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A SIMPLICIAL CANONICAL

PIECEWISE LINEAR ADAPTIVE

FILTER*
J. L. Figueroa,1 J. E. Cousseau,1 and
R. J. P. de Figueiredo2

Abstract. A new adaptive nonlinear filter realization is presented based on a canonical
piecewise linear (CPWL) approach. This filter realization consists of a linear part repre-
sented by a finite impulse response filter and a zero-memory nonlinear part implemented
as a CPWL map. The resultant structure requires fewer parameters than other realiza-
tions found in the literature with comparable modeling capabilities. As a consequence, the
proposed nonlinear filter, in addition to its simple description, has low computation and
implementation costs. Some results related to convergence properties and implementation
of the adaptive algorithm associated to this new realization are presented. The performance
of the proposed filter is illustrated through simulation examples.
Key words: Adaptive filtering, nonlinear filtering, piecewise linear models.

1. Introduction

Classical adaptive filtering algorithms [10] consist of updating the coefficients of
a linear filter in real time. These algorithms have applications in a large number
of practical situations where the random signals measured in the environment can
be well modeled as outputs of linear dynamical systems driven by white Gaussian
noise. However, the increasing transmission power demand in high-speed com-
munications and related applications, leads to the exploration of channel resources
beyond their linear range.

A number of efforts have been made toward finding general and efficient al-
gorithms and realizations for nonlinear adaptive filtering applications. One such
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general approach is non-parametric. It introduces a Reproducing Kernel Hilbert
space F of Volterra series [6]–[9], [30], [31] to which the nonlinear adaptive filter
is made to belong, and the optimal nonlinear filter structure and parameters are
obtained by orthogonal projection in F calculated recursively from the data. The
resultant adaptive filter appears naturally in the form of a multilayered neural net-
work. In many other contributions, the least mean square (LMS) or the recursive
least square (RLS) approaches are applied to truncated Wiener–Volterra series
[22], [27], [32], or neural network models [26]. However, in all these approaches
the computation and implementation costs increase sharply with the number of
nonlinear elements present in the filter.

An intensively studied tool for nonlinear modeling is the piecewise linear
(PWL) function. A PWL function is an approximate representation of a
nonlinear function. It replaces the global nonlinear function by a series of
linear subfunctions that are defined in properly partitioned subregions of the
original definition region of the nonlinear function. Many results were obtained
in the last three decades to find more efficient, and complete PWL representations
[3]–[5], [21], [20], [24], [26], [32]–[34].

Classical expressions used to represent PWL functions, called conventional
expressions [2], describe the function region by region and require a large number
of parameters. An improvement to find a more compact expression for PWL func-
tions was obtained for R1 domains in [5]. This realization proved to be canonical;
in the sense that it has the minimum number of parameters for this mapping. On
the other hand, as it fails to represent any arbitrary PWL map, it was extended
in [20] not only for R1 but also for R2 domains. More evidence of the potential
usefulness of PWL representations was obtained in [24], where the form of a
PWL representation for a domain of arbitrary dimension was demonstrated. Also,
in a series of articles [33]–[35], the PWL was studied in the context of nonlinear
system identification.

More recently, in [19] [18], and [29], a systematic way of defining the PWL
representation for arbitrary (continuous) domains in a more compact and efficient
form was introduced. This PWL representation uses the concept of simplicial
partitions of the domain of interest.

We are interested in this article in the particular PWL representation obtained
in [24] only for the R1 domain in order to demonstrate the particular advantage
in terms of computational complexity if compared with the other representations
(conventional, canonical, etc.), with adaptive filtering applications in mind. Of
particular interest is the fact that many physical systems present a special structure
in their models: they can be represented as a linear dynamic filter followed by a
static nonlinearity. This is a classical structure that in the systems theory literature
is called the nonlinear Wiener model [1].

Related to this work, in [23] the researchers proposed the use of a canonical
piecewise linear representation using a structure similar to that discussed in [4].
We call this realization the Lin–Unbehauen piecewise linear (LUPWL) represen-
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Figure 1. A general nonlinear filter.

tation. In addition, in [34] a direct-form PWL was demonstrated to be useful for
nonlinear Wiener modeling, although the PWL function used is rather restricted
and does not seem to be easily generalized for domains different from R1.

We present in this work a CPWL filter, the simplicial canonical piecewise
linear (SPWL) filter, in the context of nonlinear Wiener models aiming to put
in evidence the simple way in which this realization can describe these kind of
models (if compared for example with [34]) and, also, to put in evidence the
advantages of the resulting filter in terms of low complexity due to the reduced
number of parameters (with respect to [23]).

The paper is organized as follows. In Section 2 a brief description of classical
approximations for a nonlinearity is discussed, especially in terms of Volterra
series and CPWL modeling approaches. In Section 3 the SPWL approximation
for the Wiener model is presented and discussed. An LMS-based algorithm for
coefficient updating of the CPWL realization is presented in Section 4. Some
application examples are included in Section 5, mostly to compare the proposed
nonlinear filter with other solutions available. Finally, the conclusions of this work
are presented in Section 6. Due to limitations in space, we do not discuss the non-
parametric approach, mentioned earlier, which allows a best approximation of a
Volterra series without truncation. Details are given in [6]–[9], [31], [32].

2. Nonlinear filter modeling

Figure 1 depicts a general nonlinear filter with x(k) as the input. Typically, the
nonlinear network is approximated by a Volterra structure, a CPWL approxima-
tion, or a neural network. In this section, we discuss briefly the first two ap-
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proaches in order to account for the different alternatives in nonlinear adaptive
filtering.

2.1. Volterra model

The Volterra series model is the most complete model used for nonlinear systems.
The Volterra series expansion of a nonlinear system consists of a nonrecursive
series in which the output signal is related to the input signal as in the following
expression:

y(k) = wo0 +
∞∑

li =0

wo1(l1)x(k − l1) +
∞∑

li =0

∞∑
l2=0

wo2(l1, l2)x(k − l1)x(k − l2) (1)

+ · · · +
∞∑

li =0

∞∑
l2=0

∞∑
l3=0

wo3(l1, l2, l3)x(k − l1) · · · x(k − l3) + · · ·

It is usual to practice the truncation of this representation in two ways: (i) only
N delayed inputs are considered, and (ii) only σ -order nonlinearity is considered.
In this way, the structure given by (1) takes the form

y(k) = wo0 +
N∑

li =0

wo1(l1)x(k − l1) +
N∑

li =0

N∑
l2=0

wo2(l1, l2)x(k − l1)x(k − l2)

+ · · · +
N∑

li =0

N∑
l2=0

· · ·
N∑

lσ =0

woσ (l1, l2, · · · , lσ )x(k − l1) · · · x(k − lσ ),

where woi (l1, l2, . . . , li ) are the coefficients corresponding to σ -order nonlinear-
ity modeled by the truncated Volterra series. These terms are also known as the
Volterra kernels of the system.

One problem with truncated Volterra series is that high-order kernels can be
ill conditioned, leading to stability problems if used as a realization for recursive
identification. Another main drawback related to this model, in order to be applied
in real time problems, is obviously the computational complexity related to the
number of parameters involved. Although different approaches using this model
with specific structures have been studied extensively (see for example [28]),
complexity remains as an aspect to be improved.

To cope with specific modeling aspects, nonlinearities in the states or nonlinear-
ities at the output have been used. They correspond to the known Hammerstein or
Wiener nonlinear models, respectively. Specific aspects of recursive identification
using a nonlinear Wiener model with a fixed (known) PWL nonlinearity were
studied in [33]. In particular, parameter convergence can be obtained for IIR
models in the linear part if the nonlinearity is strictly monotone (i.e., invertible).
In addition, output error convergence for a FIR linear part can be obtained if the
known nonlinearity is monotone [35].
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2.2. CPWL models

The CPWL approach is an approximate representation of a nonlinear function.
It replaces the global nonlinear function by a set of linear subfunctions which
are defined in properly partitioned subregions of the original nonlinear function
domain. A general CPWL function has a general expression [4] given by

f (x(k)) = a + bT x(k) +
σ∑

i=1

ci

∣∣∣αT
i x(k) − βi

∣∣∣ , (2)

where b and αi (i = 1, . . . , σ ) are N -dimensional weight vectors, a and βi

(i = 1, . . . , σ ) are scalar weights, and

x(k) = [x(k), x(k − 1), x(k − 2), . . . , x(k − N + 1)]T (3)

is the input vector. Geometrically, this function divides the input space into re-
gions. For each region, the system is represented by a linear affine model. The
boundaries of the partition of the linear subregions in the input space are deter-
mined by σ hyperplanes (αT

i x(k) = βi for i = 1, . . . , σ ). The conditions for the
uniqueness of a CPWL representation were discussed in [16]. This representation
has found extensive use in the study of nonlinear circuits and systems, e.g., in the
analysis and modeling of nonlinear devices and networks [13]. In spite of that,
these structures can only represent a nonlinearity with domain in R1 [17].

In particular, the LUPWL uses an alternative canonical piecewise linear repre-
sentation that can be described by the following expression:

f (x(k)) = a + bT x(k) +
σ∑

i=1

ci

(∣∣∣αT
i x(k) − 1

∣∣∣ −
∣∣∣αT

i x(k) + 1
∣∣∣) . (4)

It straightforward to verify that the basic modification with respect to the general
CPWL models contemplates now a basis function with a saturation characteristic.

In [17], (2) was extended to a more general class of PWL descriptions. Using
the concept of simplicial partition (a partition with a special structure), a basis
for the representation of any memoryless function in RN is defined in terms of
N nested absolute values. In this form, considering a vector input as in (3), any
nonlinear filter can be described as

y(x(k)) = cT Λ(x(k)), (5)

where the vector function Λ(x(k)) involves the computation of N nested absolute
values that depend on the partition and the input vector. The particular definitions
related to this model will be discussed in Section 3 in the context of a new
nonlinear adaptive filter realization.

Although we are not specifically interested in this work in general RN non-
linearities, this model appears particularly attractive due to its general properties
in terms of function approximation [14] and, especially, for some constructive
results available [18] in terms of computational complexity.
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Figure 2. Adaptive nonlinear filter with nonlinear Wiener structure.

On the other hand, in some applications related to communications and signal
processing, the system could be represented by a nonlinear Wiener model. This
structure is defined by a dynamic linear filter followed by a static nonlinear gain
(the see application examples in [10] and [23]). Using this structure, the complex-
ity of the nonlinearity is strongly simplified. For example, in the Volterra series
case, we should only consider the terms for which l1 = l2 = l3 = · · · = lN = 0.

In the following, we will consider the CPWL description for this application in
particular.

3. Simplicial CPWL filtering

Figure 2 illustrates a nonlinear adaptive scheme where d(k) is the desired output.
We assume that d(k) is an unbiased finite-memory nonlinear function of the input
x(k) and can be approximately represented by a linear filter followed by a static
nonlinear gain function. For the linear part, it is possible to consider an N -order
FIR realization given by

v(k) =
N−1∑
i=0

hi x(k − i) = hT x(k), (6)

where h = [h0 h1 · · · hN−1]T .
In our approach, the CPWL model is the basic structure of the nonlinear filter

realization. The static nonlinear function allows one to describe the output of
the nonlinear filter as y(k) = f (v(k)) : R −→ R. The partition related to
the CPWL approximation, defined by αT

j x = β j , can be easily mapped to a
simplicial partition given by v = β j . Thus, the β j parameters divide the domain
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in equal partitions, with β1 ≤ β2 ≤ · · · ≤ βσ . With these assumptions in mind,
we propose to use the following basis function [16]:


i (v(k)) =
{

1
2 (v(k) − βi + |v(k) − βi |) v ≤ βσ
1
2 (βσ − βi + |βσ − βi |) v > βσ ,

(7)

which results in an SPWL function with a special form given by

f (v(k)) = a +
σ∑

i=1

ci
i (v(k)) (8)

or, in vector form,

f (v(k)) = cT Λ(v), (9)

where

c = [
a c1 c2 . . . cσ

]T

and

Λ(v) =




1

1(v(k))

...


σ (v(k))


 . (10)

From (7) it is clear that the nonlinear gain implicitly includes a saturation behav-
ior.
Replacing (6) in (9), we obtain a closed expression for the proposed nonlinear
filter

y(k) = fs(x(k)) = cT Λ
(

hT x(k)
)

. (11)

A realization of the SPWL filter is depicted in Figure 3. This realization can be
compared with (4) for the LUPWL realization. It is evident from this compar-
ison that the PWL introduced reduces the model complexity because only one
FIR filter is required. In addition, the partitions are simplified because now the
parameters (i.e., the βi ) are specified beforehand. Note that the number of free
parameters in the proposed realization is N + σ + 2, which represents a small
number compared with the (N + 1)(σ + 1) involved in the LUPWL approach
[23]. A typical LUPWL implementation is illustrated in Figure 4.

Also of particular interest for this work is the representation used in [34]. There,
the nonlinear Wiener model was described by a more complete model for the
linear part (an IIR model was used instead). Also, a direct-form PWL function was
used to describe the static nonlinearity. The static nonlinearity was parameterized
contemplating a fixed static gain in order to address possible adaptive control
applications (this fixed static gain seems to be restrictive in order to model general
nonlinear Wiener applications). The output of the nonlinear block is modeled as

yh,q (k) = fw(q, ŷ(k)),
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Figure 3. The Simplicial canonical piecewise linear (SPWL) adaptive filter.

Figure 4. LUPWL realization.

where h and q refer to the parameters of the linear part and nonlinear part, respec-
tively, and ŷ(k) is the output of the linear part. In addition, fw(., .) is a known
function of q and ŷ(k). The PWL function is designed fixing the slope of the
static nonlinearity in one interval Io of the partition, i.e.,

∂

∂ ŷ
fw(q, ŷ(k)) = ko, ŷ(k) ∈ Io,
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where ko is a constant. Note that ∂
∂q̂ fw(q, ŷ(k)) = 0 for ŷ(k) ∈ Io. Also, bias is

allowed where the gain is fixed, i.e.,

fw(q, ŷ(k)) = ko ŷ(k) + fw,o, ŷ(k) ∈ Io.

To describe the model outside Io, the complete q has the form

q = [ fw,−K , . . . , fw,−1, fw,o, fw,1, . . . , fw,K ]T ,

where fw,i , −K ≤ i ≤ K correspond to the values of fw(q, ŷ(k)) at the partition
points. Although the expression for the piecewise approximation is direct, it must
be constructed regarding each partition. This kind of parameterization of the non-
linearity is equivalent to our description in terms of number of parameters (i.e.,
the partition points are fixed). As can be observed, however, its implementation
and description are not compact. It was addressed to certain feedback context
applications where extensions to higher PWL dimensions were not the main con-
cern. Despite that, this parameterization is useful to demonstrate certain properties
related to the new SPWL realization.

4. LMS-based algorithm for the SPWL

In this section, we present basic results related to design of the updating equations
and local convergence characterization of the proposed SPWL realization.

Because a close relationship exists between the proposed SPWL model and that
studied in [34], convergence results will be based on this relationship. Specifically,
the ordinary differential equation (ODE) method [25] can be used.

The objective of a typical LMS algorithm associated to the SPWL model is to
choose the coefficients of the adaptive filter in such a way that the output signal,
y(k), during the period of observation, will match the desired signal as closely as
possible in the LMS error sense (i.e., assuming a misadjustment at convergence).
This minimization process can be used in the nonlinear adaptive filtering case by
adequately reinterpreting the entries.

The standard approach to derive an LMS-based algorithm for the proposed
nonlinear filter is to use the squared estimation error as an estimate of the mean-
square error, i.e.,

J (e(k)) = e2(k) = d2(k) − 2d(k)y(k) + y2(k),

where the adaptive filter output is given by

y(k) = cT Λ
(

hT x(k)
)

.

An LMS-based algorithm can be used to minimize the objective function using
the following equations:

h(k + 1) = h(k) + µhψh(k)e(k) (12)
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Table 1. SPWL adaptive filter algorithm

Definitions:
y(k): SPWL filter output
e(k): error
v(k): linear filter output

Parameters:
M = number of h coefficients
N = number of c coefficients
µh = step size related to h coefficients
µc = step size related to c coefficients

Data: x(k) input vector (M × 1)
d(k) desired response

Initialization
h(0) = 0
c(0) = [−1 1 0 · · · 0 − 1]T

For each k, k = 1, 2, · · ·
v(k) = hT (k)x(k)

y(k) = cT (k)Λ[v]
e(k) = d(k) − y(k)

h(k + 1) = h(k) + µhcT (k) ∂Λ[v]
∂v

x(k)e(k)

c(k + 1) = c(k) + µcΛ[v]e(k)

c(k + 1) = c(k) + µcψc(k)e(k) (13)

for k = 0, 1, . . . , whereψc(k) andψh(k) represent estimates of the gradient vec-
tor of the filter output with respect to the filter coefficients c and h, respectively.

In particular, the respective gradients have the following form:

ψc(k) = Λ (v)

and

ψh(k) =
(

cT ∂Λ(v)

∂v

)
x(k),

where, if [.] j represents the j th component of the vector,[
∂Λ(v)

∂v

]
1

= 0

(14)[
∂Λ(v)

∂v

]
j+1

=
{

1
2

(
1 + sign(v − β j )

)
v ≤ βσ

0 v > βσ

for j = 1, . . . , σ .

The algorithm obtained is summarized in Table 1. The SPWL algorithm can also
be computed using (7) and (14).
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Note here the direct relationship that exists between the parameters of the
SPWL model proposed and those used in [34]. The model proposed in [34] lacks
a compact form. Using Λ(v) to describe the PWL function, the relationship be-
tween both representations, based on (11), can be described by

y(k) =
(

G−1q
)T

Λ
(

hT x(k)
)

, (15)

where

G =




1 1 1 1 · · · 1
0 β2 − β1 β3 − β1 · · · βσ − β1
0 0 β3 − β2 βσ − β2

...
. . .

...

0 0 0 · · · 0 βσ − βσ−1




T

and q includes the PWL parameters of [34]. Clearly, the matrix G, which depends
on the partition, is lower triangular. In addition, because βi − βi−1 > 0, matrix G
is definite positive. Indeed, the nonlinear parameters for both descriptions c and q
are related by c = G−1q . So, both models lead to the same description. Then, this
close relationship indicates that convergence aspects of both algorithms are also
related. Local convergence for general conditions were shown in [34], so similar
results can be obtained for the proposed SPWL filter.

We emphasize here that the new SPWL filter was mainly addressed to allow
the use of generalizations (description of nonlinearities not only in R1) related
to the definition of the basis functions that describe the nonlinearity. A relative
improvement with respect to the approach of [34] is the more compact way to
describe the nonlinearity, even in R1.

4.1. Local convergence

A close relationship exists between the proposed SPWL model and that studied
in [34], so convergence results will be based on this relationship. Specifically, the
ODE method [25] can be used.

The ODE approach is quite general and comes from the field of stochastic
approximation theory. The basic idea is to associate to a discrete parameter adap-
tation algorithm an ODE; in other words, to change the study of convergence
of a stochastic nonlinear equation by the study of stability of the solutions of a
deterministic differential equation. Following this methodology, the convergence
properties of the discrete parameter adaptation algorithm are strongly related to
the stability of the solutions of the differential equation. Two different kinds of
algorithms can be studied in this form: vanishing gain algorithms (i.e., with the
step size µ → 0), mostly oriented to estimation in a stationary environment, and
constant gain algorithms (the kind of interest here), where the step size µ is left
constant in order to contemplate tracking contexts. For this latter case, the ODE
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method guarantees that the adaptation algorithm converges in probability (not
with probability one as in the vanishing gain algorithms).

Consider a generic stochastic gradient algorithm with the form

φ(k + 1) = φ(k) + µe[φ(k), ∇(k,φ(k))],
where φ(k) is the parameter vector, e(k) is the error to be minimized, and ∇(k) is
the estimated gradient of e(k). The notation of e(k) is addressed to put in evidence
that it depends on φ(k) and ∇(k). The ODE associated has the form

∂ϕ(t)

∂t
= f (ϕ), (16)

where the form of f (.) depends on the specific algorithm used. In order to guaran-
tee the ODE association, some conditions must be verified. In our context, these
conditions are related to the input and output signals, the specific algorithm, and
the criteria to be used. Following [34], the input x(k) and output y(k) signals
are considered stochastic stationary processes, and the filters that generate the
signals e(k) and ∇(k) are considered exponentially stable. Then f (.) represents
an average updating direction that can be used to study the convergence properties
of the algorithm. For example, stationary points, ϕ∗, of the generic algorithm can
be obtained by means of the solutions of f (ϕ∗) = 0. In particular, if local conver-
gence is addressed, we can use the indirect method of Liapunov (a linearization
around a stationary point) to perform the study. Then based on a Taylor series
expansion of (16), we construct a related linear differential equation of the form

∂ϕ

∂t
=

[
∂ f (ϕ)

∂ϕ

]
ϕ=ϕ∗

ϕ. (17)

The point ϕ∗ is a stable stationary point of (16) if and only if ϕ = 0 is an
exponentially stable stationary point of (17). Then, this is equivalent to showing
that the eigenvalues of the stability matrix [∂ f/∂ϕ]ϕ∗ have negative real parts. If
the stability matrix is symmetric, its eigenvalues will be real. This is equivalent to
saying that [∂ f/∂ϕ]ϕ∗ is a stability matrix if it is negative definite.

The ODE associated to the LMS-based algorithm presented is related to that
obtained for the approach in [34], where local parameter convergence was stated
for nonlinear Wiener models.

By defining θs = [hT cT ]T and ψs = [ψT
h ψ

T
c ]T , the ODE associated to the

CPWL filter is

∂θs

∂t
= E[ψse(k)]. (18)

Under the basic assumption that the nonlinear model is described by the SPWL
filter (this rather restrictive assumption is usually made in this context [23], [33]),
except for a measurement noise ν(k), it can be easily verified that a stationary
point θ∗

s of the proposed algorithm corresponds to the solution of E[ψse(k)] = 0.
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With local convergence properties in mind, a linearization of (18) in a neigh-
borhood of a stationary point θ∗

s leads to the following expression:

∂θs

∂t
∼= ∂ E[ψse(k)]

∂θs

∣∣∣∣
θ∗

s

(θs − θ∗
s ). (19)

In this way, by defining

Ps(θ
∗
s ) = ∂ E[ψse(k)]

∂θs

∣∣∣∣
θ∗

s

= E

[ (
cT ∂Λ(v)

∂v

)
x

Λ(v)

] [ (
cT ∂Λ(v)

∂v

)
x

Λ(v)

]T
∣∣∣∣∣∣
θ∗

s

,

local convergence can be guaranteed if eigenvalues of Ps(θ
∗
s ) have negative real

part.
By defining now θw = [h q]T and ψw = [ψh ψq ]T , the ODE associated to the

stochastic gradient algorithm of [34] is given by

∂θw

∂t
= E[ψwe(k)], (20)

which linearized in a neighborhood of a stationary point θ∗
w can be rewritten as

∂θw

∂t
∼= ∂ E[ψwe(k)]

∂θw

∣∣∣∣
θ∗

w

(θw − θ∗
w), (21)

where also, to guarantee local convergence, the following matrix was shown to
have eigenvalues with negative real part [34]:

Pw(θ∗
w) = ∂ E[ψwe(k)]

∂θw

∣∣∣∣
θ∗

w

.

Using (15), the following mapping exists between Pw(θ∗
w) and Ps(θ

∗
s ):

Pw(θ∗
w) =

[
I 0
0 (GT )−1

]
Ps(θ

∗
s )

[
I 0
0 G−1

]
.

For a given definition of the partition βi , this defines a congruence transformation
([15], page 7) between both matrices, i.e., if Pw(θ∗

s ) is negative definite, the
same is verified by Ps(θ

∗
s ). As a consequence, the ODE associated to the SPWL

adaptive filter converges, locally, to the stationary point θ∗
s .

Some remarks regarding local convergence aspects are the following:

• Because a bias in the input signal in that form could be contemplated, a
known gain ko for a specific sector Io of the PWL description is important
in [34]. Generically, using a fixed gain ko > 0 in an arbitrary sector Io,
Pw(θ∗

w) can be written as the addition of two matrices, one with contri-
butions of all sectors of the piecewise nonlinearity, and the other with the
contribution associated to the constant sector with gain ko, i.e.,

Pw(θ∗
w) =

[
A B

BT C

]
+

[
Ã 0

0T 0

]
,
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where A = E
[

∂ fw
∂ ŷ xxT ∂ fw

∂ ŷ

T ]
, B = E

[
∂ fw
∂ ŷ x ∂ fw

∂q
T ]

, C = E
[

∂ fw
∂q

∂ fw
∂q

T ]
consider all sectors of the PWL function except Io, and Ã considers matrix
A in Io, all evaluated at a stationary point. Note that both matrices are
symmetric and A < 0 is also symmetric.

• Consider the following lemma: We are given the symmetric matrix

S =
[

F G
GT H

]
,

where F and H are negative definite. Then the following properties are
equivalent: S is negative definite (semidefinite), and F−GT HG is negative
definite (semidefinite).

• The lemma is verified assuming Ã < 0 and B < 0, because A < 0 by
construction, and A + Ã < 0, because both matrices are symmetric. This
leads to Pw(θ∗

w) < 0.
• The condition on Ã is satisfied if generic conditions of persistence of ex-

citation of input signal [25] are verified. In this case we are working with
an FIR model, so the persistence of excitation conditions implies a positive
definite autocorrelation matrix of the input signal Rx = E[xxT ].

• B is related to the PWL description. The condition requires that there should
be a signal energy somewhere in every subregion of the partition of the
PWL model. In other words, the probability density function of the output
must have a lower bound defined by a certain small, but positive, constant.
This condition indicates that, for example, a pseudo random binary signal
is unsuitable as an input signal due to its pointwise amplitude distribution.

• In our description, a constant ko is equivalent to fix an element of c. If Io ∈
(βio−1, βio), then its corresponding gain is k0 = c(2)+c(3)+· · ·+c(io−1).
Then, fixing k0 means setting c(io −1) = k0 −c(2)−c(3)−· · ·−c(io −2).

• It is clear that using an RLS updating equation, we must contemplate addi-
tional conditions in order to guarantee a suitable estimate of the inverse of
the temporal covariance matrix [34].

• Additionally, a more complete linear part can be easily contemplated if
Laguerre or Kautz bases, with fixed poles, are used to extend the linear
FIR in our model [12].

4.2. SPWL filter implementation

The SPWL filter can be implemented directly using the expressions (6) and (9).
The only particularity in the implementation is the evaluation of absolute val-
ues. A typical implementation is depicted in Figure 3. Note that it involves  a
lower number of parameters than the required in the LUPWL approach. This last
realization is illustrated in its simplest form in Figure 4. This is an important
difference because both realizations allow a description of the same systems. As
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previously stated, the main difference between both implementations are that in
the proposed realization we need the implementation of a single FIR filter.

Other variants rather than an LMS-based algorithm can be used to implement
the updating algorithm. The LMS-based algorithm was used mostly to exemplify
the characteristics and convergence of the SPWL description.

A key aspect in the application of the SPWL algorithm is the selection of the
partition βi for i = 1, . . . , σ . Conceptually, the algorithm is formulated for a
fixed set of grid points. First, the interval [β1, βσ ] must coincide well with the
range of the signal v(k), even though the linear part of the nonlinear Wiener
model may be time varying. Other problems may arise with the interior grid point
selection.

The first problem mentioned above is solved selecting the interval [β1, βσ ]
wide enough, based on the excursion of the input signal and the expected vari-
ation of the linear filter parameters. However, due to the bounded behavior of the
nonlinearity, we do not expect a malfunction if the input signal exceeds this range.

Having chosen [β1, βσ ], it remains to determine the interior points. As a general
rule, it is clear that a higher density of points is needed in intervals where the slope
of the nonlinearity changes significantly than in intervals where the behavior is
close to linear.

With respect to the step size, and following the ideas of [23], it is possible to
bound the parameters µh and µc as

1(∑σ+1
i=2 c2

i

)
λmax

> µh > 0, (22)

where λmax is the maximum eigenvalue of Rx , and

1(
1 + ∑σ−1

i=1 (βσ − βi )2
) > µc > 0, (23)

respectively. The simplest initial condition for the linear parameters h can be
assumed to be a null vector and, on the other hand, for the nonlinear parameters
c, they can be chosen to define a unit gain at the static nonlinearity, i.e., c1 = β1,
c2 = 1, and ci = 0 for i �= 0, 1.

Based on a fixed slope sector ko, a simple choice of µc is related to that
performed for an FIR model [10]. However, the choice of µh depends on the
excursion of the signals related to the PWL model. For this reason, it is more
related to the specific nonlinearity modeled. The examples presented in the fol-
lowing section are addressed to clarify this point.

5. Simulation examples

The performance of the SPWL adaptive filter discussed in the previous sections
has been tested using computer simulations for different types of models. Some
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Table 2. Total number of parameters for each algorithm used in the comparisons

Example Volterra FIR LUPWL SPWL

1 3 1 5 5
2 92 8 32 10 (σ = 2)

16 (σ = 8)
3 25 5 15 8 (σ = 2)

13 (σ = 8)
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Figure 5. Input–output characteristic for example 1.

results are summarized in the following three examples, where the simplicial
nonlinear adaptive filter proposed is compared with a linear filter, a Volterra ap-
proach, and the LUPWL realization. In all cases, the choice of the step size factors
was performed to optimize convergence speed. For comparison purposes, the
total number of parameters used in each example for the realizations evaluated
is summarized in Table 2. The examples consider a white noise input, and the
resulting learning curves are the result of 100 averaged squared error runs.

Example 1. The desired output is obtained from a memoryless nonlinear device
with a response composed of an insensitive start region, a linear region, and a
saturation region, as illustrated in Figure 5. The input signal is a Gaussian white
random process with zero mean and variance σ 2

x = 2. The step size parameters
used for the SPWL in this example are µh = 0.005 and µc = 0.05.

This example illustrates the capability of each approach to approximate a given
nonlinearity. Figure 6 depicts the mean-squared error (MSE) learning curves for
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Figure 6. MSE learning curves for Example 1. P − 4 SPWL realization proposed (σ = 4). V − 3
3rd-order Volterra realization. LU − 2 LUPWL realization (σ = 2). L LMS-based FIR filter.

the proposed filter, a Volterra filter of order 3, and the LUPWL approach with
σ = 2.

For this example, the number of parameters is not critical (a static gain). It
could be expected for this example that, due to the lower number of parameters but
similar modeling capabilities, the SPWL filter converges faster than the LUPWL
realization. This behavior can be verified in the computer simulations, where
convergence for the LUPWL realization was not fully achieved. Better modeling
could be obtained with the Volterra filter, but ill-conditioning in this lower-order
case is just apparent. Logically, the FIR model is not able to model the nonlinear
input-output characteristic.

Example 2. In this example, the desired output was obtained using a nonlinear
Wiener model, where [23]

v(k) = 0.06 ∗ x(k) + 0.1 ∗ x(k − 1) + 0.22 ∗ x(k − 2)

+x(k − 3) + 0.27 ∗ x(k − 4) + 0.13 ∗ x(k − 5)

+0.08 ∗ x(k − 6) + 0.07 ∗ x(k − 7).

Also,

y(k) = ev/0.25 − 1

ev/0.25 + 1
,

and x(n) is a unit variance white Gaussian random process. The step size param-
eters used for the SPWL filter in this example are µh = 0.005 and µc = 0.01.

Figures 7 and 8 depict the MSE learning curves for the proposed filter (for
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Figure 7. MSE learning curves for Example 2. P − 8 SPWL realization proposed (σ = 8). P − 2
SPWL realization proposed (σ = 2). V −3 3rd-order Volterra realization. LU −3 LUPWL realization
(σ = 3). L LMS-based FIR filter.
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Figure 8. Detailed MSE learning curves for Example 2.

σ = 2 and σ = 8), an LMS-based linear filter, a Volterra filter of order 3, and the
LUPWL realization with σ = 3.

In this case, the number of parameters is critical. The linear LMS-based filter
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Figure 9. Input–output characteristic for example 3.

has 8 taps. The LUPWL filter uses 32 parameters. The Volterra filter uses 92
coefficients, and the proposed filter uses 16 parameters for the case of σ = 8.

For this complete model, it can be expected that the number of partitions neces-
sary with the SPWL realization will be higher than with the LUPWL filter in order
to obtain a similar convergence speed. This can be verified in the illustrations,
where using only 2 partitions the SPWL does not converge to an MSE similar to
the LUPWL realization. However, increasing the number of partitions (without
increasing noticeably the number of parameters) in the SPWL realization, the
convergence speed is even faster than for the LUPWL filter. In addition, the
Volterra filter, due to the huge number of parameters necessary, has the lowest
convergence speed, and the linear filter the highest MSE floor.

Example 3. Finally, we present the results of simulations with a Hammerstein
model (a memoryless nonlinear subsystem followed by a linear system). The
nonlinear subsystem is illustrated in Figure 9. The corresponding linear part to
complete the model is given by the transfer function: (1−0.7z−1)2(1+0.7z−1)2.

Figure 10 depicts the MSE learning curves of the proposed filter with σ = 8, an
LMS-based linear filter (with 5 taps), a Volterra filter of order 3, and the LUPWL
approach with σ = 2. The step size parameters used for the SPWL filter in this
example are µh = 0.005 and µc = 0.05. Note that in this case the system to be
identified is not in the model set, and as a consequence the modeling capabilities
of the SPWL realization and LUPWL realizations are not equivalent. Then, due to
the higher number of parameters, we expect a better performance of the LUPWL
filter. This can be verified by the illustration, where, even in this rather extreme
case, the performance of the SPWL filter is yet reasonable, and the number of
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Figure 10. MSE learning curves for Example 3. P − 8 SPWL realization proposed (σ = 8). V − 3
3rd-order Volterra realization. LU − 2 LUPWL realization (σ = 2). L LMS-based FIR filter.

parameters is lower than for the other cases. The Volterra filter in this example
shows a considerably ill-conditioned behavior.

6. Conclusions

A nonlinear Wiener structure for nonlinear adaptive filtering was studied in the
context of an SPWL approach with a simplicial partition. The resulting structure
requires fewer parameters than others found in the literature and presents an
excellent convergence rate. The lower computational complexity is related to the
particular partition of the domain chosen, solving the compromise of computa-
tional complexity by exchanging computational complexity (reducing a bank of
FIR filters to only one FIR filter) for a higher number of parameters of design,
i.e., the borders of the simplicial partitions. Although some basic results related
to convergence and modeling capabilities are introduced, further research is being
done to apply this model to more general problems other than the static nonlinear-
ity following a linear filter considered. Neural networks models are of particular
interest from an application point of view.
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