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This paper reports some computation of periodic solutions arising from Hopf bifurcations in
order to build up a more accurate procedure for semi-analytical approximations to detect limit
cycle bifurcations. The approximation formulas are derived using nonlinear feedback systems
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1. Introduction

Approximate analysis methods play an important
role in studying periodic solutions in nonlinear sys-
tems. Several methods are available today, some of
them with a long tradition in nonlinear dynam-
ics arena such as those based on perturbation or
averaging theory (see e.g. [Buonomo & Di Bello,
1996] and [Phillipson & Schuster, 2000]), and others
with a control theory background such as the fre-
quency domain version of the Hopf bifurcation theo-
rem [Mees & Chua, 1979]. In addition, the evolution
of a periodic solution originated by means of the
Hopf bifurcation mechanism can be traced out by
varying the so-called bifurcation parameter. As the
parameter is varied, and depending on the nonlin-
ear terms, the cycle can undergo complicated phe-
nomena such as period-doubling bifurcations and
even chaos (see [Seydel, 1994]). One possible way in
which a periodic solution evolves to a chaotic mo-
tion is by means of a cascade of period-doubling bi-
furcations. This important scenario has been exten-
sively analyzed in the past years in order to provide
an accurate detection of the first period-doubling

bifurcation [Belhaq & Houssni, 1995; Rand, 1989;
Tesi et al., 1996]. Recently, the study has been ex-
tended to the complete cascade and to other com-
plex global behaviors of cycles [Belhaq et al., 2000;
Bonani & Gilli, 1999].

In this work, approximations of periodic so-
lutions emerging from Hopf bifurcation points are
obtained aiming to develop a more accurate semi-
analytical procedure to detect limit cycle bifurca-
tions. These approximations are derived using the
frequency domain approach and the harmonic bal-
ance method. Then the stability of the periodic so-
lution is studied computing an approximation of the
monodromy matrix. Examples of three-dimensional
systems are used to illustrate the methodology.
Three examples leading to nontrivial realizations in
this setting are presented first. The considered ex-
amples are the one discovered by Chen and Ueta
[2000], the one proposed by Rand [1989] and one of
the nineteen systems introduced by Sprott [1994].
These examples contain nonlinear terms involv-
ing products of variables, and thus the expressions
of the approximations are rather complicated to
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deal with. Therefore, in the second part, simple
flows containing nonlinearities in one variable are
studied. The considered chaotic flows are the one in-
troduced by Tesi et al. [1996], and two modifications
of the celebrated Rössler system taken from Thomas
[1999a]. For these systems higher-order approxi-
mations formulas [Moiola & Chen, 1996] and the
computation of the monodromy matrix have been
obtained. This procedure provides a simple and
accurate test for the local convergency of the higher-
order approximations. In addition, bifurcations of
cycles close to the Hopf bifurcation point can be
detected. In these simple flows, the method is used
to detect period-doubling, pitchfork and Neimark–
Sacker bifurcations close to the original Hopf bi-
furcation. This seems to be a promissory result in
the analysis of cycles bifurcations with expansions
involving power series [Guckenheimer & Meloon,
2000].

The paper is organized as follows. In Sec. 2 a
brief recount of the analysis of Hopf bifurcations
using second-order harmonic balance, extensions to
higher-order approximations and the stability of pe-
riodic solutions are given. In Secs. 3 and 4 the
method has been applied to three-dimensional sys-
tems of different complexity regarding their nonlin-
earities. In Sec. 5 comparisons of numerical sim-
ulations and results using the frequency domain
approach are confronted. Finally, in Sec. 6 some
conclusions are collected.

2. The Frequency Domain Approach

Consider the general ordinary differential equation

ẋ = Ax + Bg(y; µ) ,

y = Cx ,
(1)

where x ∈ Rn, y ∈ Rm, A, B and C are n×n, n× l,
and m × n matrices, µ ∈ R is the bifurcation pa-
rameter, y is the output and g : Rm ×R → Rl is at
least a C4-function in x and µ. There exist infinitely
many distinct but equivalent feedback representa-
tions of Eq. (1). Toward this end, let us consider an
arbitrary l × m matrix D and rewrite Eq. (1) as

ẋ = Ax + BDy + B[g(y; µ) − Dy] ,

y = Cx .
(2)

By following the notation and results in [Mees
& Chua, 1979], the system can be separated into
two parts: a linear transfer matrix G(s; µ) and a

memoryless nonlinear part f(· ; µ), as follows

G(s; µ) = C[sI − (A + BDC)]−1B ,

u = f(e; µ) := g(y; µ) − Dy ,
(3)

where e = −y. It can be verified that the equilib-
rium points of Eq. (2) correspond to the solutions
ê of

G(0; µ)f(e; µ) + e = 0 . (4)

The linearization of the feedback path f(e; µ)
at the equilibrium point ê is the Jacobian matrix
J = Def(ê; µ). Thus, the open-loop matrix as-
sociated with the feedback realization [Eq. (2)] is
G(s; µ)J(µ), and the corresponding eigenvalues are
given by

h(λ, s; µ) = det[λI − GJ ]

= λp + ap−1(s; µ)λp−1 + · · · + a0(s; µ)

= 0 , (5)

where p = min[rank G, rank J ] and ai(·) are ratio-
nal functions of s.

Assuming a single root of h(·) at λ = −1 and re-
placing s = iω in Eq. (5), a necessary condition for
computing a bifurcation point (ω0, µ0) is obtained
solving

h(−1, iω; µ) = (−1)p +

p−1
∑

k=0

(−1)kak(iω; µ)

= 0 , (6)

for ω and µ. If ω0 = 0, then the bifurcation con-
dition is called static, and it is related to the mul-
tiplicity of the equilibrium solutions. On the other
hand, if ω0 6= 0, the bifurcation condition is known
as dynamic or Hopf, and providing that some ad-
ditional conditions are fulfilled, it is related to the
appearance of periodic solutions.

2.1. Hopf bifurcation

In order to analyze the Hopf bifurcation let us split
Eq. (6) into real and imaginary parts,

F1(ω; µ) = Re{h(−1, iω; µ)}

= (−1)p +

p−1
∑

k=0

(−1)kRe{ak(iω; µ)}

= 0 ,

F2(ω; µ) = Im{h(−1, iω; µ)}

=

p−1
∑

k=0

(−1)kIm{ak(iω; µ)} = 0 .
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Then, the three basic statements of the Hopf bi-
furcation theorem in the frequency domain setting
are:

(H1) There is only one eigenvalue of G(s; µ)J(µ),

denoted as λ̂, passing through the critical
point −1+ i0 when ω varies in [0, ∞), reflect-
ing the change in the stability of the equilib-
rium solution. In addition, there is only one
frequency ω0 6= 0 satisfying Eq. (6) for a given
µ = µ0 (avoiding a resonance condition) and
(∂F1/∂ω)(ω0; µ0), (∂F2/∂ω)(ω0; µ0) are not
simultaneously zero.

(H2) The following determinant is nonzero,

det











∂F1

∂µ

∂F2

∂µ

∂F1

∂ω

∂F2

∂ω











(ω0,µ0)

6= 0 .

(H3) The expression

σ1 = −Re

{

w>G(iω0; µ)p1(ω0; µ)

w>G′(iω0; µ)Jv

}

, (7)

called the curvature coefficient, does not
change its sign when µ varies near µ0.

In Eq. (7), w> and v are respectively the left
and right eigenvectors of the open-loop transfer ma-
trix G(iω; µ)J(µ) associated to λ̂, G′(iω0; µ) =
dG/ds|s=iω0

,

p1(ω; µ) = QV02 +
1

2
QV22 +

1

8
Lv , (8)

where

V02 = −1

4
H(0; µ)Qv , (9)

V22 = −1

4
H(i2ω; µ)Qv , (10)

with

H(s; µ) = [G(s; µ)J(µ) + I]−1G(s; µ) , (11)

and “ ·̄ ” denotes the complex conjugate; Q and L
are n × l and l × m matrices, respectively, which
include the information of the second and third
derivatives of f(e; µ) evaluated at ê [Mees & Chua,
1979]. For Q its jkth element is

Qjk =

m
∑

p=1

f j
pkvp j = 1, 2, . . . , l;

k = 1, 2, . . . , m ,

where f j
pk = ∂2fj(e)/∂ep∂ek|ê, and for the matrix

L its jkth element is

Ljk =

m
∑

p=1

m
∑

q=1

f j
pqkvpvq j = 1, 2, . . . , l;

k = 1, 2, . . . , m ,

where f j
pqk = ∂3fj(e)/∂ep∂eq∂ek|ê.

It is worth mentioning, that Eq. (7) tells us
about the stability of the emerging periodic solu-
tion at criticality: if σ1 is negative (positive) the
limit cycle is stable (unstable).

2.2. Approximations of periodic

solutions

Approximations of the amplitude represented by
θ̂, and frequency ω̂ of the periodic solution in the
neighborhood of the criticality are obtained solving

λ̂(iω̂) = −1 + ξ1(ωR)θ̂2 , (12)

where

ξ1(ωR) = −w>G(iωR; µ)p1(ωR; µ)

w>v
, (13)

and ωR is the frequency at which the eigenlocus
λ̂(iω) crosses the real axis closest to −1. Equa-
tion (12) is solved by an iterative process

(STEP 1) λ̂(iω̂a) = −1 + ξ1(ωR)θ̂2
a ,

(STEP 2) λ̂(iω̂b) = −1 + ξ1(ω̂a)θ̂
2
b ,

(STEP 3) λ̂(iω̂c) = −1 + ξ1(ω̂b)θ̂
2
c ,

...
...

(STEP n) λ̂(iω̂1) = −1 + ξ1(ω̂n−1)θ̂
2
1 .

Since we want to develop a simple method to obtain
the approximation, we stop in the second iteration
(so ω̂1 = ω̂b and θ̂1 = θ̂b). Then, a second-order har-
monic balance approximation (HBA) is given by

e2HB(t) = ê + Re

{

2
∑

k=0

Ek exp(ikω̂1t)

}

,

where

E0 = V02(ω̂1)θ̂
2
1 ,

E1 = V11(ω̂1)θ̂1 + V13(ω̂1)θ̂
3
1 ,

E2 = V22(ω̂1)θ̂
2
1 ,

and V11 = v (the expression of V13 can be found in
[Mees, 1981]).
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In order to obtain a more accurate represen-
tation of the periodic solution, higher-order HBAs
are pursued. For example, to obtain a fourth-order
HBA Eq. (12) is updated to a more accurate form

λ̂(iω̂2) = −1 + ξ1(ω̂1)θ̂
2
2 + ξ2(ω̂1)θ̂

4
2 , (14)

where

ξ2(ω̂1) = −w>G(iω̂1)p2(ω̂1; µ)

w>v
− ξ1(ω̂1)w

>V13(ω̂1) .

The pair (ω̂2, θ̂2) satisfying Eq. (14) correspond to
the fourth-order HBA of the periodic solution

e4HB(t) = ê + Re

{

4
∑

k=0

Ek exp(ikω̂2t)

}

,

where the expressions for Ek and p2(ω̂1; µ) are
given in [Mees, 1981]. Analogously, an algorithm
including the sixth- and eighth-order HBAs can
be implemented, to find the solutions (ω̂3, θ̂3) and

(ω̂4, θ̂4), respectively.
In the general case, the procedure consists in

expanding Eq. (12) to

λ̂(iω̂q) = −1 +

q
∑

k=1

ξk(ω̂q−1)θ̂
2k
q ,

where the pair (ω̂q, θ̂q) are obtained by means of an
iterative procedure as before. Then the approxima-
tion of the periodic solution is updated to

e2qHB(t) = ê + Re

{

2q
∑

k=0

Ek exp(ikω̂qt)

}

.

For simplicity, let us refer to the approximation L1

given by second-order HBA, L2 given by fourth-
order HBA, and so on. All of these approxima-
tions are calculated for a specific value of µ and the
corresponding value of ω̂q.

2.3. Stability analysis of periodic

solutions

The stability of a periodic solution γ(t) of Eq. (1) is
analyzed studying the behavior of the trajectories
in the neighborhood of γ(t). This behavior can be
characterized via the state transition matrix Φ(t, 0)
which is the unique solution of

Φ̇(t, 0) = Jvar(t)Φ(t, 0) ,

Φ(0) = I ,
(15)

where Jvar(t) is the Jacobian matrix of the system
evaluated around the periodic solution γ(t), i.e.

Jvar(t) = A + B
∂g

∂x

∣

∣

∣

∣

x=γ(t)

.

Notice that Jvar(t) is periodic with period T =
2π/ω̂.

The stability of γ(t) is determined by the eigen-
values of the monodromy matrix M , defined as

M(µ) := Φ(T, 0) .

The matrix M(µ) in the general case has n eigen-
values, λ1(µ), λ2(µ) . . . λn(µ), which are known as
characteristic (or Floquet) multipliers. One of them
is always equal to +1, say λ1(µ). The remaining
n − 1 determine the local stability by the following
rule:

• The periodic solution is stable if |λj | < 1, for all
j 6= 1.

• The periodic solution is unstable if |λj | > 1, for
some j 6= 1.

The multiplier that crosses the unit circle is
known as critical multiplier. Depending on where
the critical multiplier or the pair of complex conju-
gate multipliers cross the unit circle, different types
of branching occur. There are three distinguished
ways of crossing the unit circle, with three associ-
ated types of branching. Figure 1 shows the path
of the critical multiplier only, that is the eigenvalue
with |λj(µ0)| = 1, where j 6= 1. In Fig. 1(a) the
eigenvalue crosses the unit circle at the negative
real axis, leading to a period-doubling bifurcation.
When the eigenvalue crosses the unit circle at the
point +1 + 0i [Fig. 1(b)] it may indicate a saddle-
node, transcritical or pitchfork bifurcation of cy-
cles. The third type of bifurcation, Neimark–Sacker
or torus bifurcation, is characterized by a pair
of complex-conjugate multipliers crossing the unit
circle as shown in Fig. 1(c).

To compute the monodromy matrix M , an in-
tegration of two dynamical systems is required: the
original nonlinear system [Eq. (1)] and the varia-
tional equation [Eq. (15)]. To avoid this computa-
tion, it is possible to approximate the limit cycle by
using a higher-order HBA and thus to obtain an ap-
proximate monodromy matrix Mq after performing
a 2qth harmonic solution. So we only need to deal
with the integration of the approximate variational
equation

Ẏ (t) = JDq
(t)Y (t) ,
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(a) (b)

(c)

Fig. 1. Three ways in which the multipliers leave the unit circle.

Y (0) = I ,

Mq = Y

(

2π

ω̂q

)

,

where JDq
= Jvar(t)|Lq

is a periodic matrix obtained
by using the information of the approximation of
the limit cycle e2qHB(t).

3. Systems without SISO

Realizations

In order to apply the methodology described in
Sec. 2 it is necessary to represent the nonlinear
system in feedback form [Eq. (2)]. Systems with
nonlinearities involving mixed terms, i.e. depending
on two of the variables, lead to realizations with
multiple outputs, and in some cases with multi-
ple inputs. As a result, the computation of higher-
order approximations is cumbersome. In the follow-
ing, three examples of such kind of systems are

treated. The main objective of this section is to
illustrate the procedure of finding minimal realiza-
tions, i.e. those leading to the analysis of an unique
eigenlocus in the frequency domain. In addition ex-
pressions for computing a second-order HBA are
obtained.

3.1. Chen system

Chen system is a chaotic attractor discovered by
Chen and Ueta [2000], which looks like the classical
Lorenz system though not topologically equivalent
to it. The system is described by

ẋ1 = −µx1 + µx2 ,

ẋ2 = (c − µ)x1 + cx2 − x1x3 ,

ẋ3 = −bx3 + x1x2 ,

(16)

where b and c are real constants not equal to zero
and µ is the main bifurcation parameter.
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A simple choice in the realization of Eq. (2) is

A =





−µ µ 0

0 c 0

0 0 −b



 , B =





0 0

1 0

0 1



 , C = I3 ,

D = 0 , g(x; µ) =

[

(c − µ)x1 − x1x3

x1x2

]

.

The corresponding linear and nonlinear paths
[Eq. (3)] are

G(s; µ) =
1

∆(s)





µ(s + b) 0

(s + µ)(s + b) 0

0 (s + µ)(s − c)



 ,

where ∆(s) = (s + µ)(s − c)(s + b), and

f(e; µ) =

[−(c − µ)e1 − e1e3

e1e2

]

.

After computing Eq. (4) it is easy to obtain the
equilibrium points P = (ê1, ê2, ê3)

P0 = (0, 0, 0) , P1,2 = (±
√

bd, ±
√

bd, −d) ,

where d = 2c − µ. In order to study Hopf bifurca-
tions, the equilibrium points P1,2 will be considered
in the following. At these equilibria the Jacobian
matrix of f(e; µ) results

J =

[

c 0 −ê1

ê1 ê1 0

]

.

Then the eigenvalues in the frequency domain are
obtained from [Eq. (5)]

λ

[

λ2 − µc

(s + µ)(s − c)
λ +

ê2
1(s + 2µ)

(s + µ)(s + b)(s − c)

]

= 0 . (17)

Notice that the analysis is cumbersome since there
are two nontrivial eigenvalues, i.e. an algebraic func-
tion instead of a characteristic polynomial like the
one in the time domain. However, observe that re-
placing λ = −1 in Eq. (17) and ê1 in terms of the
system parameters, it is easy to obtain the equation

s3 + (µ + b − c)s2 + bcs + 2µb(2c − µ) = 0 . (18)

This is the characteristic equation in the time do-
main formulation, and so it is the common contact
point with the frequency domain formulation.

Returning to our main concern, in the fre-
quency domain method it is important to deal with
only one eigenvalue, so we propose to modify the

Jacobian to be of rank 1. Toward this end, let us
consider A, B, C and g(x; µ) as before and

D =

[

0 0 α13

0 α22 0

]

.

Then, the nonlinear path results

f(e; µ) = [g(y; µ) − Dy]|y=−e

=

[−(c − µ)e1 + α13e3 − e1e3

α22e2 + e1e2

]

,

and the corresponding Jacobian matrix at P1,2 is

J =

[

c 0 α13 − ê1

ê1 α22 + ê1 0

]

,

where we have used the fact ê2 = ê1 and ê3 = µ−2c.
Therefore, J has rank 1 if α13 = ê1 and α22 = −ê1,
providing that c 6= 0 and b 6= 0 as it has been as-
sumed before, and µ 6= 2c. Thus,

J =

[

c 0 0
ê1 0 0

]

.

The transfer matrix results

G(s; µ) =
1

∆(s)





µ(s + b) ê1µ

(s + µ)(s + b) ê1(s + µ)

−ê1(s + µ) (s + µ)(s − c)



 ,

where ∆(s) = (s + µ)[s2 + (b− c)s− bc + ê2
1]. Then,

the eigenvalues of G(s)J are given by

λ2

{

λ− µc(s+b)+µê2
1

(s+µ)[s2+(b−c)s−bc+ê2
1]

}

=0 . (19)

For λ = −1 Eq. (19) yields Eq. (18), which is the
characteristic equation obtained for the lineariza-
tion of the system [Eq. (16)] around P1 or P2.
Moreover, the relevant eigenvalue after replacing
the value of P1 gives

λ̂(s) =
µc(s + 3b) − µ2b

(s + µ)[s2 + (b − c)s + bc − µb]
. (20)

The Hopf bifurcation condition is obtained re-
placing λ̂ = −1 and s = iω0 (ω0 6= 0) in Eq. (20).
After separating in real and imaginary parts this
condition results in

ω2
0(µ + b − c) − µbc + µ2b = 3µcb − µ2b ,

ω3
0 − c(b − µ)ω0 = µcω0 .

Then, it is easy to obtain

ω0 =
√

bc ,

and

µ0 =
1

4
[3c ±

√

c(−8b + 17c)] .
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Let us compute the frequency ωR at which
λ̂(iω) crosses the real axis

λ̂(iωR)

= PR+i0

=
µc(iωR+3b)−µ2b

−iω3
R−(µ+b−c)ω2

R+(bc−µc)iωR+µbc−µ2b
,

where PR is the intersection point (real). Separating
the previous equation in real and imaginary parts
and considering ωR 6= 0, it can be shown that

PR =
µc

bc − µc − ω2
R

,

and

ωR =

√

bc
3bc − µb − 4µc + 2µ2

c2 − µc + 2bc − µb
.

The calculation of the vectors for the approx-
imations of the periodic solutions starts with the
right v and left w> eigenvectors associated to λ̂(s)

v(s) = [v1(s) v2(s) v3(s) ]>, w> = [1 0 0 ] ,

where

v1(s) = 1 ,

v2(s) =
s + µ

µ
,

v3(s) =
(s + µ)(s − 2c)ê1

µ[c(s + b) + µê2
1]

.

Then, the closed-loop transfer matrix [Eq. (11)] is
computed as

H(s) =
1

∆1(s)





µ(s + b) ê1µ

(s + µ)(s + b) ê1(s + µ)

−ê1(s + 2µ) s(s + µ − c)



 ,

where ∆1(s) = s3 +(µ+ b− c)s2 + cbs+2µb(2c−µ)
coincides with the characteristic polynomial in the
time-domain.

The remaining vectors [Eqs. (8)–(10)] are

V02 = −1

4
H(0)

[−2Re{v3(iωR)}
2Re{v2(iωR)}

]

,

V22 = −1

4
H(i2ωR)

[−2v3(iωR)

2v2(iωR)

]

,

p1(ωR; µ) = QV02 +
1

2
QV22 +

1

8
Lv ,

where

Q =

[−v3(iωR) 0 −1

v2(iωR) 1 0

]

,

and

L =

[

0 0 0

0 0 0

]

.

Finally, Eqs. (12) and (13) give the approx-
imations of the amplitude and frequency of the
oscillations.

3.2. Rand system

A system proposed by Rand [1989] and analyzed
in [Belhaq & Houssni, 1995] and [Belhaq et al.,
2000] is

ẋ1 = µx1 − x2 − x1x3 ,

ẋ2 = x1 + µx2 ,

ẋ3 = −x3 + x2
1x3 + x2

2 ,

(21)

where µ is the bifurcation parameter. Providing
that x3 is the control variable the system may be
interpreted as a damped linear oscillator in the
variables x1 and x2.

Let us consider the following realization

A =





µ −1 0

1 µ 0

0 0 −1



 , B =





1 0

0 0

0 1



 , C = I3 ,

D =

[

α11 0 0

α21 0 0

]

, g(x; µ) =

[ −x1x3

x2
1x3 + x2

2

]

.

The linearization of the nonlinear function

f(e; µ) =

[

α11e1 − e1e3

α21e1 − e2
1e3 + e2

2

]

,

around the equilibrium point P = (ê1, ê2, ê3) is

J =

[

α11 − ê3 0 −ê1

α21 − 2ê1ê3 2ê2 −ê2
1

]

.

Let us assume α11 = α21 = 1, and thus the linear
transfer matrix is

G(s)

=
1

∆(s)





(s − µ)(s + 1) 0

s + 1 0

s − µ (s − µ)(s − µ − 1) + 1





where ∆(s) = (s + 1)[(s − µ)2 − (s − µ) + 1]. Then,
the equilibrium points are

P0 = (0, 0, 0) ,

P1,2 =

(

±
√

d

1 + d
, ∓ 1

µ

√

d

1 + d
,

d

µ2

)

,
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where d = µ(1 + µ2). In the following, only the
equilibrium point P0 is considered since by increas-
ing the value of µ from the critical value µ = 0
a limit cycle appears by means of the Hopf bi-
furcation phenomenon. At P0 the Jacobian matrix
results in

J =

[

1 0 0

1 0 0

]

,

which has rank 1 and thus simplifies the analysis.
The eigenvalues of G(s)J are obtained from

λ2

{

λ− (s−µ)(s+1)

(s+1)[(s−µ)2−(s−µ)+1]

}

=0 . (22)

Therefore, the eigenvalue to be considered is

λ̂(s) =
s − µ

(s − µ)2 − (s − µ) + 1
.

Equation (22) for λ = −1 yields

(s + 1)(s2 − 2µs + µ2 + 1) = 0 , (23)

which is the characteristic equation obtained by lin-
earizing the system [Eq. (21)] around P0. It is also
simple to show that the frequency of the oscillation
is ω0 = 1 (for µ = 0).

The calculation of the vectors for the approx-
imations of the periodic solutions begins with the
right v and left w> eigenvectors associated to λ̂

v(s) = [v1(s) v2(s) v3(s) ]> , w> = [1 0 0 ] ,

where

v1(s) = 1 ,

v2(s) =
1

(s − µ)
,

v3(s) =
(s − µ)2 + 1

(s − µ)(s + 1)
.

Then, the closed-loop transfer matrix is com-
puted as

H(s) =
1

∆1(s)





(s − µ)(s + 1) 0

(s + 1) 0

0 (s − µ)2 + 1



 ,

where ∆1(s) = (s+1)(s2−2µs+µ2+1). Notice that
H(s) contains as the transmission poles the real and
the complex conjugate poles given in Eq. (23).

Let us compute the frequency ωR from

λ̂(iωR) = PR + i0 =
−µ + iωR

(iωR − µ)2 − (iωR − µ) + 1
.

After simple calculations the values of PR and ωR

are given by

PR = − 1

1 + 2µ
, and ωR =

√

1 − µ2 .

Notice that the right eigenvector v calculated
at ωR is given completely in terms of the main bi-
furcation parameter µ. Then, the remaining vectors
result as

V02 = −1

4
H(0)

[ −2Re{v3(iωR)}
2v2(iωR)v2(iωR)

]

,

V22 = −1

4
H(i2ωR)

[−2v3(iωR)

2v2
2(iωR)

]

,

p1(ωR; µ) = QV02 +
1

2
QV22 +

1

8
Lv ,

where

Q =

[−v3(iωR) 0 −1

0 2v2(iωR) 0

]

,

and

L =

[

0 0 0

−4v3(iωR) 0 −2

]

.

As in the previous example, the approxima-
tions of the periodic solution can be obtained from
Eqs. (12) and (13).

3.3. Sprott system

Let us consider the following system proposed by
Sprott [1994]

ẋ1 = µx1 + x3 ,

ẋ2 = −x2 + x1x3 ,

ẋ3 = −x1 + x2 ,

(24)

where we have added the bifurcation parameter µ
(in Sprott’s paper µ = 0.4). Taking the realization
on Eq. (24) given by

A =





µ 0 1
−1 −1 0
−1 1 0



 , B =





0

1

0



 , C = I3 , D = 0 ,

g(x; µ) = x1 + x1x3 ,

we end up in a simple form of the linear transfer
function

G(s; µ) =
1

∆(s)





1

s2 − µs + 1

s − µ



 ,
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where ∆(s) = s3 + (1 − µ)s2 + (1 − µ)s + 2. In
addition, the nonlinear function is

f(e; µ) = −e1 + e1e3 .

The equilibrium points P = (ê1, ê2, ê3) are

P0 = (0, 0, 0) , P1 =

(

1

µ
,

1

µ
, −1

)

.

We are interested in the equilibrium point at the
origin, since a limit cycle emerges under the Hopf
bifurcation mechanism. The Jacobian matrix at the
origin results in J = [−1 0 0] and the eigenvalues
are obtained from

λ2

(

λ +
1

∆(s)

)

= 0 .

Therefore the nontrivial eigenvalue is

λ̂(s) = − 1

s3 + (1 − µ)s2 + (1 − µ)s + 2
.

The necessary condition for the Hopf bifurca-
tion, i.e. λ̂ = −1 + i0, gives ω0 = 1 and µ = 0. In
terms of the bifurcation parameter, the characteris-
tic locus crosses the negative real axis close to the
critical point −1 + i0 with the following expression

λ̂(iωR) =
−1

2 − (1 − µ)2
, ωR = ±

√

1 − µ ,

where ωR is the frequency to be used for the com-
putations of the periodic solutions. At criticality
(µ = 0), ωR(µ=0) = ω0 = 1. The eigenlocus λ̂(iω) is
depicted in Fig. 2 when ω ∈ [0, ∞) and µ = 0, re-
vealing the crossing at the critical point. Since ∆(s)
has two complex roots in the right half-plane, the
equilibrium point at the origin loses its stability for

Fig. 2. Relevant eigenlocus at criticality (µ = 0).

µ > 0. A 3D-plot is given in Fig. 3 where the z-axis
is µ, and x and y-axes are the same as in Fig. 2.

The normalized (w>v = 1, |v| = 1) right and
left eigenvectors v, w> of the matrix G(iωR)J are

v =
1

γ1







1

µ(1 − i
√

1 − µ)

−µ + i
√

1 − µ






, w> = [γ1 0 0 ] ,

where γ1 =
√

2 − µ3 + 3µ2 − µ.
The closed-loop transfer function is

H(s) =
1

∆(s) − 1





1

s2 − µs + 1

s − µ



 .

Then, we can compute the vectors

V02 =
µ

2γ2
1





1

1

−µ



 ,

V22 =
µ − i

√
1 − µ

2γ2γ
2
1





1

−3 + 4µ − i2µ
√

1 − µ

−µ + i2
√

1 − µ



 ,

where

γ2 = ∆(i2ωR) − 1

= 1 − 4(1 − µ)2 − i6(1 − µ)
√

1 − µ .

The number p1(ωR; µ) is

p1(ωR; µ) = − µ

2γ3
1

(2µ − i
√

1 − µ)

− 1

4γ3
1γ2

(−1 + µ + 2µ2 − i3µ
√

1 − µ) .

In this case

Q =
1

γ1
[−µ + i

√
1 − µ 0 1 ] ,

and L = 0 since the third partial derivatives of the
function f(e; µ) with respect to e are equal to 0.
This is an important simplification in order to pro-
ceed with higher-order HBA formulas.

The complex number ξ1(ωR) is

ξ1(ωR) =
µ

2γ2
1γ3

(2µ − i
√

1 − µ)

+
1

4γ2
1γ3γ2

(−1 + µ + 2µ2 − i3µ
√

1 − µ) ,

where γ3 = 1 + 2µ − µ2. Then, the amplitude θ̂ of
the periodic solution can be computed by solving
Eq. (12).
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Fig. 3. Relevant eigenlocus by varying µ.

The stability index at criticality [Eq. (7)] yields

σ1 = − 1

160
.

Therefore, for µ > 0 the emerging limit cycle is
stable.

The computations carried out above are very
close to the results reported with the celebrated
Chua’s circuit [Bonani & Gilli, 1999; Phillipson &
Schuster, 2000], but in the present paper the exam-
ple seems to be more easily adapted for computation
since it only has one distinguished bifurcation pa-
rameter. Furthermore, the expressions for the har-
monics are very simple and they are in terms of the
bifurcation parameter µ. For example, the vectors
V11 = v, V02 and V22 for µ = 0 are

v =
1√
2

[

1 0 i
]>

,

V02 =
[

0 0 0
]>

,

V22 =
2 + i

60

[

1 −3 2i
]>

,

and for µ = 1/4 are

v =
8√
123













1

1

4
− i

1

8

√
3

−1

4
+ i

1

2

√
3













,

V02 =
8

123
[1 1 −1/4 ]> ,

V22 =
8

8241
(49 + i19

√
3)











1

−2 − i
1

4

√
3

−1

4
+ i

√
3











.

This shows that the content of the bias is increased
at µ = 1/4 when compared to the one at criticality.

The analyzed system has a period-doubling se-
quence starting at µ ∼= 0.264427 that ends in a
chaotic attractor for µ > 0.3272. Thus, this sys-
tem is appropriate to pursue an analytical treat-
ment of the period-doubling bifurcations using the
approximations for the periodic solutions given be-
fore. However, no conclusion can be drawn from this
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approximation regarding the first period-doubling
bifurcation, since the approximations used here take
care of the linearization around the equilibrium
point, and for the analysis of the bifurcation of the
cycles we need the linearization of the flux around
the periodic solution. This step will be considered in
the following section for simpler flows such as given
by Tesi et al. [1996] and Thomas [1999a, 1999b]
since they contain the simplest nonlinearity involv-
ing one variable as well as the least number of lin-
ear terms. These special configurations will help in
obtaining the linearized matrix of the flow around
the periodic solutions and then the computation of
higher-order approximation formulas.

Finally, it is interesting to point out that more
sophisticated techniques have been used recently to
study semi-analytically the bifurcations of cycles
[Sinha & Butcher, 1997; Butcher & Sinha, 1998].
In addition, more accurate numerical techniques
have been proposed to solve the continuation prob-
lem of the limit cycles [Guckenheimer & Meloon,
2000; Viswanath, 2001] or the computation of the
accurate Poincaré maps [Tucker, 2002]. These two
current trends are certainly part of the motiva-
tion of using higher-order approximation methods
in computing periodic solutions and their bifurca-
tions. Furthermore, the potentiality of the power se-
ries method has been emphasized in [Guckenheimer
& Meloon, 2000] while a computation of the errors
has been shown in [Berns et al., 2001] in connection
with approximate monodromy matrices.

4. Systems with SISO Realizations

In this section the methodology is applied to simple
flows. In all the three cases a Single-Input-Single-
Output (SISO) realization is obtained since the non-
linearity involves only one variable. This results in
v = w> = 1. Furthermore, an important simplifica-
tion of the higher-order corrections in the direction
of the eigenvector v is attained.

4.1. Genesio and Tesi system

Let us consider the system

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = −x1 − 1.2x2 + µx3 + x2
1 ,

(25)

where µ is the main bifurcation parameter. This
system has been studied in [Tesi et al., 1996] con-
cerning the delaying of the period-doubling cascade
by using feedback control.

Let us take the realization

A =





0 1 0

0 0 1

−1 −1.2 µ



 , B =





0

0

1



 , D = −1 ,

C =
[

1 0 0
]

, g(x) = x2
1 .

Then, the transfer function G(s; µ) is

G(s; µ) =
1

∆(s)
,

where ∆(s) = s3−µs2 +1.2s+2, and the nonlinear
function reads

f(e) = −e1 + e2
1 .

For this realization, the equilibrium points (output)
correspond to

P0 = 0 , P1 = −1 .

In the following, only the equilibrium point P0 at
the origin is considered. The eigenlocus is given by

λ̂(s) = G(s)J = − 1

∆(s)
,

where J = −1 + 2ê1 = −1.
The static bifurcation condition is given by

G(0)J = −1, which is not attained for any value of
µ. On the other hand, for Hopf bifurcations (ω 6= 0),

the necessary condition λ̂ = −1 + i0 gives

ω0 = ωR =

√

6

5
and µ0 = −5

6
.

The normalized right and left eigenvectors v,
w> of the transfer function G(iωR)J corresponding

to λ̂ are v = w> = 1, and the closed-loop transfer
function is

H(s) =
1

s3 − µs2 + 1.2s + 1
. (26)

Equation (26) calculated at s = 0 and s = i2ωR

yields

H(0) = 1 , H(i2ωR) =
1

1 +
24

5
µ − i

36

5

√

6

5

.

Then, the following numbers are obtained

V02 = −1

2
,

V22 = −1

2
H(i2ωR) ,

and

p1(ωR; µ) =

(

−3

2
− 24

5
µ + i

36

5

√

6

5

)

H(i2ωR) .
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It is worth mentioning that Q = Q = 2 and L = 0
again since the function f(e) is quadratic.

Therefore, the vector ξ1(ωR) is shown as

ξ1(ωR) =
5

10 + 6µ

(

3

2
+

24

5
µ − i

36

5

√

6

5

)

H(i2ωR) .

4.2. Modified Rössler system with a

quadratic nonlinearity

Let us consider a system with the Rössler type
structure [Thomas, 1999a, 1999b] and also identi-
fied as one simple system with complex dynamics

ẋ1 = −x2 − x3 ,

ẋ2 = x1 + µx2 ,

ẋ3 = x2
1 − cx3 ,

(27)

where µ is the main bifurcation parameter and c is
a real constant.

The proposed realization on Eq. (27) is

A =





0 −1 −1

1 µ 0

−1 0 −c



 , B =





0

0

1



 , D = 0 ,

C = [1 0 0 ] , g(x) = x1 + x2
1 .

The transfer function results is

G(s; µ) = −s − µ

∆(s)
, (28)

where ∆(s) = s3 + (c − µ)s2 − µcs + µ + c, and the
nonlinear function is

f(e) = −e1 + e2
1 .

Then, the equilibrium points (output) are

P0 = 0 , P1 = − c

µ
.

Again, the equilibrium point P0 at the origin is
considered. The eigenlocus is given by

λ̂(s) = G(s)J =
s − µ

∆(s)
,

where J = −1 + 2ê1 = −1.
Let us first analyze in the time-domain the

types of bifurcations that this system can perform.
The linearization around the origin of Eq. (27) gives

At =





0 −1 −1

1 µ 0

0 0 −c



 ,

which has the eigenvalues given by

(λt + c)(λ2
t − µλt + 1) = 0 .

Then, it is easy to see that the condition for a Hopf
bifurcation is fulfilled when µ = 0, and a type of
static bifurcation appears when c = 0. Moreover,
when both conditions occur simultaneously a bi-
furcation involving two pure imaginary eigenvalues
plus a zero eigenvalue is detected.

These observations can be made analogously
in the frequency domain counterpart, by taking
λ̂(s) = −1, which is the bifurcation condition,
resulting in

λ̂(iω) =
−µ + iω

c + µ − ω2(c − µ) − iω(µc + ω2)

= −1 . (29)

It is easily checked that when ω = 0 (static bifur-
cation condition) Eq. (29) gives

−µ

c + µ
= −1 ⇒ c = 0 , µ 6= 0 .

On the other hand, for ω 6= 0 (dynamic or
Hopf bifurcation), the following equations are ob-
tained by solving the real and the imaginary parts
of Eq. (29)

ω2 = 1 − µc ,

ω2 = −µ2 + 1 +
µ

c
.

(30)

After simple calculations, we arrive at

−µ2 +
µ

c
+ µc = 0 . (31)

Then, clearly for the Hopf bifurcation condi-
tion, Eq. (31) gives µ = 0, and Eq. (30) ω0 = 1. In

addition, the eigenlocus λ̂(iω) crosses the real axis
closest to the critical point −1 + i0 at

ωR =

√

−µ2 + 1 +
µ

c
.

It is also easily verified that the condition of a
simultaneous occurrence of a pure imaginary pair of
eigenvalues and a zero eigenvalue when µ = c = 0
in Eq. (29),

−1 =
iω

−iω3
,⇒ ω(ω2 − 1) = 0 ,

giving the frequencies ωS = 0 and ωH = 1 as so-
lutions. However, the reader can notice that in the
frequency domain the eigenvalue conditions for de-
tecting bifurcations seem more cumbersome than in
the classical time-domain formulation.
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The normalized right and left eigenvectors v
and w> of the transfer function G(iωR)J corre-

sponding to λ̂ result in v = w> = 1, and the closed-
loop transfer function is

H(s) = − s − µ

s3 + (c − µ)s2 + (1 − µc)s + c
. (32)

Expression (32) evaluated at s = 0 and s = i2ωR

gives

H(0) =
µ

c
,

H(i2ωR) = − −µ+i2ωR

c−4ω2
R(c−µ)+iωR(2−2µc−8ω2

R)
.

Then, we can compute the numbers

V02 = − µ

2c
,

V22 = −1

2
H(i2ωR) ,

p1(ωR; µ) = −µ

c
− 1

2
H(i2ωR) ,

and

ξ1(ωR) = −
(−µ + iωR)

(

µ

c
+

1

2
H(i2ωR)

)

c − µ − ω2
R(c − µ) − iωR(µc + ω2

R)
.

As in the previous example, Q = Q = 2 and L = 0.

4.3. Modified Rössler system with a

cubic nonlinearity

A system with a Rössler type structure and a cubic
nonlinearity [Thomas, 1999a, 1999b] is considered.
This system is

ẋ1 = −x2 − x3 ,

ẋ2 = x1 + µx2 ,

ẋ3 = x3
1 − cx3 ,

(33)

where µ is the main bifurcation parameter and c is
a real constant.

The adopted realization is

A =





0 −1 −1

1 µ 0

−1 0 −c



 , B =





0

0

1



 , D = 0 ,

C = [1 0 0 ] , g(x) = x1 + x3
1 .

The transfer function is given by Eq. (28) and the
nonlinear function is

f(e) = −e1 − e3
1 .

The equilibrium points (output) are

P0 = 0 , P1,2 = ±
√

c

µ
.

Let us consider the equilibrium point at the origin.
The eigenlocus is given by

λ̂(s; µ) = G(s)J =
s − µ

∆(s)
,

where J = −1 − 2ê2
1 = −1.

Since the linearized system is the same as in
the modified Rössler system with a quadratic non-
linearity, the bifurcation conditions are the same as
in the previous example: µ0 = 0 and ω0 = 1. In the
same way as before ωR =

√

−µ2 + 1 + (µ/c).
The normalized right and left eigenvectors re-

sult in v = w> = 1 and the closed-loop transfer
function is Eq. (32). Since Q = Q = 0 then

V02 = V22 = 0 ,

and

p1(ωR; v) =
1

8
Lv = −3

4
,

where L = −6. The expression of the number
ξ1(ωR) is given by

ξ1(ωR) =
3

4(ω2
R + µc)

.

5. Numerical Results

In this section the proposed technique is applied
to the systems described in Sec. 4 to detect differ-
ent types of bifurcations of limit cycles. To validate
the results, standard packages for the continuation
of periodic solutions are used. For example LBLC
from the LOCBIF library [Khibnik et al., 1993] or
AUTO [Doedel et al., 1997; Ermentrout, 2001]. The
value of one of the output variables (in oscillatory
regime) is plotted as a function of the main bifur-
cation parameter µ; therefore the values of the pa-
rameter where the bifurcations occur can be read
very precisely.

In order to obtain the expressions of the higher-
order approximations it is important to mention
that the examples of Sec. 3 have the right and left
eigenvectors v and w> of dimension 3×1 and 1×3,
respectively. Therefore, the vectors V13, V15, and
V17 have complicated expressions. For this reason,
only the examples of Sec. 4 are considered for which
V13 = V15 = V17 = 0 (see the higher-order approxi-
mation formulas in the Appendix).
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Table 1. Characteristic multipliers of M3 for Gene-
sio and Tesi system for detecting a period-doubling
bifurcation.

µ λ1 λ2 λ3

−0.4880 1.00272 −1.00548 −0.05884

M3 −0.4885 1.00270 −1.00057 −0.05896

−0.4890 1.00269 −0.99567 −0.05909

5.1. Genesio and Tesi system

For the system of Eq. (25), a branch of periodic
solutions emerges from the origin when a supercrit-

ical Hopf bifurcation occurs at µHB = −5/6. Using
AUTO, the prediction for the first period-doubling
bifurcation is µPD ≈ −0.48096. At this point the
maximum value of x1 is x1 max ≈ 0.77944 and the
period is T ≈ 5.7830.

Evaluating the approximation of the mon-
odromy matrix M3, by using the periodic predic-
tion L3 (six harmonics), we obtain the characteristic
multipliers shown in Table 1. From this table, the
approximate monodromy matrix M3 gives one mul-
tiplier (λ2) close to −1 at µPDM3

≈ −0.4885, also
at this point, x1 max M3

≈ 0.7994 and TM3
≈ 5.7882.

All of these results are close to those obtained by
AUTO.

It is important to mention that one of the multi-
pliers must be +1.0000, since it is a requirement for
the technical construction of the Poincaré section.
In other words, it indicates a measure of the error of
the approximation [Guckenheimer & Meloon, 2000].
For this case, the error of the approximation of M3

is of order 2.7 × 10−3.
Figure 4 shows the continuation of the limit cy-

cle from the Hopf bifurcation to the first period-
doubling bifurcation, where the L3-approximation
is plotted and compared with that obtained with
AUTO.

5.2. Modified Rössler system with a

quadratic nonlinearity

The behavior of the modified Rössler system with
a quadratic nonlinearity [Eq. (27)] is evaluated for
c = 2, c = 0.74 and c = 0.6. Two kinds of bifur-
cations are obtained: a period-doubling bifurcation
(c = 2 and c = 0.74), and a Neimark–Sacker bifur-
cation (c = 0.6).

For c = 2, a branch of periodic solutions de-
velops when the parameter µ is varied from 0, after

the occurrence of a Hopf bifurcation. The prediction
of the first period-doubling is µPD ≈ 0.23971, with
x1 max ≈ 1.901518 and T ≈ 6.4718. The multipliers
of the approximate monodromy matrices M3 (sixth-
order) and M4 (eighth-order) are shown in Table 2.
From this table, M3 determines that the period-
doubling bifurcation takes place at µPDM3

≈ 0.2358,
with x1 max M3

≈ 1.910537 and TM3
≈ 6.4843. For

M4, µPDM4
≈ 0.2415, with x1 max M4

≈ 1.89912
and TM4

≈ 6.4665. For these cases, the errors of
the approximation are eM3

≈ 6.83 × 10−3 and
eM4

≈ 5.51 × 10−3. Although the difference in the
order is small, the error in the estimation of x1 max

is appreciable as shown in Fig. 5.
The system with c = 0.74, has a Hopf bifur-

cation at µ = 0, and a period-doubling bifurcation
at µPD1 ≈ 0.407716, with x1 max 1 ≈ 1.28816 and
T1 ≈ 5.452903. A second period-doubling bifurca-
tion occurs at µPD2 ≈ 0.7223, with x1 max 2 ≈ 1.0711
and T2 ≈ 5.2858. A sixth-order approximation (L3)
is used to estimate the period-doubling, and the re-
sults are shown in Table 3. For this case, the period-
doubling bifurcation is approximated at µPD1M3

≈
0.399, x1 max 1M3

≈ 1.295102 and T1M3
≈ 5.47364.

The error in the approximation is eM3
≈ 3.52×10−2.

The second period-doubling bifurcation cannot be
detected with this technique. The curves of the

Table 2. Characteristic multipliers of M3 and M4 for detect-
ing a period-doubling bifurcation in the modified quadratic
Rössler system with c = 2.

µ λ1 λ2 λ3

0.2357 0.99317 −0.99960 −0.10817 × 10−4

M3 0.2358 0.99317 −1.00057 −0.10835 × 10−4

0.2360 0.99315 −1.00251 −0.10829 × 10−4

0.24100 1.00546 −0.99596 −0.1148 × 10−4

M4 0.24150 1.00551 −1.00055 −0.1145 × 10−4

0.24225 1.00557 −1.00743 −0.1141 × 10−4

Table 3. Characteristic multipliers of M3 for de-
tecting a period-doubling bifurcation in the modi-
fied quadratic Rössler system with c = 0.74.

µ λ1 λ2 λ3

0.398 0.9651 −0.99590 −0.15998

M3 0.399 0.9648 −0.99974 −0.16034

0.400 0.9646 −1.00358 −0.16071
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Fig. 4. Periodic branch starting from Hopf bifurcation for Genesio and Tesi system. −− Stable, - - - unstable branch: AUTO;
♦ : L3-approximation. PD is the first period-doubling bifurcation.
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Fig. 5. Branch of periodic solutions in the modified Rössler system with a quadratic nonlinearity and c = 2. −− Stable,
- - - unstable branch: AUTO; ♦ : L3-approximation; ∗ : L4-approximation. PD is the first period-doubling bifurcation.

approximation and the one obtained with AUTO
are shown in Fig. 6.

The Rössler system with a quadratic nonlinear-
ity and c = 0.6 undergoes a Hopf bifurcation when
µ = 0. The cycle experiments a Neimark–Sacker

bifurcation at µNS ≈ 0.6, with x1 max ≈ 1.218946
and T ≈ 4.9538. The approximate characteristic
multipliers for this case are shown in Table 4. In
both cases the approximation of one of the multi-
pliers (λ1) must be +1.0000, but λ1M3

= 0.8650
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Fig. 6. Branch of periodic solutions in the modified Rössler system with a quadratic nonlinearity and c = 0.74. −− Stable,
- - - unstable branch: AUTO; ♦ : L3-approximation. PD is the first period-doubling bifurcation.

(eM3
≈ 1.35 × 10−1) and λ1M4

= 1.12153 (eM4
≈

1.12 × 10−1). This error in the approximation is
reflected in the estimation of the Neimark–Sacker
bifurcation, for which the eigenvalues of M3 cross

the unit circle at µNSM3
≈ 0.5715, with x1 max M3

≈
1.30293 and TM3

≈ 5.01989; for the M4 approxima-
tion, µNSM4

≈ 0.6235, with x1 max M4
≈ 1.27279 and

TM4
≈ 4.90041. This large error indicates that the
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Fig. 7. Branch of periodic solutions in the modified Rössler system with a quadratic nonlinearity and c = 0.6. −− Stable,
- - - unstable branch: AUTO; ♦ : L3-approximation; ∗ : L4-approximation. NS is the Neimark–Sacker bifurcation.
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Table 4. Characteristic multipliers of M3 and
M4 for detecting a Neimark–Sacker bifurcation
in the modified quadratic Rössler system with
c = 0.6.

µ λ1 λ2,3

0.5700 0.86580 0.99674 e±j95.21

M3 0.5715 0.86507 1.00093 e±j95.12

0.5717 0.86498 1.00149 e±j95.10

0.6226 1.12091 0.99831 e±j93.34

M4 0.6235 1.12153 1.00023 e±j91.11

0.6250 1.12256 1.00343 e±j90.99

approximation of the amplitude of one of the vari-
ables is not close to the one obtained with AUTO,
as shown in Fig. 7.

5.3. Modified Rössler system with a

cubic nonlinearity

Finally, the proposed technique is applied to the
modified Rössler system with a cubic nonlinearity

Table 5. Characteristic multipliers of M4 for detect-
ing a pitchfork bifurcation of cycles in the modified
cubic Rössler system.

µ λ1 λ2 λ3

0.53290 0.994204 0.99993 0.071937

M4 0.53292 0.994203 1.00008 0.071935

0.53316 0.994193 1.00184 0.071904

[Eq. (33)]. The Hopf bifurcation occurs at µ = 0,
and by increasing the value of µ a pitchfork bi-
furcation of cycles occurs at µPB ≈ 0.53316, with
x1 max ≈ 1.030691 and T ≈ 5.642649. The approx-
imate characteristic multipliers M4 (eighth-order
(L4) approximation) are shown in Table 5.

The pitchfork bifurcation of cycles is estimated
at µPBM4

≈ 0.53292, with x1 max M4
≈ 1.030703

and TM4
≈ 5.64726, very close to the one obtained

with AUTO. In this case the approximation er-
ror is eM4

≈ 5.8 × 10−3. The curves of the L4-
approximation and the one obtained with AUTO
are shown in Fig. 8, where both curves are close to
each other.
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Fig. 8. Branch of periodic solutions in the modified Rössler system with a cubic nonlinearity and c = 1. −− Stable,
- - - unstable branch: AUTO; ∗ : L4-approximation. PB is the pitchfork bifurcation.
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6. Discussions and Conclusions

The main purpose of the present work is to draw
the attention on simple formulas to analyze the first
limit cycle bifurcations by varying the main bifur-
cation parameter. It has been observed that in the
Sprott and the modified Rössler systems the cor-
rection of the bias increases proportionally to the
main bifurcation parameter, i.e. V02 ∝ µ. This is
an interesting observation since for period-doubling
bifurcation an extra vector, taking care of the fre-
quency ωR/2, should appear between V02 and v.
This shift of the energy of the signal to smaller val-
ues of frequencies is a typical phenomenon in the
period-doubling bifurcation scenario.

The computation of the monodromy matrix
has been carried out for simple oscillatory systems
containing one nonlinear — quadratic or cubic —
term. In order to compute the monodromy matri-
ces, higher-order approximation formulas have been
used. The bifurcations of cycles are well predicted
(regarding accuracy in engineering terms) even with
a fourth-order HBA, except for the Neimark–Sacker
bifurcation. This methodology seems to be very
powerful to explore the bifurcations of cycles close
to Hopf bifurcations.
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Appendix A

A.1. Sixth-order formulas for the

examples of Secs. 4.1 and 4.2

The corresponding Fourier coefficients for a sixth-
order HBA are

E0 = V02(ω̂3)θ̂
2
3 + V04(ω̂3)θ̂

4
3 + V06(ω̂3)θ̂

6
3 ,

E1 = v(ω̂3)θ̂3 + V13(ω̂3)θ̂
3
3 + V15(ω̂3)θ̂

5
3 + V17(ω̂3)θ̂

7
3 ,

E2 = V22(ω̂3)θ̂
2
3 + V24(ω̂3)θ̂

4
3 + V26(ω̂3)θ̂

6
3 ,

E3 = V33(ω̂3)θ̂
3
3 + V35(ω̂3)θ̂

5
3 ,

E4 = V44(ω̂3)θ̂
4
3 + V46(ω̂3)θ̂

6
3 ,

E5 = V55(ω̂3)θ̂
5
3 ,

E6 = V66(ω̂3)θ̂
6
3 .

Vectors v, V02 and V22 are obtained in Sec. 4.1
for the Genesio and Tesi system and in Sec. 4.2 for
the modified Rössler system with a quadratic non-
linearity. The formulas for the remaining vectors are
given in [Moiola & Chen, 1996] and for both exam-
ples the results are

V13 = V15 = V17 = 0 ,

V33 = −1

2
H(i3ω̂3)D2vV22 ,

V04 = −1

4
H(0)D2(2V

2
02 + V22V 22) ,

V24 = −1

2
H(i2ω̂3)D2(2V02V22 + vV33) ,

V44 = −1

4
H(i4ω̂3)D2(V

2
22 + 2vV33) ,

V06 = −1

4
H(0)D2(4V02V04 + V22V 24

+V 22V24 + V33V 33)

V35 = −1

2
H(i3ω̂3)D2(vV24 + 2V02V33 + vV44) ,

V26 = −1

2
H(i2ω̂3)D22V02V24 + 2V04V22

+ vV35 + V 22V44 ,

V55 = −1

2
H(i5ω̂3)(D2vV44 + V22V33) ,

V46 = −1

2
H(i4ω̂3)D2(vV35 + V22V24

+2V02V44 + vV55) ,

V66 = −1

2
H(i6ω̂3)D2

(

vV55 + V22V44 +
1

2
V 2

33

)

,

where D2 = D2
ef(ê) = 2 and H(ikω̂3) depends on

the example (see the expressions in Sec. 4).
In order to obtain the approximations of ω̂

and θ̂ the complex numbers ξ2(ω̂3) and ξ3(ω̂3) are
computed

ξ2(ω̂3) = −G(iω̂3)p2(ω̂3; µ) ,

ξ3(ω̂3) = −G(iω̂3)p3(ω̂3; µ) ,

where G(iω̂3) is given in Secs. 4.1 and 4.2 for each
example, and

p2(ω̂3; µ) =
1

2
D2(2vV04 + V 22V33 + vV24) ,

p3(ω̂3; µ) =
1

2
D22vV06 + vV26 + V 22V35

+V 24V33 + V 33V44 .

For the vectors involved up to a fourth-order
approximation, compact expressions (in terms of
the bifurcation parameter) are obtained:

Genesio and Tesi system

V33 =
1

2
H(i3ω̂2)H(i2ω̂2) ,

V04 = −1

8
[2 + H(i2ω̂2)H(i2ω̂2)] ,

V24 = −1

2
H(i2ω̂2)H(i2ω̂2)[1 + H(i3ω̂2)] ,

V44 = −1

2
H(i4ω̂2)H(i2ω̂2)

[

1

4
H(i2ω̂2) + H(i3ω̂2)

]

,

where

H(ikω̂2) =
1

1 + µk2ω̂2
2 + ikω̂2(1.2 − k2ω̂2

2)
.

Modified Rössler system with a quadratic non-

linearity

V33 =
1

2
H(i3ω̂2)H(i2ω̂2),
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V04 = −1

8
H(0)

[

2
(µ

c

)2
+ H(i2ω̂2)H(i2ω̂2)

]

,

V24 = −1

4
H(i2ω̂2)

[

2
µ

c
H(i2ω̂2) + 2H(i3ω̂2)H(i2ω̂2)

]

,

V44 = −1

4
H(i4ω̂2)

[

1

2
H2(i2ω̂2) + 2H(i3ω̂2)H(i2ω̂2)

]

,

where

H(ikω̂2) =
−(ikω̂2 − µ)

c − k2ω̂2
2(c − µ) + ikω̂2(1 − µc − k2ω̂2

2)
.

A.2. Eighth-order approximation

formulas for the example

of Sec. 4.3

The Fourier coefficients Ek needed in the calcula-
tion of an eighth-order HBA are

E0 = V02(ω̂4)θ̂
2
4 + V04(ω̂4)θ̂

4
4

+V06(ω̂4)θ̂
6
4 + V08(ω̂4)θ̂

8
4 ,

E1 = v(ω̂4)θ̂4 + V13(ω̂4)θ̂
3
4 + V15(ω̂4)θ̂

5
4

+V17(ω̂4)θ̂
7
4 + V19(ω̂4)θ̂

9
4 ,

E2 = V22(ω̂4)θ̂
2
4 + V24(ω̂4)θ̂

4
4

+V26(ω̂4)θ̂
6
4 + V28(ω̂4)θ̂

8
4 ,

E3 = V33(ω̂4)θ̂
3
4 + V35(ω̂4)θ̂

5
4 + V37(ω̂4)θ̂

7
4 ,

E4 = V44(ω̂4)θ̂
4
4 + V46(ω̂4)θ̂

6
4 + V48(ω̂4)θ̂

8
4 ,

E5 = V55(ω̂4)θ̂
5
4 + V57(ω̂4)θ̂

7
4 ,

E6 = V66(ω̂4)θ̂
6
4 + V68(ω̂4)θ̂

8
4 ,

E7 = V77(ω̂4)θ̂
7
4 ,

E8 = V88(ω̂4)θ̂
8
4 .

Since D2 = D2
ef(ê) = 0 and D3 = D3

ef(ê) = −6,
these formulas can be reduced to

E0 = E2 = E4 = E6 = E8 = 0 ,

E1 = θ̂v ,

E3 = θ̂3
4V33 + θ̂5

4V35 + θ̂7
4V37 ,

E5 = θ̂5
4V55 + θ̂7

4V57 ,

E7 = θ̂7
4V77 ,

where

V33 =
1

4
H(i3ω̂4) ,

V35 =
3

8
[H(i3ω̂4)]

2 ,

V55 =
3

16
H(i5ω̂4)H(i3ω̂4) ,

V37 =
9

16
[H(i3ω̂4)]

2

[

H(i3ω̂4) +
1

4
H(i5ω̂4)

]

,

V57 =
1

32
H(i5ω̂4)H(i3ω̂4)

[

21

2
H(i3ω̂4) + 9H(i5ω̂4)

]

,

V77 =
3

64
H(i7ω̂4)H(i3ω̂4)[3H(i5ω̂4) + H(i3ω̂4)] ,

and

H(ikω̂4) =
−(ikω̂4 − µ)

c − k2ω̂2
4(c − µ) + ikω̂4(1 − µc − k2ω̂2

4)
.

The complex numbers ξ2(ω̂4), ξ3(ω̂4) and ξ4(ω̂4)
required for computing the eighth-order approxima-
tion are given by

ξ2(ω̂4) = −G(iω̂4)p2(ω̂4; µ) ,

ξ3(ω̂4) = −G(iω̂4)p3(ω̂4; µ) ,

ξ4(ω̂4) = −G(iω̂4)p4(ω̂4; µ) ,

where

G(iω̂4) = − (iω̂4 − µ)

µ + c − ω̂2
4(c − µ) − iω̂4(µc − ω̂2

4)
,

and

p2(ω̂4; µ)=− 3

16
H(i3ω̂4) ,

p3(ω̂4; µ)=− 3

32
{3[H(i3ω̂4)]

2+H(i3ω̂4)H(i3ω̂4)},

p4(ω̂4; µ)=−3

4
V37−

3

2
V33V 35−

3

2
V 33V35−

3

2
V 33V55.


