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Abstract

This paper applies bifurcation analysis to the well-known van der Pol oscillator to obtain approximations of its

periodic solutions in the nearly sinusoidal regime. A frequency domain method based on harmonic balance approxi-

mations is used for small values of the bifurcation parameter. Moreover, a comparison with some other frequency

domain approaches is also given. Finally, a total harmonic distortion is computed using the information provided by

the frequency domain approach.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Bifurcation analysis is an important mathematical tool for computing approximations of periodic solutions in some

classical electronic oscillators (van der Pol, Colpitts, and so on), particularly in the nearly sinusoidal regime. Several

methods have been proposed in the past [8,11,12], not only to analyze the dynamic behaviors of these oscillators but

also to provide reliable tools for assisting circuit design in order to minimize harmonic distortions. Notably, many of

them have been developed in the time domain using the perturbation theory [3]. Some others, like the one presented

here, are performed in the frequency domain, i.e., utilizing the Laplace transforms, harmonic balance approximations,

and Nyquist diagrams [1,13].

In most sinusoidal oscillator configurations, oscillation occurs when an equilibrium point loses its stability and a

limit cycle emerges, that is, under the mechanism of the Hopf bifurcation theorem which relates the emergence of a

periodic solution after a change of stability of the equilibrium point through a suitable variation of a key system

parameter [14].

In general, calculating the steady-state waveform of nearly sinusoidal nonlinear oscillators requires the knowledge of

its amplitude and frequency. Two principal items should be analyzed: how to establish the conditions to be met by the

circuit to ensure the existence of a stable periodic oscillation and how to obtain an analytical representation of the

oscillation for predicting the parameters of interest, particularly its amplitude and frequency.

The graphical Hopf bifurcation theorem (GHBT) in the frequency domain takes advantage of local predic-

tions obtained by applying different higher-order harmonic balance approximations [13,16]. This method is useful
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for characterizing oscillations in nonlinear feedback systems with smooth nonlinearities, when a parameter is var-

ied in the mathematical model. The main advantages of this approach rely on the graphical capabilities, similarly to

the describing function method, and the explicit expressions of the harmonics. On the other hand, its main disad-

vantage relates to the crafty method required to obtain an adequate system realization such that the computa-

tion effort is minimized. Furthermore, if the system is highly nonlinear or the bifurcation parameter is far away

from the critical value, higher-order bifurcation formulas are needed to obtain a better prediction or to study

more complex phenomena like period-doubling bifurcation, quasi-periodic motion, bifurcation of cycles, and so on

[5,6,18].

Other approaches in the frequency domain have helped in finding a first-order approximation of the periodic

solution of interest and the bifurcation of the cycles using the describing function method [4]. With those methods it is

possible to compute approximate values of the first period-doubling bifurcation, and some initial conditions of various

complex dynamics, etc. based on simple engineering arguments and tools [9,10]. In order to show some comparisons

with the results provided by GHBT, the method developed by Buonomo and colleagues [7,8] will be used, because it

shares a similar flavor of higher-order expansions.

The rest of this paper is organized as follows. In Section 2, the GHBT in the frequency domain is briefly reviewed. In

Section 3, general discussion on harmonic distortions is given. In Section 4, the main results obtained for the van der

Pol circuit are presented, for both the GHBT and Buonomo’s methods. Finally, some concluding remarks are given in

the last section.
2. The frequency domain approach

Consider the following parametric autonomous system:
_x ¼ Axþ BDy þ B½gðy; eÞ � Dy�;
y ¼ Cx;
where x 2 Rn, y 2 Rm, A, B, C and D are n� n, n� l, m� n and l� m matrices, e 2 R is the bifurcation (control)

parameter, y is the output and g : Rm ! Rl is a C2qþ1-function, where 2q is the order of smoothness and, equivalently, of

the 2q-order of harmonic balance approximation.

Following the results of [14], the system can be separated into two parts, the linear transfer matrix Gðs; eÞ and the

nonlinear feedback part f ðe; eÞ, as follows:
Gðs; eÞ ¼ C½sI � ðAþ BDCÞ��1B;

u ¼ f ðe; eÞ :¼ gðy; eÞ � Dy;
where y ¼ �e. It can be verified that the equilibrium points ê are the solutions of the following equation:
Gð0; eÞf ðe; eÞ ¼ �e:
After solving for ê, the Jacobian matrix J of the nonlinear function f ðe; eÞ is obtained as J ¼ ðDef Þe¼ê, which is the

linearization of the feedback function about the equilibrium point ê.
The eigenvalues of the open-loop matrix Gðs; eÞJ are given by
hðk; s; eÞ ¼ det½kI � GJ � ¼ kp þ ap�1ðs; eÞkp�1 þ � � � þ a0ðs; eÞ; ð1Þ
where p ¼ min½rankG; rankJ � and aið�Þ are rational functions of s.
Assuming a single root of hð�Þ at k ¼ �1 and replacing s ¼ ix in (1), one has
hð�1; ix; eÞ ¼ ð�1Þp þ
Xp�1

k¼0

ð�1Þkakðix; eÞ ¼ 0: ð2Þ
The pair ðx0; e0Þ satisfying (2) corresponds to a necessary condition for obtaining a bifurcation point. If x0 ¼ 0, the

bifurcation condition is called static and it is related to the multiplicity of the equilibrium point ê. On the other hand, if

x0 6¼ 0, the bifurcation condition is known as dynamic or Hopf and it is related to the appearance of a branch of

periodic solutions (if some other conditions are also satisfied).
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Separating (2) in real (Re) and imaginary (Im) parts yields
Re½hð�1; ix; eÞ� ¼ F1ðx; eÞ ¼ ð�1Þp þ
Xp�1

k¼0

ð�1ÞkRe½akðix; eÞ� ¼ 0;

Im½hð�1; ix; eÞ� ¼ F2ðx; eÞ ¼
Xp�1

k¼1

ð�1ÞkIm½akðix; eÞ� ¼ 0:
Then, the three basic statements of the Hopf bifurcation theorem in the frequency domain setting are given as

follows:

(H1) There is only one eigenvalue k̂ of hðk; ix; eÞ ¼ 0 passing through the critical point ð�1þ i0Þ when x varies in

½0;1Þ, in such a way that there is a change in the stability of the equilibrium solution. Moreover, there is only

one frequency x0 6¼ 0 satisfying Eq. (2) for a given e ¼ e0 i.e., a resonance condition is avoided, and

oF1=oxðx0; e0Þ, oF2=oxðx0; e0Þ are not simultaneously zero. This condition excludes the situation where the locus

of the eigenvalue k̂ has a loop and passes again the critical point with another frequency. The failure of this con-

dition can give a double-zero root (Bogdanov–Takens bifurcation), one single-zero root plus a Hopf bifurcation

condition (Gavrilov–Guckenheimer bifurcation), two pairs of imaginary roots (double Hopf bifurcation), and so

on.

(H2) The following determinant is nonzero:
M ¼
oF1
oe

oF2
oe

oF1
ox

oF2
ox

2
64

3
75

ðx0 ;e0Þ

6¼ 0:
This condition guarantees the crossing of the bifurcating eigenvalue through the critical point ð�1þ i0Þ with a nonzero

speed of change.

(H3) The expression
r1 ¼ �Re
uTGðix0; eÞp1ðx0; eÞ

uTG0ðix0; eÞJm

� �
; ð3Þ
called the curvature coefficient, does not change its sign when e varies near e0. In the above formula, uT and

m ¼ ½v1 v2 � � � vp � � � vn�T are the left and right eigenvectors of the open-loop transfer matrix ½Gðix; eÞJðeÞ� associated
with k̂, G0ðix0; eÞ ¼ dG=dss¼ix0

and p1 is given by
p1ðx; eÞ ¼ QV02 þ
1

2
QV22 þ

1

8
Lm; ð4Þ
where
V02 ¼ � 1

4
Hð0; eÞQv;

V22 ¼ � 1

4
Hði2x; eÞQm;
and ‘‘�’’ denotes the complex conjugate, Hðs; eÞ :¼ ½Gðs; eÞJ þ I ��1Gðs; eÞ is the closed-loop transfer matrix; the l� m
matrices Q and L are
Q ¼ ½Qjk� ¼
Xm
p¼1

o2fj
oepoek

�����
ê

vp

" #
;

and
L ¼ ½Ljk � ¼
Xm
p¼1

Xm
q¼1

o3fj
oepoeqoek

�����
ê

vpvq

" #
;

where j ¼ 1; 2; . . . ; l, k ¼ 1; 2; . . . ;m. Eq. (3) is the so-called stability index (or, Lyapunov coefficient, focal value) which

indicates the stability of the emerging periodic solution at the criticality, i.e., it determines if the Hopf bifurcation is

supercritical or subcritical.
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In order to obtain approximations of the periodic solutions in the neighborhood of the criticality, it is necessary to

evaluate Eq. (4) and the eigenvectors at a frequency x ¼ xR, where xR is obtained by solving Imfk̂ðixRÞg ¼ 0, and

Refk̂ðixRÞg ¼ 0 is the closest value to the critical point ð�1þ i0Þ.
The amplitude ĥ and a better estimation of the frequency x̂ of the oscillations are obtained by solving the following

expression:
k̂ðix̂Þ ¼ �1þ n1ðxRÞĥ2; ð5Þ
where n1ðxRÞ ¼ � uTGðixRÞp1ðxR ;eÞ
uTm for the second-order harmonic balance, or
k̂ðix̂Þ ¼ �1þ
X2q
k¼1

nkðix̂Þĥ2k ; ð6Þ
for a 2qth-order harmonic balance, where nk are given in [13,16].

Finally, the approximation formulas for the second-order harmonic balance are given by
eðtÞ ¼ êþRe
X2
k¼0

Ek expðikx̂tÞ
( )

; ð7Þ
where E0 ¼ h2V02, E1 ¼ hm and E2 ¼ h2V22, while the equivalent generalization for the 2qth-order harmonic balance

is expressed as
eðtÞ ¼ êþRe
X2q
k¼0

Ek expðikx̂tÞ
( )

; ð8Þ
where E0 ¼ h2V02 þ h4V04 þ h6V06 þ � � � þ h2qV0;2q, E1 ¼ hmþ h3V13 þ h5V15 þ � � � þ h2qþ1V1;2qþ1, E2 ¼ h2V22 þ h4V24 þ
h6V26 þ � � � þ h2qV2;2q and Ek ¼ hkVkk þ hkþ2Vk;kþ2 þ � � � are given explicitly in [13,16] up to the order 2q ¼ 8. This method

will be applied to the van der Pol circuit in Section 4.
3. Harmonic distortion

Harmonic distortion is an important measure of the quality of the waveform of an oscillator [15] and it allows to

compare the amplitude of the fundamental frequency with its harmonics.

According to the formulas given in the previous section, the amplitudes of higher-order harmonics depend on the

parameter e. The signal eTðtÞ is a sum of its harmonic components, assuming that there is no DC component on it:
eTðtÞ ¼ efðtÞ þ
X
i 6¼1

ehiðtÞ;
where ef is the fundamental component of the signal to be examined and ehi is the component at the i harmonic.

The root-mean-square (rms) values are calculated using the well-known definition
ET ¼ 1

T

Z T

0

e2TðtÞdt
� �1

2

; or ET ¼ E2
F

 
þ
X
i 6¼1

E2
hi

!1
2

�

The amount of distortion in the signal waveform is quantified by means of an index called total harmonic distortion

(THD).

The distortion component of the signal is related directly with its harmonics:
edðtÞ ¼ eTðtÞ � efðtÞ;
and, in terms of rms values,
Ed ¼ ðE2
T � E2

FÞ
1
2:
The THD is then given by
%THD ¼ 100
Ed

Ef

:
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4. The van der Pol circuit

4.1. The circuit model

The well-known van der Pol’s equation is given by
€xþ eðx2 � 1Þ _xþ x ¼ 0; ð9Þ
which is a simple harmonic oscillator with a nonlinear damped term, eðx2 � 1Þ _x. This term acts as a positive damping for

jxj > 1, producing a decay in large amplitude oscillations, while for jxj < 1 this damping is negative producing an

increment in the response. The consequence is that the system builds in a self-sustained oscillation where the dissipated

energy over a cycle is balanced with the acquired energy. This reasoning justifies roughly why the van der Pol equation

has only one stable limit cycle for each e > 0.

In terms of the first-order variable representation, Eq. (9) yields
_x1 ¼ x2;

_x2 ¼ �x1 � e x21
�

� 1
�
x2:

ð10Þ
The corresponding linearized system has pure imaginary eigenvalues when e ¼ 0, so it may seem that the bifurcation

condition appears. However, for 0 < e � 1, the system has a stable limit cycle, and for e < 0 an unstable limit cycle

appears. This situation is directly related with the fact that e ¼ 0 is a degenerate bifurcation because the nonlinear terms

disappear and the curvature coefficient given by Eq. (3) is equal to zero. As explained in [14], the van der Pol oscillator

does not satisfy the Hopf bifurcation theorem because the emergence of the limit cycle is not born out of the equi-

librium.

In order to apply the technique proposed in Section 2, a change of variables is needed to remove the degeneracy,

in a way suggested by [19]:
u ¼ e
1
2x; e > 0: ð11Þ
Then, Eq. (9) changes to
€uþ uþ u2 _u� e _u ¼ 0: ð12Þ
However, this change of variables modifies the nature of the periodic solution of the original Eq. (9) as it will be

explained below. Analyzing the original van der Pol system (9), unstable limit cycles are obtained for e < 0. However,

considering the change of variables proposed in Eq. (11) the Hopf bifurcation emerging in Eq. (12) is supercritical: only

stable limit cycles are detected for e > 0 after a change of the stability of the equilibrium solution. Since one is interested

in approximating stable periodic solutions for e > 0, assume that Eq. (11) is a suitable transformation for this purpose.

Finally, Eq. (12) can be written as
_u1 ¼ �u2 þ eu1 �
1

3
u31

_u2 ¼ u1;
ð13Þ
which is easily verified by taking time-derivative of the first equation, i.e., d _u1
dt ¼ €u1 ¼ � _u2 þ e _u1 � u21 _u1. Then, by using

_u2 ¼ u1 and assigning u ¼ u1, Eq. (12) follows. Eq. (13) is called the modified van der Pol circuit. It is important to note

that the nonlinearity is now in one state variable and this simplifies the following calculations.

4.2. Main results

To apply the frequency domain method [14] to the modified van der Pol equation (13), the following realization is

proposed:
A ¼ �1 �1

1 0

� �
; B ¼ 1

0

� �
; C ¼ 1 0½ �; D ¼ 0:
In this case, the nonlinear term is gðu1; eÞ ¼ ð1þ eÞu1 � 1
3
u31, and the transfer function is
GðsÞ ¼ CðsI � AÞ�1B ¼ s
s2 þ sþ 1

;



212 M.S. Pad�ın et al. / Chaos, Solitons and Fractals 23 (2005) 207–220
where
y1 ¼ u1 ¼ �e1; f ðe1; eÞ ¼ �ð1þ eÞe1 þ
1

3
e31; Gð0Þf ðe1; eÞ ¼ 0 ¼ �e1:
The equilibrium point is ê1 ¼ 0, and the Jacobian is
J ¼ �ð1þ eÞ þ ê21j _e1�0 ¼ �ð1þ eÞ:
The eigenvalue k̂ ¼ GðsÞJ js¼ix at the bifurcation condition is
k̂ ¼ �1 ¼ �ð1þ eÞix
ð1� x2Þ þ ix

:

Solving its real and imaginary parts, the frequency for x0 is x0 ¼ xHopf ¼ 1 for e ¼ 0. To obtain k̂ðixRÞ, where xR

satisfies Imfk̂ðixRÞg ¼ 0 the resulting frequency yields also xR ¼ xHopf ¼ 1.

The left and right eigenvectors are uT ¼ 1, v ¼ V11 ¼ 1 since the system is SISO (single-input single-output). Fol-

lowing the procedure described in the previous section, one obtains V02 ¼ V22 ¼ 0, p1 ¼ 1
4
and n1 ¼ � 1

4
. Then

k̂jx¼xR
� �ð1þ eÞ ¼ �1� 1

4
h2 So, it is easy to obtain
h ¼ 2
ffiffi
e

p
: ð14Þ
Finally, the response is expressed as
E1 ¼ vh ¼ 2
ffiffi
e

p
;

e1ðtÞ ¼ Ref2
ffiffi
e

p
ðcos t þ i sintÞg ¼ 2

ffiffi
e

p
cos t;

u1ðtÞ ¼ �e1 ¼ �2
ffiffi
e

p
cos t:

ð15Þ
Returning to the original variable (applying the scale of Eq. (11)), it follows that
x1ðtÞ ¼ �2 cos t: ð16Þ
In order to construct a more accurate approximation, by noticing that the system is SISO, it yields

V13 ¼ V15 ¼ � � � ¼ V1;2qþ1 ¼ 0. Suppose, for simplicity, that the estimation of the frequency xR ¼ 1 is appropriate and

there is no need of correction. Then, a fourth-order harmonic expansion (see the formulas in [13]) gives
V22 ¼ V02 ¼ V04 ¼ V24 ¼ V44 ¼ 0

V33 ¼
1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p exp i U33

	h
þ p

2


i
; E3 ¼ h3V33;
where /33 ¼ arctanð�3e
8
Þ. The solution in terms of e1ðtÞ can be expressed as
e1ðt; eÞ ¼ RefE1 expðitÞ þ E3 expð3itÞg ¼ 2
ffiffi
e

p
cos t þ 2e

ffiffi
e

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p cos 3t
	

þ U33 þ
p
2



;

while the one in the original variable would be corrected in the following way:
x1ðt; eÞ ¼ �2 cos t � 2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p cos 3t
	

þ p
2
þ U33



¼ �2 cos t þ 2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64þ 9e2
p sinð3t þ U33Þ: ð17Þ
Without making corrections in amplitude and frequency through Eq. (6), and to obtain quasi-analytical approxi-

mations, the expansion in six harmonics (see the formulas in [16]) is
V35 ¼
�3

8ð64þ 9e2Þ exp i2U33½ �;

V06 ¼ V26 ¼ 0; V17 ¼ 0;

V55 ¼
�5

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576þ 25e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p exp iðU33½ þ U55Þ�;
where U55 ¼ arctanð�5e
24
Þ. This means that the amplitude and frequency are fixed by the second-order harmonic balance

at h ¼ 2
ffiffi
e

p
and xR ¼ 1, respectively. The computation is carried out by using Algorithm 1 shown in Appendix A.
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It is important to highlight the validity of the approximation. As the series is expanded in terms of the parameter h, it
should require h < 1 so as to guarantee the convergence, at least conservatively. Notice that the higher-order terms

V33; V35; V55; . . ., and therefore n1; n2 and n3, are decreasing in absolute value due to the property of low-pass filter of the

transfer function GðsÞ. So, the contribution of the higher-order harmonics is certainly attenuated for small values of e.
Thus, it can be easily deduced that if h < 1 then e < 1

4
. Thus, a conservative estimate of the limit of the convergence,

e should be slightly greater than 1
4
if n1; n2; n3 satisfy the decreasing modulus property, which is a standard feature

of physical systems.

Relying on the same simplifications as before (i.e., h ¼ 2
ffiffi
e

p
and xR ¼ 1), the approximate solution using sixth-order

harmonic balance can be written as
xMC
1 ðt; eÞ ¼ �2 cos t þ 2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

64þ 9e2
p sinð3t þ U33Þ þ

12e2

64þ 9e2
cosð3t þ 2U33Þ

þ 10e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576þ 25e2

p cosð5t þ U33 þ U55Þ; ð18Þ
where the superscript MC means the approximate solution obtained using Mees–Chua’s method without updating the

amplitude ĥ and frequency x̂ through Eq. (6). Notice that the associate coefficients in e in Eq. (18) can be expanded in

Taylor series around e ¼ 0, as follows:
2effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p ¼ 1

4
e� 9

512
e3 þ 243

131072
e5 þ � � �

12e2

ð64þ 9e2Þ ¼
3

16
e2 � 27

1024
e4 þ 243

65536
e6 þ � � �

10e2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576þ 25e2

p ¼ 5

96
e2 � 530

110592
e4 þ 5335

10616832
e6 þ � � �
Thus, Eq. (18) can be rewritten in terms of the expansion in e in order to compare with other formulations:
xMC
1 ðt; eÞ ¼ �2 cos t þ 1

4
e

�
� 9

512
e3 þ 243

131072
e5 þ � � �

�
sinð3t þ U33Þ þ

3

16
e2

�
� 27

1024
e4 þ 243

65536
e6 þ � � �

�

� cosð3t þ 2U33Þ þ
5

96
e2

�
� 530

110592
e4 þ 5335

10616832
e6 þ � � �

�
cosð5t þ U33 þ U55Þ: ð19Þ
Notice that Eqs. (10) and (13) have the symmetry x1 ! �x1; x2 ! �x2 and u1 ! �u1; u2 ! �u2, respectively. So,
multiplying Eq. (19) by )1 also gives a solution. Thus, an equivalent valid solution for the sixth-order harmonic balance

approximation with an expansion in e is
�xMC
1 ðtÞ ¼ xMC

1equivðtÞ ¼ 2 cos t þ
�
� 1

4
eþ 9

512
e3 � 243

131072
e5 þ � � �

�
sinð3t þ U33Þ �

3

16
e2

�
� 27

1024
e4 þ 243

65536
e6

þ � � �
�
cosð3t þ 2U33Þ �

5

96
e2

�
� 530

110592
e4 þ 5335

10616832
e6 þ � � �

�
cosð5t þ U33 þ U55Þ: ð20Þ
This explicit non-updated solution can be compared to the expansion obtained by [8] for second-order in e:
xB;21 ðt; eÞ ¼ 2 cosðxtÞ � e
4
sinð3xtÞ � e2

3

32
cosð3xtÞ

�
þ 5

96
cosð5xtÞ

�
; ð21Þ
where
x ¼ 1� 1

16
e2 þ Oðe4Þ;
or by [7] up to the fourth-order approximation in e, as follows
xB;41 ðt; eÞ ¼ 2

�
þ 1

64
e2 � 23

49152
e4
�
cosðxtÞ þ

�
� 1

4
e� 15

512
e3 þ � � �

�
sinð3xtÞ þ

�
� 3

32
e2 þ 101

12288
e4 þ � � �

�

� cosð3xtÞ � 85

2304
e3 sinð5xtÞ þ

�
� 5

96
e2 þ 1865

110592
e4 þ � � �

�
cosð5xtÞ � 7

576
e3 sinð7xtÞ

þ 1379

110592
e4 cosð7xtÞ þ 61

20480
e4 cosð9xtÞ þ Oðe5Þ; ð22Þ
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and
Fig. 1

(IGM)
x ¼ 1� 1

16
e2 þ 17

3072
e4 þ Oðe6Þ: ð23Þ
As can be easily seen from Eqs. (20) and (22), there is no improvement in Mees and Chua’s method in correcting the

approximation of the amplitude of the first harmonic in terms of e. So, it is important to use the updated algorithm on

amplitude ĥk and frequency x̂k , k ¼ 2; 3; 4, provided by the following expressions:
k̂ðix2Þ ¼
�ð1þ eÞix2

1� x2
2ð Þ þ ix2

¼ �1þ n1ðx2Þh2 þ n2ðx2Þh4; ð24Þ

k̂ðix3Þ ¼ �1þ n1ðx3Þh2 þ n2ðx3Þh4 þ n3ðx3Þh6; ð25Þ
and
k̂ðix4Þ ¼ �1þ n1ðx4Þh2 þ n2ðx4Þh4 þ n3ðx4Þh6 þ n4ðx4Þh8; ð26Þ
where n2; n3 and n4 are given in Appendix A, and it is called the iterative graphical method (IGM). These expressions can

be solved graphically in a manner reminiscent to the describing function method in the following way: the solution set

ðx̂2; ĥ2Þ satisfies k̂ðix2;kÞ ¼ �1þ n1ðx2;k�1Þĥ2 þ n2ðx2;k�1Þĥ4 when x2;k ffi x2;k�1. Analogous solutions correspond to

Eqs. (25) and (26).

This algorithm has been suggested by [14], used profusely by [16], and recently by [18], for detecting several

bifurcations of the cycles close to Hopf bifurcations.

Figs. 1 and 2 show the output waveform obtained by numerical simulations (NS), Buonomo’s method (BM), a sixth-

order harmonic balance by using GHBT (Eq. (19)) and an eighth-order harmonic balance IGM for e ¼ 0:5 and e ¼ 0:8,
respectively. Since the GHBT does not update frequency and amplitude, their results are clearly distinguishable from

the rest.

A measure for comparing the oscillatory predictions by varying the parameter e is constructed using the maximum

amplitude of the oscillation versus the bifurcation parameter. This is the bifurcation diagrams for the BM, GHBT, IGM

and NS shown in Fig. 3. In this figure, both analytical approximations given by Eqs. (18) and (22), i.e., GHBT and BM,

behave quite similarly. Moreover, the updated algorithm (IGM) has very good predictions of the amplitude up to

e ¼ 0:7 The conservative prediction of e � 0:25 by the frequency domain method (GHBT and IGM) can be extended
. Output waveform obtained by Buonomo’s method (BM), the non-updated algorithm (GHBT), the iterative graphical method

and numerical simulations (NS), for e ¼ 0:5.



Fig. 2. Output waveform obtained by Buonomo’s method (BM), the non-updated algorithm (GHBT), the iterative graphical method

(IGM) and numerical simulations (NS), for e ¼ 0:8.

Fig. 3. Maximum amplitude of the oscillation for the van der Pol circuit using Buonomo’s method (þ), GHBT (}), IGM (�) and

numerical simulations NS (��).
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slightly far away from e � 0:50. In [7], it is shown that the validity of the convergence of the series goes up to e < 1:89. It
is important to emphasize here that the expansion in e is truncated to the fourth-order term, as Eq. (22) shows.

However, other indexes to measure the accuracy of the approximations can be used in order to make better conclusions.

Another interesting feature with the IGM is the correction of the frequency in terms of the parameter e. According to

[2], who obtained an expansion up to the order Oðe24Þ in rational arithmetic, the expansion of the frequency x in terms

of e (for simplicity up to the order Oðe14Þ), is given by



Fig. 4

algorit
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x ¼ 1� 1

16
e2 þ 17

3072
e4 þ 35

884736
e6 � 678899

5096079360
e4 þ 28160413

2293235712000
e10 þ 16729607288111

3698530556313600000
e12 þ Oðe14Þ:

ð27Þ
A comparison of the frequency variation in terms of e with the IGM and Eq. (27) is shown in Fig. 4. This last curve is

denoted as AG in the graph, and it is computed up to the order Oðe24Þ. The IGM gives a pretty good estimate of the

frequency variation, considering the non-updated case which is fixed to x ¼ 1.

Another measure of the approximations consists in plotting the departure from +1.00000 of the trivial Floquet

multiplier of the linearized variational equation around the periodic solution. This trivial multiplier computed using
. Comparison of the variation in frequency x obtained with the IGM (�) and the expansion given by [2] (�). The GHBT

hm does not update the frequency (x ¼ 1).

Fig. 5. Plot of the trivial Floquet multiplier for BM (þ), GHBT (}), IGM (�) and numerical simulations (��).



Table 1

%Total Harmonics Distortion versus e

e %THD for BM %THD for GHBT %THD for QFM

0.01 0.125032 0.125006 0.124999

0.03 0.375156 0.375159 0.37498

0.05 0.625461 0.625734 0.624908

0.10 1.25281 1.25585 1.24927

0.124 1.55515 1.56112 1.54861

0.20 2.5206 2.54605 2.49422

0.30 3.82791 3.90143 3.73088

0.40 5.1584 5.34653 4.95598

0.50 6.55454 6.89808 6.1671

0.60 8.01746 8.56473 7.36284

0.70 9.55693 10.3477 8.54273

0.80 11.1814 12.2419 9.707

0.90 12.8983 14.2377 10.8562

1.00 14.7145 16.3217 11.9907

Fig. 6. Comparison of total harmonic distortion (%THD) using BM, GHBT and QFM.
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Buonomo’s method gives the best performance (more accurate approximation) as can be seen in Fig. 5. However, the

non-updated algorithm (GHBT) as well as the IGM give good results even for e � 0:4� 0:5.
Both Buonomo and GHBT methods give the results presented in the two first columns of Table 1. These are plotted

in Fig. 6 in terms of the total harmonic distortion (THD) versus the bifurcation parameter e. Other approximations of

the harmonic amplitudes have been presented by [17], referred as QFM in Fig. 6 and in the last column of Table 1. The

total harmonic distortion is in accordance up to e � 0:8 as compared to the BM and GHBT results. For e > 0:8, the
approximation provided by QFM gives less total harmonic distortion than that by BM and GHBT.
5. Conclusions

Some comparisons in approximating periodic solutions with two different higher-order harmonic balance methods

have been shown on the van der Pol oscillator. The GHBT provides quite good results as compared to the IGM, taking

into account that there is no need to implement an additional computational algorithm, i.e., their formulas are explicit.
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This observation is also reinforced by adding other measures of accuracy as the departure from the key point +1.00000

of the trivial Floquet multiplier, the temporal waveform, the harmonic distortion, etc. On the other hand, the IGM

gives a proper correction to the frequency in the same direction as do by other classical methods. For BM and GHBT, a

computation of total harmonic distortion and the departure from +1.00000 of the trivial Floquet multiplier are cal-

culated and depicted versus the main bifurcation parameter. Here, a third approximation is added (QFM) for the study

of distortion. All methods seem reliable in the study of the distortion of higher-harmonics in the region of their

respective convergence of series expansion.
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Appendix A

1. The following two algorithms have the following common settings:
D2 ¼
o2f
oe21

����
e1¼0

¼ 0; D3 ¼
o3f
oe31

����
e1¼0

¼ 2; Dk ¼
okf
oek1

����
e1¼0

¼ 0; k > 3 and

V0;2q ¼ V2;2q ¼ 0; q ¼ 1; 2; 3 and 4;

V4;4þ2q1 ¼ 0; q1 ¼ 0; 1 and 2;

V6;6þ2q2 ¼ 0; q2 ¼ 0 and 1;

V13 ¼ . . . ¼ V1;2qþ1 ¼ 0; q ¼ 1; 2; 3 and 4:
Moreover, E1 ¼ h, E3 ¼ h3V33 þ h5V35 þ h7V37, E5 ¼ h5V55 þ h7V57 and E7 ¼ h7V77 and the periodic solution is given

by e1ðtÞ ¼ ê1 þRef
P3

k�0 E
2kþ1 exp½ið2k þ 1Þx̂t�g.

2. Algorithm 1: Computation of the complex numbers for the van der Pol oscillator without update:
v ¼ V11 ¼ 1; x ¼ 1; h ¼ 2
ffiffi
e

p

V33 ¼
1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p exp i U33

	h
þ p

2


i
; U33 ¼ arctan

�3e
8

� �
;

V35 ¼
�3

8ð64þ 9e2Þ exp½i2U33�;

V55 ¼
�5

16
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
576þ 25e2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64þ 9e2

p exp½iðU33 þ U55Þ�; U55 ¼ arctan
�5e
24

� �
:

3. Algorithm IGM: Computation of the complex numbers for the van der Pol oscillator with update:
v ¼ V11 ¼ 1;

HðikxÞ ¼ ki
1� k2x2 � kei

; k ¼ 3; 5 and 7;

n1 ¼ � 1

8
GðixÞD3:
Update x̂1 and ĥ1 by solving k̂ðix̂1Þ ¼ �1þ n1ðxRÞĥ21, and re-calculate n1 at x̂1. Compute
V33 ¼ � 1

24
Hði3x̂1ÞD3;

n2 ¼ � 1

8
Gðix̂1ÞD3V33:
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Update x̂2 and ĥ2 by solving k̂ðix̂Þ ¼ �1þ n1ðxÞĥ2 þ n2ðxÞĥ4, and re-calculate n1; n2, and V33 at x̂2.

Compute
V35 ¼ � 1

4
Hði3x̂2ÞD3V33;

V55 ¼ � 1

8
Hði5x̂2ÞD3V33;

n3 ¼ � 1

8
Gðix̂2ÞD3fV35 þ 2V33V 33g:
Update x̂3 and ĥ3 by solving k̂ðixÞ ¼ �1þ n1ðxÞĥ2 þ n2ðxÞĥ4 þ n3ðxÞĥ6, and re-calculate n1; n2; n3; V33; V35; V55 at x̂3.

Compute
V37 ¼ �Hði3x̂3ÞD3

1

4
V35

�
þ 1

8
V55

�
;

V57 ¼ �Hði5x̂3ÞD3

1

8
V35

�
þ 1

4
V55 þ

1

8
V33V33

�
;

V77 ¼ �Hði7x̂3ÞD3

1

8
V55

�
þ 1

8
V33V33

�
;

n4 ¼ � 1

8
Gðix̂3ÞD3 V37

�
þ 2V33V 35 þ 2V 33V35 þ 2V 33V55

�
:

Update x̂4 and ĥ3 by solving k̂ðixÞ ¼ �1þ n1ðxÞĥ2 þ n2ðxÞĥ4 þ n3ðxÞĥ6 þ n4ðxÞĥ8, and re-calculate

V33; V35; V37; V55; V57 and V77 at x̂4 to construct the periodic solution.
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