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Abstract. The dynamic behavior close to a non-resonant double Hopf bifurcation is analyzed via a frequency-domain technique.
Approximate expressions of the periodic solutions are computed using the higher order harmonic balance method while their
accuracy and stability have been evaluated through the calculation of the multipliers of the monodromy matrix. Furthermore, the
detection of secondary Hopf or torus bifurcations (Neimark–Sacker bifurcation for maps) close to the analyzed singularity has
been obtained for a coupled electrical oscillatory circuit. Then, quasi-periodic solutions are likely to exist in certain regions of
the parameter space. Extending this analysis to the unfolding of the 1:1 resonant double Hopf bifurcation, cyclic fold and torus
bifurcations have also been detected in a controlled oscillatory coupled electrical circuit. The comparison of the results obtained
with the suggested technique, and with continuation software packages, has been included.
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1. Introduction

The qualitative changes of the solutions in a multiparameter dynamical system of nonlinear differential
equations are studied through bifurcation theory. This subject is usually considered in a state-variable
formulation (time-domain method) but there exists another approach that comes from the theory of
feedback systems known as frequency-domain method which is familiar to control engineers and then
of practical interest in the field of control and anti-control of bifurcations. Using this perspective whose
starting point is the application of the Laplace transform, it is possible to consider the bifurcation
problems in differential equations through certain loci, called Nyquist diagrams, in the complex plane.
Regarding the dynamic bifurcations which involve the appearance or disappearance of limit cycles,
certain family of degeneracies has been analyzed. More specifically, the subject of this paper comprises
when one of the hypotheses of the Poincaré–Andronov–Hopf theorem [1] fails: the linearized system
evaluated at the equilibrium has exactly two pairs of purely imaginary eigenvalues: ±iω1, ±iω2 (ω1/ω2

is an irrational number) instead of a single pair of the classical theorem. This singularity, known as
the non-resonant double Hopf bifurcation, is locally described through the changes of two unfolding
parameters. Using the frequency domain approach, it has been established that two Hopf curves, each
one associated with a specific value of frequency (ω1 and ω2, respectively), cross the referred singularity
in the parameter space. This type of singularity is directly related with the phenomena of secondary Hopf
bifurcations, leading to the existence of quasi-periodic solutions (2-D torus with frequencies ω1 and ω2,
as shown in [2, 3] and [4]). Using Floquet theory and higher-order harmonic balance, the problem of
detecting the bifurcation of cycles has been developed. In this case, a semi-analytical approximation of
the periodic solution close to criticality is obtained using harmonic balance of eighth-order which meant
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that the periodic solution is expanded up to eight harmonics, and the changes of stability have been
evaluated through the computation of the eigenvalues of the monodromy matrix. Then, the detection of
Neimark–Sacker bifurcations (or torus) bifurcations is developed using the proposed method. All the
numerical results have been contrasted to those obtained with LOCBIF [5]. It is known that the analyzed
singularity can be found in the unfolding of a 1:1 resonant double Hopf bifurcation [6]. Henceforth,
some related outcomes in the frequency domain setting are also shown.

One important research line for the analysis of non-resonant double Hopf bifurcation is concentrated
in the application of perturbation techniques [7, 8] for the determination of normal forms [9] which are
finally used for the stability analysis, nowadays supported by the power of computing algebraic systems
as Mathematica or Maple (see [4]). In this work and with the same proposal, the formulation is now
based on feedback systems theory, which employs harmonic balance approximation techniques to build
the periodic solutions and solves the stability problems through the determination of characteristic
multipliers [10]. The quasi-periodic motion can also be recognized as a recurrent but nonrepetitive
oscillatory equilibrium [11]. The number of fundamental frequencies involved in its power spectrum
might be called degree of quasi-periodicity. In this sense, it is known that quasi-periodicity of degree
greater than two is of sporadic appearance. However, some theoretical results show that any n-D torus
attractor, with n = 3, 4, can be slightly perturbed into chaos and in this regard, a related problem of
multiple input excitation frequencies and the determination of the stability of a quasi-periodic solution
has been extensively documented [12]. Returning to the phenomena of double Hopf bifurcations, some
interesting works on applications in aeroelastic oscillators [13, 14] and various problems in wind and
mechanical engineering [15, 16] were developed.

In this work, Section 2 is an exposition of preliminary results about bifurcations in a nonlinear system
of differential equations in the frequency domain, with stress in the cases known as non-resonant and
1:1 resonant double Hopf bifurcation. Following this point of view, in Section 3, some aspects regarding
the version of Poincaré–Andronov–Hopf theorem and the associated graphical method for obtaining
the approximate expression of the periodic solution, which employs harmonic balance of high order,
are expounded. In Section 4, some basic notions of Floquet multipliers are stated. The obtained results,
particularly those for the determination of the secondary Hopf bifurcation curve, are shown in Section 5.
Finally, the attained conclusions are presented and some research lines to explore in the future are
mentioned in Section 6.

2. Formulation

Let us consider a nonlinear system like

ẋ = f (x ; η), (1)

where x ∈ Rn, ẋ = dx
dt and η ∈ Rm, with an equilibrium at the origin. For simplicity, assume that

η = η1 ∈ R1 is the main bifurcation parameter for the case of Hopf bifurcation and progressed in order
to describe later the double Hopf case with two parameters, namely η = (η1, η2). This system can be
seen as a feedback realization considering u ∈ R p the control input and y ∈ Rl the system output

ẋ = Ax + Bu,

y = −Cx, (2)

u = g(y; η1),
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where A = A(η1) is an n × n matrix, chosen for convenience (invertible and stable for each assignment
of the parameter η1), B = B(η1) and C = C(η1) are matrices of order n × p and l × n, respectively,
and g is a nonlinear vectorial function in R p, g ∈ C (2q+2) in both variables y and η1, where 2q is
the number of harmonics that will be involved in the expression of the periodic solution.

Supposing a zero initial condition in (2), the equilibrium points in the frequency domain are the
solutions of the following equation:

ỹ(t ; η1) = −G(0; η1)g(ỹ(t ; η1); η1), (3)

where G(s; η1) = C(η1)(s I − A(η1))−1 B(η1) is the standard transfer matrix of the linear part of (2).
Linearizing (2) about the equilibrium ỹ = ỹ(t ; η1), the resulting system has J (η1) = D1g(ỹ; η1) =

∂g
∂y |y=ỹ as its Jacobian. Thus, the next result can be applied [17].

Lemma 1. If iω0 is an eigenvalue of the Jacobian of the nonlinear system (2), in the time domain, when
η1 = η∗

1, then the corresponding eigenvalue of the constant matrix G(iω0; η∗
1)J (η∗

1) in the frequency
domain must assume the value (−1 + i0).

Following the frequency domain approach, the characteristic polynomial of the matrix G(s; η1)J (η1),
namely

h = h(λ, s; η1) = det(λI − G(s; η1)J (η1)), (4)

carries on the stability of the equilibrium point, via the application of the generalized Nyquist stability
criterion. Due to the previous lemma, it is straightforward that:

h(−1, iω0; η∗
1) = det(−I − G(iω0; η∗

1)J (η∗
1)) = 0, (5)

and therefore

{
F1(ω, η1) = Re{h(−1, iω; η1)} = 0,

F2(ω, η1) = Im{h(−1, iω; η1)} = 0,
(6)

for ω = ω0 and η1 = η∗
1, where Re(·) and Im(·) represent the real and imaginary parts of a complex

number, respectively. Naturally, system (6) gives a necessary condition to have a dynamic or Hopf
bifurcation at the point (ω0, η

∗
1), if ω0 �= 0.

Using the functions F1, F2 and their partial derivatives, it can be established some defining and non-
degeneracy conditions for certain types of static and dynamic bifurcations [18,19]. Particularly, it will be
analyzed one family of degeneracies that arises when one of the hypotheses of Poincaré–Andronov–Hopf
theorem [1] fails, more precisely, this situation appears when the Jacobian of the system evaluated at
equilibrium has two pairs of purely imaginary eigenvalues ±iω1, ±iω2 where (ω1/ω2) is an irrational
number. It is known that this singularity can be locally described using two auxiliary parameters, that
will be noted as η = (η1, η2) . A direct result has been stated in [18] and is adapted here with minor
changes in notation.
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Proposition 1. A necessary condition for the existence of a non-resonant double Hopf bifurcation at
η∗ = (η∗

1, η
∗
2) is

F1(ωi, (η∗
1, η

∗
2)) = F2(ωi , (η∗

1, η
∗
2)) = 0, i = 1, 2, (7)

where (ω1/ω2) is an irrational number.

Related with this type of bifurcation, it is known that two branches of the Hopf bifurcation curve
intersect each other at the referred singularity [2, 3]. In the frequency domain setting, it follows the next
proposition.

Proposition 2. If there is a non-resonant double Hopf bifurcation at η∗ = (η∗
1, η

∗
2), with frequencies

ωi and∣∣∣∣∂(F1, F2)

∂(η1, η2)

∣∣∣∣
(ωi ,η∗)

∣∣∣∣ �= 0, i = 1, 2, (8)

then two branches of the Hopf bifurcation curve cross each other at criticality, with the following
tangents vectors:

ti =
(∣∣∣∣∂(F1, F2)

∂(ω, η2)

∣∣∣∣
(ωi ,η∗)

∣∣∣∣, −
∣∣∣∣∂(F1, F2)

∂(ω, η1)

∣∣∣∣
(ωi ,η∗)

∣∣∣∣
)

, i = 1, 2. (9)

Proof. This result is a direct consequence of the application of the Implicit Function Theorem to the
system pointed out in Proposition 1.

Observation 1: The hypothesis about the Jacobian determinant is not restrictive if one takes into account
that a non-resonant double Hopf bifurcation always can be thought close to a 1:1 resonant one, i.e.
ω1 = ω2 �= 0 [6], where such condition is supposed to be satisfied (see Theorem 1).

Observation 2: Approximate expressions of higher order for these Hopf bifurcation curves can be
obtained through the functions F1, F2 and its derivatives, using Taylor expansions. Particularly,
Proposition 2 yields linear approximations of them.

Observation 3: A change of stability in the crossing of the aforementioned two branches has been stated
in [2, 3].

Connected with the 1:1 resonant case, one has the next result [18] given in Proposition 3.

Proposition 3. A necessary condition for the existence of a 1:1 resonant double Hopf bifurcation at
η∗ = (η∗

1, η
∗
2), with frequency ω∗ �= 0 is

F1(ω∗, (η∗
1, η

∗
2)) = F2(ω∗, (η∗

1, η
∗
2)) = 0,

(10)
∂ F1

∂ω
(ω∗, (η∗

1, η
∗
2)) = ∂ F2

∂ω
(ω∗, (η∗

1, η
∗
2)) = 0.

The phenomenon of the 1:1 resonant double Hopf bifurcation occurs naturally when one intends to
continue the curve of regular double Hopf points (regular means non-resonant in this context). This
singularity has been widely analyzed and it is known that three parameters are necessary to understand its
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unfolding (see one recent application in [14]). From now on, consider the three-dimensional parameter
space η = (η1, η2, η3). Then, the nearby Hopf points to the concerning singularity describe a special
surface, called Whitney umbrella [6]. Forthwith, this result is now formalized through the characteristic
functions F1 and F2 in the frequency setting.

Theorem 1 (1:1 resonant double Hopf bifurcation).
It is supposed that

(i)




F1 = F2 = 0,

∂ F1

∂ω
= ∂ F2

∂ω
= 0,

at P = P0 = (ω∗, η∗), where η∗ = (η∗
1, η

∗
2, η

∗
3),

(ii)
∂2 F1

∂ω2
�= 0, or

∂2 F2

∂ω2
�= 0 at P = P0 and

(iii)

∣∣∣∣∂(F1, F2)

∂(η1, η2)

∣∣∣∣
P=P0

∣∣∣∣ �= 0.

Then the set of Hopf bifurcation points close to η∗ = (η∗
1, η

∗
2, η

∗
3) is defined through a certain surface in

the parameter space (η1, η2, η3), which is diffeomorphically equivalent to a Whitney umbrella, whose
normal form is:

y2 = zx2 ⇔




x = a,

y = ab,

z = b2,

(a, b) ∈ E(0) ⊂ R2 (11)

where E(0) is a certain neighborhood of 0 ∈ R2.

Proof. This statement is the frequency domain counterpart of the corresponding one proved in
[6].

Employing the normal form (11), typical sections of a Whitney umbrella close to criticality are shown
in Figure 1. These curves result from the intersection between the involved surface and the planes
z = x + y + t , with t < 1. The section with the loop shows in its self-crossing a non-resonant double
Hopf bifurcation point, which disappears when t = 0, giving place to a cusp curve with the remarkable
1:1 resonant double Hopf singularity.

3. Poincaré–Andronov–Hopf Theorem in the Frequency Domain

The original version of Poincaré–Andronov–Hopf theorem in the frequency domain is stated as follows
[20,18]:

It is supposed that

(H1) There is only one eigenvalue λ̂ of h(λ, iω; η1) = 0, passing through the critical point (−1 + i0)
when ω varies in (0, ∞) in such a way that there is a change in the stability of the equilibrium solution.
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Figure 1. Typical Whitney umbrella’s sections close to criticality (using the given normal form (11) with t = z − (x + y)).

Moreover, there is only one frequency ω0 �= 0 satisfying h(−1, iω; η1) = 0 for a given value η1 = η∗
1,

i.e., a resonance condition is avoided, and ∂ F1
∂ω

|(ω0,η
∗
1 ),

∂ F2
∂ω

|(ω0,η
∗
1 ) are not simultaneously zero,

(H2) The following determinant is nonzero, i.e.,

M1 =
∣∣∣∣∂(F1, F2)

∂(ω, η1)

∣∣∣∣
(ω0,η

∗
1 )

∣∣∣∣ �= 0, (12)

which is related with the transversality condition of classical formulation, and

(H3) The expression

σ1 = −Re

(
uTG(iω0; η∗

1)p1(ω0, η
∗
1)

uTG ′(iω0; η∗
1)J (η∗

1)v

)
, (13)

known as curvature coefficient, that generally allows to analyze the stability of the emerging periodic
solution, does not change sign when η∗

1 is replaced by a nearby η1. In the last formula, uT and v are left
and right normalized eigenvectors (uTv = 1 and vTv = 1) of the matrix G(iω; η1)J (η1) associated with
the eigenvalue λ̂, G ′ = dG

ds and p1 is a complex number whose computation is somewhat complicated
since it depends on the information of the second-and third-order partial derivatives of the function
g = [g1g2 . . . gp]T [18, 20], and

p1(ω, η1) = QV02 + 1

2
Q̄V22 + 1

8
L v̄,

V02 = −1

4
H (0; η1)Qv̄ (14)

V22 = −1

4
H (i2ω; η1)Qv
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where “ ·̄ ” denotes the complex conjugate, H (s; η1) = [I + G(s; η1)J (η1)]−1G(s; η1) is the so-called
closed-loop transfer matrix; the p × l matrices Q and L are

Q = [Q jk] =
[

l∑
m=1

∂2g j

∂ym∂yk

∣∣∣∣∣
ỹ

vm

]
(15)

where v = [v1v2 . . . vl]T, and

L = [L jk] =
[

l∑
m=1

l∑
i=1

∂3g j

∂ym∂yi∂yk

∣∣∣∣∣
ỹ

vmvi

]
(16)

where j = 1, 2, . . . , p, k = 1, 2, . . . , l. All the functions involved in the expression of σ1 must be
evaluated at criticality.

Then, emerging from η1 = η∗
1, there is a branch of periodic solutions whose direction and stability

are determined by the values of M1 and σ1.
For the determination of the periodic solution, one follows some steps: at first, one considers a fixed

value η̃1 next to η∗
1 and a first particular estimation for the frequency, ω̃, the one which comes from

the intersection of λ̂ = λ̂(ω, η̃1), and the negative real axis, closest to (−1 + i0). Then, taking into
account this new pair (ω̃, η̃1), one recalculates the eigenvectors uT, v, and the number p1, adding
the computation of the complex number ξ1 = −uTG(iω̃; η̃1)p1. Finally, one finds the intersection
between the characteristic locus λ̂ and the so-called amplitude locus L1 = −1 + ξ1θ

2, trying to solve
a fixed point-like problem. Thereby, accurate approximations of the frequency ω̂ = ω̂(η̃1) and the
amplitude of the oscillation θ̂ = θ̂ (η̃1) are attained like in any classical approximation of periodic
solution emerging from the Hopf point. Hence, employing harmonic balance of second order results
the semi-analytical expression for the approximate output y of system (2) close to the equilibrium ỹ,
namely

y(t) = ỹ + Re

(
2∑

k=0

Ek exp(ikω̂t)

)
(17)

where E0 = θ̂2V02, E1 = θ̂v + θ̂3V13 = θ̂V11 + θ̂3V13, E2 = θ̂2V22. The vector V13 can be obtained
solving the equation

P[I + G(iω̂; η̃1)J (η̃1)]V13 = −PG(iω̂; η̃1)p1, (18)

where P = I − V11V T
11, under the condition V13 ⊥ V11. All the calculations with the nonlinear function

g must be evaluated at ỹ for η1 = η̃1. Thus, one can reach the solution of (2) in terms of the original
state variable x employing (17). This is a brief description of the second-order harmonic balance method
which yields an approximate expression for the existing limit cycle.

An improvement of this method has been presented in [21]. To handle approximations of pe-
riodic solutions by higher-order formulae, suppose 2q-th order, one must obtain the coefficients
Ek, 0 ≤ k ≤ 2q, for an expression like (17). The computation of these numbers is increasingly
complicated as long as the accuracy is substantially improved. It is important to point out that the
higher-order approximation is still local, a result which is standard for Hopf bifurcation. However,
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this higher order approximation will be used to recover the unfolding of the double-Hopf singular-
ity but in the vicinity of “regular” Hopf bifurcation, where the results are quite accurate. To cal-
culate the fourth-order harmonic approximation, one must consider as an initial condition the solu-
tion pair obtained at the final stage of the second order case, up to now noted as (ω̂, θ̂ ) = (ω1, θ1).
The main idea is to repeat the above scheme, but in this occasion using a redefined amplitude locus
L2 = −1 + ξ1(ω1)θ2 + ξ2(ω1)θ4 in the fundamental equation (ξ2 is a complex number of significant
tedious computation). The final solution (ω2, θ2) will allow to write the coefficients Ek, 0 ≤ k ≤ 4,

that are involved in the fourth-order harmonic balance approximation. The details about the computa-
tion of these coefficients, up to eighth-order, including explicit expressions, can be found in [18]. Using
these formulae, the approximation of the periodic solutions up to eight harmonics has been obtained in
Section 5.

4. Stability Analysis of Periodic Solutions

It is known that the stability of a periodic solution X = X(t ; η̃1), of period T can be studied on a cross-
section to the flow of system (1), through the behavior of a fixed point of the associated Poincaré map.
Then, the theory of nonlinear discrete-time systems can be applied: one must evaluate the eigenvalues
or multipliers (noted as µi ) of the Jacobian about the fixed point to analyze its stability. Particularly,
if all the eigenvalues are placed inside the unit circle (known as the hyperbolicity condition), it can be
asserted that the limit cycle is stable. This condition can be violated in three different ways: either a
simple positive eigenvalue approaches the unit circle, giving µ1 = 1, or a simple negative multiplier
comes near the unit circle and µ1 = −1, or a pair of simple complex eigenvalues reaches the unit
circle, with µ1,2 = exp (±iγ0), 0 < γ0 < π , for some value of the bifurcation parameter η1. These
situations give place to fold, transcritical or pitchfork bifurcation for the first situation; flip (period
doubling) for the second case and Neimark–Sacker (torus) bifurcations for the crossing of complex
eigenvalues.

Due to the difficulty for obtaining an analytical expression of the Poincaré map, the stability analysis
is carried out solving the variational equation

ż = D(t)z, (19)

where z ∈ Rn, ż = dz
dt and D(t) = D1 f (X(t ; η̃1); η̃1) = ∂ f

∂x |x=X(t ;η̃1),η1=η̃1 (observe system (1)), D(t +
T ) = D(t).

Hence, finding the solution M = M(t) which satisfies Ṁ = D(t)M, M(0) = I , where I is the n ×
n identity matrix and calculating M(T ), one obtains the monodromy matrix of the cycle X. The following
result is valid [3].

Theorem 2. The monodromy matrix M(T ) has the eigenvalues µ0 = 1 and {µi }n−1
i=1 where {µi }n−1

i=1

are the multipliers of the Poincaré map related with the limit cycle X.

When one of the eigenvalues of M(T ) crosses the unit circle, a bifurcation of cycles is established
as has been described above. If the crossing happens through a pair of complex conjugate numbers,
then Neimark–Sacker or torus bifurcation appears. This singularity is related with the existence of
quasi-periodic solutions and forthwith will be the focus of the numerical determination.
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5. The Non-Resonant Double Hopf Bifurcation

The phenomenon of non-resonant double Hopf bifurcation takes place at Rn , where n ≥ 4. It is
known that this problem is related with the treatment of a singularity of codimension 2. Thereby, it
is necessary to analyze the non-hyperbolic equilibrium points which exist in a neighborhood of (η∗

1, η
∗
2)

in the parameter space η. Applying normal forms theory [9], several regions where the flow exhibits
qualitatively different behaviors can be clearly distinguished [3, 4]. A Hopf bifurcation curve appears
in the neighborhood of the point (η∗

1, η
∗
2). Its two branches, each one related with one frequency ωi ,

i = 1, 2, intersect the other while passing through criticality, besides changing its stability in the crossing.
Furthermore, these branches divide stability zones for the equilibrium of the system.

At first place, the semi-analytical approximations of periodic solutions, next to the referred curve,
have been obtained using harmonic balance of different orders. Their accuracy have been evaluated
through the eigenvalues of the monodromy matrix, particularly measuring the error in the computation
of the eigenvalue that theoretically should be one, since the analysis has considered that the system is
established in a periodic solution [22].

According with very known results, the stability of the periodic branch (in this case arising from Hopf
bifurcation) changes when the monodromy matrix has a pair of complex conjugate eigenvalues which
crosses the unit circle. This situation is recognized in the context of bifurcation of maps as the Neimark–
Sacker bifurcation, which gives place to a secondary Hopf or torus bifurcation, characterized by the
appearance of a quasi-periodic solution which can be dense on a two-dimensional (2-D) torus contained
in R3. More specifically, the semi-analytical approximate expression of the limit cycles around the
point (η∗

1, η
∗
2) is rather accurate because it involves eight harmonics. After employing Floquet theory,

the existing curves of secondary Hopf bifurcations have been built. Moreover, the dynamical analysis in
the region between these singularity curves and the Hopf curve branches in the parameter space has been
carried out. According with these results, the observed transformation of the phase space is outstanding,
due to the interactions of two cycles which finally lead to the appearance of the aforementioned quasi-
periodic solution.

5.1. EXAMPLE

It is considered a nonlinear system [4], which models a two RCL coupled circuit as shown in Figure 2(a),
with capacitors C1, C2, inductors L1, L2 and a resistor R.1 The conductance is a nonlinear element,
governed by the following law: iG = − 1

2vG + v3
G , where iG and vG are the current and voltage of the

conductance, respectively. Choosing the voltages across the capacitors and the currents in the inductors
as the state variables and calling x = (x1, x2, x3, x4) = (vC1 , iL1 , vC2 , iL2 ) follows the system

ẋ1 = 1

2
η1x1 + η1x2 − η1x4 − η1x3

1 ,

ẋ2 = −
√

2

2
x1, (20)

ẋ3 = (
√

2 + 1)x4,

ẋ4 = (2 −
√

2)(x1 − x3 − η2x4),

1 A quite similar problem, but in this case started in wind engineering, has been analyzed in [15] and later studied in [18]
with this frequency domain approach but only regarding the stability of the equilibrium solution and the crossings of its Nyquist
diagram through criticality.
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Figure 2. (a) An electrical circuit. (b) Modified electrical circuit.

where ẋi = dxi
dt , i = 1, . . . , 4, η1 = 1

C1
and η2 = R are considered as two independent bifurcation

parameters and C2 = 1√
2+1

, L1 = 2√
2

and L2 = 1
2−√

2
.

It is easy to see that the unique equilibrium point results x̃i = 0,i = 1, . . . , 4. Then, the linearization
of the system (20) at the origin gives the following characteristic polynomial:

P(r ) = r4 +
(

2η2 − η2

√
2 − η1

2

)
r3

+
(

− η1

2

√
2 + 2η1 − η1η2 + η1η2

2

√
2 +

√
2

)
r2

+
(

η1η2

√
2 − η1η2 − η1

2

√
2

)
r + η1. (21)

This example has been studied in relation with the phenomenon of non-resonant double Hopf bifurcation,
under normal forms theory. As long as the analyzed Jacobian has two pairs of imaginary pure eigenvalues,
say ± iω1, ± iω2, where (ω1/ω2) is irrational, the coefficients of first and third grade of P(r ) must be
zero. Thereby

2η2 − η2

√
2 − η1

2
= 0,

(22)
η1η2

√
2 − η1η2 − η1

2

√
2 = 0,
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whose solutions are η1 = η2 = 0 (no Hopf bifurcation occurs) and η1 = 2, η2 = 1 +
√

2
2 . In this last

case, the evaluation of the remaining significant coefficients of P(r ) gives the system

ω2
1 + ω2

2 = 3,
(23)

ω2
1ω

2
2 = 2,

and follows the unique solution pair ω1 = 1, ω2 = √
2, if one supposes that 0 < ω1 < ω2.

A realization of system (20), like the one described in Section 2, allows to apply all the expounded
results in the frequency domain setting. Considering ẋ = (ẋ1, ẋ2, ẋ3, ẋ4)T and the matrices

A =




0 η1 0 −η1

−
√

2
2 0 0 0

0 0 0
√

2 + 1

2 − √
2 0 −(2 − √

2) −(2 − √
2)η2


 , B =




1

0

0

0


 and

C = [
1 0 0 0

]
result

ẋ = Ax + Bu, (24)

where u = g(y; η1) = − 1
2η1 y + η1 y3 and y = −Cx = −x1.

Applying Laplace Transform, it is attained the following equilibrium solution:

ỹ = −G(0; (η1, η2))g(ỹ; η1), (25)

where G is the transfer matrix of the linear part of the feedback formulation of the system (20).2 In this
case, its expression is

G(s; (η1, η2)) = C(s I − A)−1 B

= 2s(s2 + (2 − √
2)η2s + √

2)

2s4 + (4 − 2
√

2)η2s3 + κs2 + (2
√

2 − 2)η1η2s + 2η1

, (26)

where κ = κ(η1) = (4 − √
2)η1 + 2

√
2.

Provided that G(0; (η1, η2)) = 0 if η1 �= 0 (which will be the case as has been pointed out before),
the solution of (25) gives ỹ = 0, which is the equilibrium in the frequency domain.

Taking into account Lemma 1, the distinguished eigenvalue λ̂ can be found solving the equation

h(λ, s; (η1, η2)) = det(λ − G(s; (η1, η2))J (η1)) = 0, (27)

2 Notice that g(y; η1) can be seen as a feedback block in (24) and then a simple choice of this function would be g(y; η1) = η1 y3.

However, this choice is inappropriate since the linearized system in the feedback would cancel out at the equilibrium point. This
is the reason to consider the linear part − 1

2 η1 y in the feedback nonlinear block instead of A.
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where J (η1) = D1g(ỹ; η1) = ∂g
∂y |y=ỹ=0 = − 1

2η1 + 3η1 y2|y=ỹ=0 = − 1
2η1. This yields directly

λ̂ = G(s; (η1, η2))J (η1)

= − η1s(s2 + (2 − √
2)η2s + √

2)

2s4 + (4 − 2
√

2)η2s3 + κs2 + (2
√

2 − 2)η1η2s + 2η1

. (28)

Notice that G(s; (η1, η2))J (η1) = −1 is the bifurcation condition in the frequency domain, and then it
can be easily converted to the characteristic equation P(r ) = 0 in time domain, replacing “s” by “r”.
Moreover,

λ̂ = λ̂(ω; (η1, η2)) = G(iω; (η1, η2))J (η1)

= −η1η2ω
2(2 − √

2) + iη1ω(
√

2 − ω2)

−2ω4 + κω2 − 2η1 + i((4 − 2
√

2)η2ω3 − (2
√

2 − 2)η1η2ω)
. (29)

It can be observed in Figure 3, the characteristic eigenlocus λ̂, when η1 = 2, η2 = 1 +
√

2
2 , as the

parameter ω varies in [0, ∞). Particularly, the two crossings through (−1 + i0) succeed when the
frequency values ω1 = 1 and ω2 = √

2 are set.
The next objective is to verify the validity of Propositions 1 and 2 at η∗ = (η∗

1, η
∗
2) = (2, 1 +

√
2

2 ).
Considering the expression of the critical eigenvalue λ̂, one can obtain the formulae for the functions
F1 and F2, defined by (6). Thus, due to (29) one can write

λ̂ = A1 + iA2

A3 + iA4
= A1 A3 + A2 A4 + i(A2 A3 − A1 A4)

A2
3 + A2

4

, (30)

Figure 3. Characteristic eigenlocus or Nyquist diagram for non resonant double Hopf bifurcation.
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where

A1 = −η1η2ω
2(2 −

√
2),

A2 = η1ω(
√

2 − ω2),
(31)

A3 = −2ω4 + κω2 − 2η1,

A4 = (4 − 2
√

2)η2ω
3 − (2

√
2 − 2)η1η2ω.

Therefore, it is attained that

F1(ω, (η1, η2)) = A1 A3 + A2 A4

A2
3 + A2

4

+ 1,

(32)
F2(ω, (η1, η2)) = A2 A3 − A1 A4

A2
3 + A2

4

.

Stating η∗ = (η∗
1, η

∗
2) = (2, 1+

√
2

2 ), for ω1 = 1 results F1 = 0, F2 = 2.8429 × 10−16, and for ω2 = √
2

yields F1 = −2.2204 × 10−16, F2 = −1.2319 × 10−15, as it is asserted by Proposition 1.
Provided that∣∣∣∣∂(F1, F2)

∂(η1, η2)

∣∣∣∣
(ω1,η∗)

∣∣∣∣ = −0.2071 �= 0 and

∣∣∣∣∂(F1, F2)

∂(η1, η2)

∣∣∣∣
(ω2,η∗)

∣∣∣∣ = −0.2929 �= 0, (33)

the non-degeneracy condition of the Jacobian is satisfied twice, then follows Proposition 2. Hence,
according to the given formulae the tangent vectors t1, t2 can be computed, resulting

t1 = (−0.4142, 0.8536) and t2 = (−0.2929, −0.8536). (34)

Thus, the values m1 = −2.0608, m2 = 2.9142, which represent the slopes of the tangent lines to the
branches of the Hopf curve, H1 and H2, at the critical point η∗ = (η∗

1, η
∗
2), related with the frequencies

ω1 = 1 and ω2 = √
2, respectively, are in agreement with the results expounded in [4]. Furthermore, the

continuation of the Hopf curve next to the singularity shown in Figure 4 has been attained employing
the corresponding equations (6). This curve has also been checked using LOCBIF [5].

Evaluating the expression of the curvature coefficient σ1 on the tangent lines (for classical Hopf
bifurcation, a negative value of σ1 means a stable limit cycle), the analysis of stability in each branch
can be developed. Therefore, one can observe the changes which happen in the crossing through the
singularity. For η2 > η∗

2, both Hopf branches give place to stable limit cycles, property which is lost at
the critical point η∗.

If one adds to the first equation of the system (20), one control function involving an auxiliary
parameter η3, like φ = η3x2, results

ẋ1 = 1

2
η1x1 + (η1 + η3) x2 − η1x4 − η1x3

1 ,

ẋ2 = −
√

2

2
x1,

(35)
ẋ3 = (

√
2 + 1)x4,

ẋ4 = (2 −
√

2)(x1 − x3 − η2x4).
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Figure 4. Continuation of Hopf points near non resonant double Hopf bifurcation for the circuit in Figure 2(a) (η3 = 0). Points
A (η1 = 2.03, η2 = 1.73) and B (η1 = 2.10, η2 = 1.73) are used to estimate the approximation of the stable limit cycle emerging
from Hopf bifurcation branch H2.

This new system has another Hopf degeneracy known as 1:1 resonant double Hopf bifurcation, for the
special parameter values η∗∗

1 = 4(2 −√
2), η∗∗

2 = 2, η∗∗
3 = 4

√
2 − 6. In this case, the critical frequency

results ω∗∗ = ω1 = ω2 = 4
√

2. Notice that the suggested modification can be implemented adding a
current source controlled by the current iL1 in parallel with the inductance L1. Then, this controlled
current source would be of value α iL1 where α = η3/η1 (see Figure 2(b)). Thus, considering the new
proposed system (35) and formulating one realization with

A =




0 η1 + η3 0 −η1

−
√

2
2 0 0 0

0 0 0
√

2 + 1

2 − √
2 0 −(2 − √

2) −(2 − √
2)η2


 , B =




1

0

0

0


 ,

C = [ 1 0 0 0 ], u = g(y; η1) = −1

2
η1 y + η1 y3 and y = −Cx = −x1,

first one can find the frequency domain equilibrium, ỹMOD = 0, then attain the expression of the
distinguished eigenvalue

λ̂MOD = λ̂MOD(ω; (η1, η2, η3)) = G(iω; (η1, η2, η3))J (η1)

= −η1η2ω
2(2 − √

2) + iη1ω(
√

2 − ω2)

−2ω4 + (κ(η1) + √
2η3)ω2 − 2χ + i((4 − 2

√
2)η2ω3 − (2

√
2 − 2)χη2ω)

, (36)

where χ = η1 + η3, and finally draw its eigenlocus for (η∗∗
1 , η∗∗

2 , η∗∗
3 ), which looks like Figure 5,

noting that the loop in Figure 3 has disappeared at the singularity. Moreover, it is possible to check
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Figure 5. Characteristic eigenlocus for 1:1 resonant double Hopf bifurcation for (η∗∗
1 , η∗∗

2 , η∗∗
3 ).

Proposition 3 and Theorem 1 and, consequently, affirm that the set of Hopf bifurcation points next
to the analyzed Hopf degeneracy point determines a special surface which is described through a
parametrization of type η1 = η1(ω, η3), η2 = η2(ω, η3), and is diffeomorphic to a Whitney um-
brella, in the three-dimensional parameter space (η1, η2, η3). Its remarkable sections obtained using
the system (6) should satisfy F1(ω; (η1, η2, η3)) = Re{λ̂MOD} + 1 = 0 and F2(ω; (η1, η2, η3)) =
Im{λ̂MOD} = 0. Some sections parameterized in η3 are shown in Figure 6 and are clearly in accordance to
Figure 1.

The rest of the development of this example concerns with the computation of higher-order harmonic
balance approximations to obtain semi-analytical expressions of limit cycles emerging from regular
Hopf bifurcation. Then a calculation of the Floquet multipliers for detecting secondary Hopf (torus)
and cyclic fold bifurcations is implemented. According with the last objective, the particular variational
system results:

ż = D(t)z, (37)

where D(t) has been defined in (19), and for the case of the modified controlled oscillatory circuit
example has the following expression:

D(t) =




1
2η1 − 3η1x2

1 η1 + η3 0 −η1

−
√

2
2 0 0 0

0 0 0
√

2 + 1
2 − √

2 0 −(2 − √
2) −(2 − √

2)η2


 , (38)

and x1 = x1(t ; (η1, η2, η3)) is the first component of a generic limit cycle. Thus, the monodromy matrix
can be obtained after integrating (37) and then follows the computation of its multipliers.
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Figure 6. Hopf bifurcation curves close to 1:1 resonant double Hopf bifurcation for the controlled circuit of Figure 2(b).

Consider the particular case: η1 = 2.03, η2 = 1.73 and η3 = 0 (i.e., in the unfolding of the non-
resonant double Hopf bifurcation), close to criticality and one stable Hopf branch H2 (related with the
frequency ω2 = √

2), as can be observed in Figure 4 (see the point denoted as A). In the frequency
setting, the solution has been obtained employing harmonic balance of second- (HB2), fourth- (HB4),
sixth- (HB6) and eighth- (HB8) orders. The last approximation has the following expression:

y(t) = −0.1605823661 cos(1.442016194t) − 0.0001250750 cos(4.326048582t)

+ 0.5365485 × 10−3 × sin(4.326048582t)

+ 0.2956999525 × 10−5 × cos(7.210080970t)

+ 0.1075855815 × 10−5 × sin(7.210080970t)

+ 0.1006251052 × 10−7 × cos(10.09411336t)

− 0.1701939794 × 10−7 × sin(10.09411336t). (39)

Then, returning to (20), noticing that y = −x1 and taking into account a phase correction, one can
directly write the formulae for the original state variables x1, forthwith x2, x4 and finally x3. Fur-
thermore, one can measure the accuracy of the different approximations, observing the eigenvalue µ0

of the corresponding monodromy matrix that is closest to one. This multiplier has the following val-
ues depending on the order of approximation, µ0(HB2) = 0.9993508823, µ0(HB4) = 1.000044196,
µ0(HB6) = 1.000000937, and µ0(HB8) = 1.000000010. Then, one can observe that the four approx-
imations give very good results. In the phase space, the corresponding curves are almost identical and
besides, in coincidence with the one which comes from the numerical solution. This observation is
related fully with the proximity of the selected pair (2.03, 1.73) to the Hopf curve H2.

Moreover, setting now η1 = 2.10, η2 = 1.73 and η3 = 0 (see point B in Figure 4), one can repeat the
procedure to obtain the following trivial multiplier for different higher-order expansions µ0(HB2) =
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0.9965384953, µ0(HB4) = 1.001688121, µ0(HB6) = 1.000052091, and µ0(HB8) = 0.9999974575.
Clearly, the accuracy has declined, comparing with the previous case. As can be seen in Figure 7,
the phase plane x1 − x2 shows essentially three curves: one corresponds to the solution obtained
by the second-order approximation (HB2), another one which results from the similarity of the so-
lutions coming from the higher harmonic balances (HB4–HB6–HB8) and the last one obtained with
LOCBIF [5]. Thus, the last example points out a disadvantage of the proposed method, due to its local
character, but it still shows a good approximation, specially the one obtained with HB8 which is of the
order of accuracy given by LOCBIF [5].

With the aim of detecting secondary Hopf (or torus) bifurcations in the neighborhood of the non-
resonant double Hopf point, the evolution of characteristic multipliers of a generic cycle close to
criticality has been analyzed. Suppose that the parameters (η1, η2) are set next and below to H2, close to
the singularity (see Figure 4). Then, one builds the semi-analytical expression of the unstable limit cycle
with starting frequency close to ω2 = √

2 and analyzes the associated characteristic multipliers. Fixing
the value of the parameter η2 and slightly increasing the initial value η1, one repeats the procedure.
The algorithm stops when a pair of characteristic multipliers crosses the unit circle. Therefore, using
HB8, two points, pre- and after- secondary Hopf bifurcation have been detected numerically as shown
in Table 1. In the same way, but now starting next and below to H1, the semi-analytical expression of
the unstable limit cycle with frequency close to ω1 = 1 is computed and its multipliers are presented in
Table 2.

Table 1. Detection of two points pre- and after-
Neimark–Sacker bifurcation (in the vicinity of H2), and
comparison with LOCBIF.

HB8 LOCBIF

η1 = 1.9912, η2 = 1.65

µ0 1.000000024 1.000001

µ1−2 1.000313 e±i2.08777 1.000311e±i2.08777

µ3 0.9517772119 0.9517836

η1 = 1.9913, η2 = 1.65

µ0 1.000000027 1.000001

µ1−2 0.999949 e±i2.08857 0.999943 e±i2.08857

µ3 0.9514125900 0.9514149

Table 2. Detection of two points pre- and after-
Neimark–Sacker bifurcation (in the vicinity of H1), and
comparison with LOCBIF.

HB8 LOCBIF

η1 = 2.0102, η2 = 1.65

µ0 0.9999999927 1.000001

µ1−2 0.999482 e±i3.1106 0.999518 e±i3.1107

µ3 0.9464323877 0.946467

η1 = 2.0103, η2 = 1.65

µ0 0.9999999947 1.000001

µ1−2 1.000180 e±i3.11172 1.000151 e±i3.11171

µ3 0.9466623008 0.946675
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Figure 7. Phase space for η1 = 2.10, η2 = 1.73 (HB2 (--), harmonic balance approximations higher than second order (· · ·),
LOCBIF (–)).

This strategy has allowed to build the secondary Hopf bifurcation curves that emerge from the singu-
larity, as can be observed in Figure 8. All the attained results have been contrasted using LOCBIF [5],
proving a very auspicious performance of the suggested method. Moreover, computing different higher-
order harmonic balances, and trying to measure the accuracy of the approximations, if a condition on
the multiplier µ0 is stated, like |µ0 − 1| < 10−4, the left secondary Hopf bifurcation branch can be
continued up to different η2 lower limits, namely η2(HB2) = 1.67, η2(HB4) = 1.55, η2(HB6) =
η2(HB8) = 1.055. Comparing the last two cases, it can be mentioned that, computing HB8, the ac-
curacy at criticality is still better, say |µ0 − 1| < 10−5. On the other hand, repeating this algorithm
for the right branch, then one obtains η2(HB2) = 1.69, η2(HB4) = 1.53, η2(HB6) = 1.51 and at last,
η2(HB8) = 1.33. This confirms that the frequency domain approach with higher-order balances is suit-
able for approximating the bifurcation curves of the cycles in the unfolding of the singularity, as stated
before.

It is very interesting to analyze the dynamics of the solutions of system (20), when the parameters
η1–η2 are delimitated between the unstable Hopf curves and the closest Neimark–Sacker curve (see
Figure 8). For example, starting below the curve H1 whose associated frequency is close to ω1 = 1, two
limit cycles coexist: one stable and the other unstable. In Figure 9 the phase portraits of both oscillations
have been recovered with the harmonic balance method in two different conditions: one is close to the
Neimark–Sacker bifurcation condition (left) and the other to the Hopf bifurcation point (right). As it is
clearly noted, these oscillations interact when both cycles are close to the Neimark–Sacker curve (see
Figure 8). After crossing this curve, the unstable cycle gains stability and an unstable 2-D torus emerges
from this singularity. An entirely similar phenomenon appears starting below H2, when the unstable
Hopf curve is now associated to a frequency close to ω2 = √

2.
Let us now analyze the modified system (35), given by Figure 2(b), for η3 = −0.453, in which

two Hopf degeneracies (HD) of the Whitney umbrella section have appeared (see Figure 6). These
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Figure 8. Neimark–Sacker curve (∗), in addition to the Hopf curves for the electrical circuit in Figure 2(a). Each region delimitated
by Hopf and Neimark–Sacker bifurcation curves has different structures of limit cycles and invariant torus. Circles indicate stable
limit cycles, dashed-circles show unstable limit cycles while the torus is unstable. The area without any limit cycle has a stable
equilibrium.

degeneracies correspond to the vanishing of the curvature coefficient σ1 , giving a failure of the stability
condition. They are located at

HD1: η1 = 2.4222, η2 = 1.924142,
(40)

HD2: η1 = 2.4985, η2 = 1.904058,

and involve the presence of two limit cycles in their neighborhoods [3, 18]. In this particular case,
they are both connected with fold bifurcations of cycles (curve F in Figure 10). Following the same
technique as above and according to the results exposed in Section 4, the multipliers of the Poincaré
map have been considered again, looking for a second eigenvalue (noted as µ1) which crosses the unit
circle along the positive real axis. More precisely, the fold branches emerging from these singularities
coalesce and give place to a unique cusp point, as can be observed in Figure 10. For completeness, the
Neimark–Sacker bifurcation curve (NS in Figure 10) has also been built. These bifurcation curves have
been checked with LOCBIF [5], and comparisons with the results of the frequency domain approach
can be seen in Figures 11 and 12, where a quite good agreement is noticed except in the cusp of cyclic
fold bifurcations. The appearance of cyclic fold and cyclic cusp bifurcations is in accordance with recent
studies [14] concerning the unfoldings of the 1:1 resonant double Hopf bifurcation. It is important to
notice that the case 1:1 resonant arises when η3 = −0.343 which has not been covered in our study. On
the other hand, it is known that a rich qualitative behavior is organized around this degeneracy being
Figures 8 and 10 two of the most representative cross-sections of the so-called Whitney umbrella.

Exploring the dynamics of the modified system (35) through Figure 10 and fixing η1 = 2.45, the
continuation of the existing limit cycles in terms of η2 is shown in Figure 13, where it is outstanding
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Figure 9. Phase planes in the vicinity of the Neimark–Sacker condition. The stable (–) and unstable (-·-) cycles are obtained with
the frequency domain method, while (∗) corresponds to the stable oscillations computed using LOCBIF.

Figure 10. Continuation of fold points (F (· · ·)), in addition to the Hopf curve (H) and the Neimark–Sacker curve (NS) for
η3 = −0.453 by using the frequency domain method. HDi , i = 1, 2, denote degenerate Hopf bifurcations where the first
curvature coefficient (or stability index) is zero.
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Figure 11. The cyclic fold curve comparison between the frequency domain method (–) and LOCBIF (*) values, for η3 = −0.453.

Figure 12. The Neimark–Sacker curve comparison between the frequency domain method (–) and LOCBIF (*) values, for
η3 = −0.453.
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the coexistence up to three limit cycles. Moreover, fixing η2 = 2.005 (just over the top of the Whitney
umbrella section), the corresponding continuation, now in terms of η1, is exhibited in Figure 14. It
must be pointed out that the last mentioned results have been all compared with those obtained with
the softwares LOCBIF [5] and XPP-AUTO [23] and shown in Figures 13 and 14. It is remarkable the

Figure 13. Continuation of the maximum amplitude of limit cycles in terms of η2 for η1 = 2.45 and η3 = −0.453 (frequency
domain method (–), LOCBIF (*) values, AUTO (�) values) (fold point (F), Neimark–Sacker point (NS), Hopf point (H )).

Figure 14. Continuation of the maximum amplitude of limit cycles in terms of η1 for η2 = 2.005 and η3 = −0.453 (frequency
domain method (–), LOCBIF (*) values, AUTO (�) values) (fold point (F), Neimark–Sacker point (NS)).
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coincidence of results between the frequency domain method and the software XPP-AUTO, specially
for predicting maximun amplitudes of limit cycles as well as the location of limit cycles bifurcations
(NS and F).

6. Conclusions

This work starts the development of a local dynamical analysis of the double Hopf bifurcation, from
the frequency domain point of view. Applying high order harmonic balance and Floquet theory, the
unfolding of a non-resonant double Hopf bifurcation has been analyzed. This technique seems to be
promising in recovering bifurcations of the cycles in the parameter space emerging from close Hopf
(bifurcation) curves, such as in the double Hopf case, fold-Hopf or pitchfork-Hopf bifurcation (also
known as Gavrilov–Guckenheimer singularity), and so on. In the future, the possibility of obtaining
semi-analytical approximations for quasi-periodic solutions combining harmonic balance techniques
as well as related problems of stability and the appearance of n-D torus bifurcations with n ≥ 3 will be
considered.
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