch filtering. The new algorithms use a global
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Figure 9: Simulation 2: non stationary context, SMM-
ANF, notch frequencies wy = 0.1, wg = 0.2, wy = 0.3,
wg = 0.35. Signal-to-noise ratio: 0 dB.
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Figure 10: Simulation 2: non stationary context, SM-
ALNF, notch frequencies wy = 0.1, wg = 0.2, wp =
0.3, wg = 0.35. Signal-to-noise ratio: 0 dB.

error and a normalized lattice realization. The simula-
tions presented show the improved performance of the
algorithms in non stationary environments.
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