
Chemometrics and Intelligent Laboratory Systems xxx (2012) xxx–xxx

CHEMOM-02521; No of Pages 7

Contents lists available at SciVerse ScienceDirect

Chemometrics and Intelligent Laboratory Systems

j ourna l homepage: www.e lsev ie r .com/ locate /chemolab
Linking GC-MS and PTR-TOF-MS fingerprints of food samples

Luca Cappellin a,b, Eugenio Aprea a, Pablo Granitto c, Ron Wehrens a, Christos Soukoulis a, Roberto Viola a,
Tilmann D. Märk b, Flavia Gasperi a, Franco Biasioli a,⁎
a IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, 1, 38010, S. Michele a/A, Italy
b Institut für Ionenphysik und Angewandte Physik, Leopold~Franzens Universität Innsbruck, Technikerstr. 25, A-6020, Innsbruck, Austria
c CIFASIS, French Argentina International Center for Information and Systems Sciences, UPCAM (France)/UNR-CONICET (Argentina), Bv 27 de Febrero 210 Bis, 2000, Rosario, Argentina
⁎ Corresponding author. Tel.: +39 0461 615187; fax:
E-mail address: franco.biasioli@iasma.it (F. Biasioli).

0169-7439/$ – see front matter © 2012 Elsevier B.V. All
doi:10.1016/j.chemolab.2012.05.008

Please cite this article as: L. Cappellin, et a
(2012), doi:10.1016/j.chemolab.2012.05.00
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 2 December 2011
Received in revised form 28 March 2012
Accepted 11 May 2012
Available online xxxx

Keywords:
PLS
LASSO
Proton transfer reaction-mass spectrometry
Time-of-flight
Prediction
Multivariate correlation
Recently the first applications in food science and technology of the newly available volatile organic
compound (VOC) detection technique proton transfer reaction‐mass spectrometry, coupled with a time
of flight mass analyzer (PTR-TOF-MS), have been published. In comparison with standard techniques such
as GC-MS, PTR-TOF-MS has the remarkable advantage of being extremely fast but has the drawback that com-
pound identification is more challenging and often not possible without further information. In order to better
exploit and understand the analytical information entangled in the PTR-TOF-MS fingerprint and to link it with
SPME/GC-MS analyses we employed two multivariate calibration methods, PLS and the more recent LASSO.
We show that, while in some cases it is sufficient to consider a single PTR-TOF-MS peak in order to predict
the intensity of a SPME/GC-MS peak, in general a multivariate approach is needed. We compare the perfor-
mances of PLS and LASSO in terms of prediction capabilities and interpretability of the model coefficients
and conclude that LASSO is more suitable for this problem. As case study, we compared GC and PTR-MS
data for different matrices, namely olive oil and grana cheese.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Proton transfer reaction-mass spectrometry (PTR-MS) allows the
on-line monitoring of volatile organic compounds (VOCs) with low
detection limit and fast response time [1]. It is considered an essential
tool for environmental chemistry and environmental sciences [2],
which are probably the fields wherein PTR-MS is mostly applied [1].
It has, however, also been applied successfully in medical science
[3] and food science and technology [4], agronomy [5] and genetics
[6]. The rapidity of PTR-MS fingerprints makes it possible to analyse
a great number of samples in a much shorter time than more
established techniques such as GC-MS. In fact, the time required to
characterize a single sample can be reduced of about one hundred
times with the use of PTR-MS in place of GC-MS. The questions arise
whether the two approaches provide comparable or complementary
information and which is the better way to exploit the information
entangled in these two different approaches. On the one hand, it is
well established that compound identification is usually possible
with GC-MS, helped by the availability of commercial mass spectra
libraries (i.e. NISTMass Spectral Database,WileyMass Spectral Libraries)
containing reference electron-impact (EI) spectra for a large number of
compounds. The link between GC-MS data and VOC headspace
+39 0461 650956.
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concentration can then be obtained via a calibration procedure. On the
other hand, with the first realisations of PTR-MS apparatuses, usually
equipped with a quadrupole mass analyser, compound identification is
normally very difficult [7], since usually only the nominal (protonated)
VOC m/z value is measured. Recently a new version of the PTR-MS
based on time-of-flight mass spectrometer has been commercialised:
the PTR-TOF-MS [8]. It is characterized by a larger mass range (up to
400 Th in our settings), a faster acquisition time (0.1 s), and a high
mass resolution (nominally Δm/m up to 8000) [8]. This last improve-
ment, together with an achievable high mass accuracy [7], allows in
many cases the separation of isobaric compounds and strongly enhanced
the possibility of compound identification or, at least, provides the sum
formula of the observed peaks. The further step of identifying the actual
VOCs, although facilitated by the above mentioned ameliorations
remains often still only tentative and relies very much on the
knowledge of the nature of the considered samples to rule out improb-
able isobars. Moreover, the presence of fragments, which are common
to several compounds, often complicates PTR-TOF-MS spectra. In fact,
thanks to its limited collision energy PTR induced fragmentation is
often reduced but it remains an issue especially when complex mix-
tures have to be measured, as it is the case of food samples.

Therefore, the link between PTR-TOF-MS peaks and GC-MS data of
the same sample is generally not obvious, meaning that a one to one
relation between GC-MS and PTR-MS peaks is, in general, not
expected. Sometimes it is possible to connect a single compound
identified by GC to a single PTR-MS peak as it is often the case in
TOF-MS fingerprints of food samples, Chemometr. Intell. Lab. Syst.
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environmental chemistry [1] and has been also used by food scientists
[9–12]. For instance Nestlè laboratories showed that it is, in some
cases, possible to demonstrate by off line analysis that the peak at
m/z=72 (corresponding to the protonated compound) can be used
as a monitor for acrylamide concentration [9]. In a similar way the
technique has been used to quantify furan and methylfuran in differ-
ent matrices [13] or benzene formation in drinking model systems
[10]. However, this is not the case in most situations because of the
presence of residual fragmentation and isobaric compounds. Thus,
the problem of correlating PTR-MS fingerprints with GC-MS indica-
tion cannot be addressed by univariate correlation (one-to-one) but
is, in general, a complex problem of multivariate nature.

PLS (Partial Least Squares) [14] is one of the most popular
multivariate regression methods, especially in the field of chemistry
that also formed its origin. It has shown good performance in a wide
variety of fields and is available in many different software packages
(e.g. [15]). Moreover, it has successfully been applied to problems
similar to ours, e.g. [16,17]. It can be shown that PLS effectively applies
a shrinkage penalty to the regression coefficients in order to regularize
the otherwise underdetermined system of equations — PLS is most
popular in areas where the number of variables regularly exceeds
the number of samples [18,19]. Also, alternatives like Principal
Component Regression [20] and Ridge Regression [21] can be
shown to shrink the regression coefficients [18]. The LASSO (Least
Absolute Shrinkage and Selection Operator) [22] is a relatively
new alternative. It, too, employs shrinkage, but rather than a quadratic
penalty on the coefficient size, it uses the absolute size of the
coefficients. An interesting side effect is that for any given size
of the penalty, only a limited number of coefficients is non-zero. This
allows to utilize LASSO as a variable-selection tool and presents
significant advantages when not only prediction quality is important
but also model interpretation.

In the present work, we employ two efficient multivariate correla-
tion methods, PLS and LASSO, to tackle the problem of the correlation
between PTR-MS and GC-MS assessment of the headspace of
agroindustrial samples. In particular, we concentrate on the ability
of these methods of predicting VOC concentrations, as measured by
GC-MS, starting from PTR-TOF-MS spectra. We compare the perfor-
mance of PLS and LASSO and discuss the interpretation of the model
coefficients on the basis of the PTR-MS fundamentals. As a first case
study we consider a sample set of 72 Trentingrana cheese that have
been produced under controlled cheese-making procedure starting
from milk stored in different conditions. The original goal of the ex-
periment, described in Fabris et al. [23], was to evaluate the effect of
milk storage temperature and collection modality on the final quality
of ripened cheese. As a second case study, the headspace of 56
extravirgin olive oils produced in a pilot scale plant under controlled
conditions is considered. The aim of this study was the characteriza-
tion of a large number of monocultivar olive oils obtained from an
olive tree cultivars collection in Tuscany (Italy).

2. Materials and methods

2.1. GC/SPME-MS

Volatile organic compounds, present in the headspace of food
samples, equilibrated at 40 °C for 30 min before the analysis
(10 min in the case of olive oils), were extracted and pre-
concentrated (30 min) by means SPME (Solid Phase Microextraction)
according to the procedure reported in Endrizzi et al. [24] and were
analysed in a GC interfaced with a quadrupole mass detector which
operates in electron ionisation mode (EI, internal ionisation source;
70 eV) with a scan range from m/z 30 to 300 (GC Clarus 500,
PerkinElmer, Norwalk CT, USA). Separation was achieved on a HP-
Innowax fused-silica capillary column (30 m, 0.32 mm ID, 0.5 μm
film thickness; Agilent Technologies, Palo Alto, CA, USA). Compound
Please cite this article as: L. Cappellin, et al., Linking GC-MS and PTR-
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identification was based on mass spectra matching with the standard
NIST-98/Wiley library and linear retention indices (LRI) of authentic
reference compounds. Further details can be found in [24]. In the
case of olive oils, we refined our results using the R package “xcms”
[25] which allows to analyse the filtered chromatogram for each
nominal mass. Via selecting a suitable fragment in order to estimate
the concentration of a particular compound, we tried to avoid con-
taminations from other compounds of similar retention time but dif-
ferent fragmentation pattern and problems related to detector
saturation. Moreover, our approach allowed to extract the intensity
of some peaks which in the total ion chromatogram were hidden
under the peak of another compound present in larger amount,
while displaying a clear signal in the filtered chromatograms. For
olive oils VOC concentrations were expressed in mg/kg equivalent
of the internal standard 4-methyl-2-pentanol. In the case of grana
cheese the internal standards were 4-methyl-2-pentanone, ethyl
heptanoate and isobutyric acid [24].

2.3. PTR-TOF-MS

Rapid PTR-TOF-MS measurements were performed with a com-
mercial PTR-TOF 8000 instrument supplied by Ionicon Analytik
GmbH, Innsbruck (Austria) [8]. The TOF was operated in V mode.
The sampling time of the TOF spectra was 0.1 ns and the ionisation
conditions were controlled by drift voltage (600 V), drift tempera-
ture (110 °C) and drift pressure (2.11 mbar). The mass resolution
was about 4000 (m/Δm50%). Samples were equilibrated at 40 °C for
30 min in a water bath before the analysis to mimic the GC proce-
dure; they were then measured by direct injection of the headspace
mixture into the PTR-TOF-MS drift tube via a heated (110 °C) peek
inlet for 20 s, allowing to take 20 averaged spectra. All spectra
were corrected for count losses due to the detector dead time [26]
and calibrated in the m/z domain according to [7]. Peak extraction
was performed according to the methodology described in [27].
Normalization of ion counts was performed via the approximated
formula proposed in [28], using a constant reaction rate coefficient
of 2·109 cm3/s [29]. We refer to [23] for further details. Notice
that in the case of VOCs that do not fragment after being ionised,
the method gives an estimation of the VOC concentrations (in
parts per billion by volume or ppbv), provided isomeric compounds
are not interfering [30].

2.4. Statistical analysis

The data set related to the grana cheese experiment consists of
two matrices with 72 rows corresponding to the 72 samples. The
first matrix contains the GC data and has 32 columns corresponding
to the concentrations of the 32 identified compounds, while the
second matrix has 401 columns corresponding to the normalized
intensities of the identified PTR-TOF-MS peaks.

Analogously, the second data set, which refers to the 56 olive oil
measurements, consists of two matrices corresponding to the results
of the GC analyses (56 rows×59 columns) and the one corresponding
to PTR-TOF-MS (56×1053).

In the following, we will denote with X and Y the datasets related
to PTR-TOF-MS and SPME/GC-MS analysis, respectively. The columns
of X will be referred to as PTR-TOF-MS variables while those of Y as
GC-MS variables. The rows of both X and Y will be referred to as
samples. Data pre-processing and multivariate statistical analysis have
been performed employing R packages [15,25,31]. Pre-processing
included taking a log transformation of X and Y in order to get a
more homogeneous distribution of the concentrations values, thus
limiting spurious correlations caused by the presence of few samples
of outlying intensities, that would hinder the subsequent multivariate
analysis. Both matrices were then standardized by setting the mean to
0 and the standard deviation to 1 for all columns.
TOF-MS fingerprints of food samples, Chemometr. Intell. Lab. Syst.
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Table 1
Case study 1: Trentingrana cheeses. Root mean square prediction error for the multi-
variate calibration models PLS and LASSO. In brackets the optimal model parameter
(λ for LASSO and number of components for PLS) is reported.

Compound RMSE

LASSO PLS

Ethyl acetate 0.68 (0.2) 0.64 (2)
2-Methylbutanal 0.99 (0.42) 0.96 (1)
3-Methylbutanal 0.88 (0.35) 0.83 (1)
Ethyl isobutanoate 1.02 (0.46) 0.92 (1)
2-Pentanone 0.51 (0.14) 0.48 (2)
4-Methyl-2-pentanonea 1.02 (0.38) 1.08 (1)
Ethyl butanoate 0.53 (0.18) 0.55 (3)
2-Hexanon 0.47 (0.05) 0.34 (5)
2-Heptanon 0.41 (0.17) 0.42 (3)
3-Methylbutanol 0.46 (0.04) 0.47 (3)
Ethyl hexanoate 0.97 (0.7) 0.84 (1)
2-Octanon 0.33 (0.05) 0.42 (5)
Acetoine 0.46 (0.11) 0.44 (4)
2-Heptanol 0.31 (0.12) 0.42 (4)
2,6-Dimethyl pyrazine 0.6 (0.22) 0.52 (3)
Ethyl heptanoatea 1.01 (0.4) 1.08 (1)
1-Hexanol 0.8 (0.28) 0.74 (4)
2-Nonanone 0.5 (0.11) 0.52 (2)
Ethyl octanoate 0.35 (0.07) 0.33 (4)
Acetic acid 0.93 (0.46) 0.82 (2)
Isobutanoic acida 1.01 (0.39) 1.08 (1)
Ethyl decanoate 0.53 (0.07) 0.42 (4)
Butanoic acid 0.52 (0.17) 0.41 (3)
Isovaleric acid 0.44 (0.16) 0.35 (3)
Valerianic acid 0.28 (0.04) 0.28 (4)
Hexanoic acid 0.43 (0.07) 0.34 (4)
δ-Octalactone 0.96 (0.37) 0.83 (1)
Heptanoic acid 0.33 (0.03) 0.33 (4)
Octanoic acid 0.36 (0.04) 0.34 (4)
δ-Decalactone 0.83 (0.25) 0.79 (1)
Nonanoic acid 0.7 (0.25) 0.62 (2)
Decanoic acid 0.46 (0.07) 0.44 (4)

a Standards for calibration of GC-MS, not added for PTR-TOF-MS measurements.

3L. Cappellin et al. / Chemometrics and Intelligent Laboratory Systems xxx (2012) xxx–xxx
Preliminary insight on the correlation between X and Y variables
was provided by employing standard Pearson correlation. More
sophisticated analyses were carried on by multivariate methods
such as PLS and LASSO. All Y variables were considered separately
in the analyses.

A general linear multivariate model can be written as

Y ¼ XBþ E

where Y is the matrix of dependent variables (the properties to be
predicted), X is thematrix of independent variables (themeasurements
to be used in the prediction), B is thematrix of regression coefficients to
be estimated in the modelling procedure, and E the matrix of residuals.
PLS decomposes both X and Y into latent variables that not only show
high correlations between the two blocks (so that prediction is possi-
ble) but also cover large parts of the variances of X and Y (so that
predictions are stable as well). Note that the shrinking of the coeffi-
cients is not explicitly enforced but results as a property of the algo-
rithm. More details can be found in the literature [14].

The LASSO does use explicit penalization, and the model can be
written as

Y ¼ XBþ lambda Bj j þ E

where the second term is the penalization term using the absolute
values of the coefficients B. |B| signifies the L1 norm of the coeffi-
cients, i.e., the length of the coefficient vector based on the sum of
the absolute coefficient sizes, rather than the sum of the squared
coefficients. Here, the size of the penalty coefficient lambda needs
to be optimized. Again, cross validation is used for this. Note that
it is possible to calculate all models for all possible values of lambda
simultaneously, so that the whole procedure takes almost the same
time as ordinary linear regression.

The complexity optimization of PLS and LASSO models as well as
prediction error estimations were performed via the repeated double
cross validation (rdCV) procedure proposed by Filzmoser and co-
workers [32]. We set the number of segments to 10 in both the
inner (SEGCALIB) and outer (SEGTEST) loop. The rationale behind this
choice is the relatively small number of samples we have for both
grana cheese and olive oil. The number of repetitions (nREP) was set
to 100. We reported the root mean square error (RMSE) for the pre-
processed GC-MS variables as prediction error for both PLS and
LASSO. Such RMSE gives an estimate of the prediction error relatively
to the standard deviation of the compound concentration, providing a
reliable picture of the model prediction performance. For instance, a
RMSE of 1 suggests that the model is unsuitable to predict the
concentration of the selected compound from the corresponding
PTR-TOF-MS fingerprints, the prediction error being about one
standard deviation.

3. Results and discussion

3.1. Model predictions

Table 1 reports the prediction errors, namely root mean square
error (RMSE), provided by rdCV for both PLS and LASSO applied to
the Trentingrana cheese dataset. Although the estimated models
often differ, in general, the two methods provide similar and consis-
tent results. On other datasets PLS and LASSO have been shown to
have different prediction capabilities [33]. In Table 1 compounds
such as 2-octanone, 2-heptanol, ethyl octanoate and most acids
display the lowest prediction errors. This means that, for these
compounds, there exists a close relation between GC peaks and
PTR-MS spectra that the models are able to catch and convert
into prediction capability. For other compounds the RMSE shows
intermediate values, indicating that the prediction is still possible
Please cite this article as: L. Cappellin, et al., Linking GC-MS and PTR-
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but it is not as accurate as in the case of the above-mentioned compounds.
In the case of acetic acid the RMSEs are 0.93 and 0.82 for LASSO and PLS,
respectively, suggesting that the concentration of this compound, for the
grana cheesematrix, is almost unpredictable from the PTR-TOF-MSpeaks.
This holds also true for the olive oil matrix (Table 2). It is worth pointing
out that there are some other compounds whose prediction error is very
close to 1, meaning that the models are unable to predict these GC
variables from X. These compounds are 2-methylbutanal, ethyl iso-
butanoate, ethyl hexanoate and δ-octalactone. The dominant signal for
2-methybutanal is at m/z 69.067 Th corresponding to a generic fragment
C5H9+ that is common to many compounds (aldehydes, C5 alcohols,
1-octen-3-ol and several terpenes) [34]. Ethyl isobutanoate shares
the same fragmentation profile with ethyl butanoate both present
in cheese at similar concentration and shares a fragment with
isobutanoic acid added as internal standard. The dominant signal
of ethyl hexanoate, after protonation, is at mass 145.122 Th, the
same obtained from the protonation of octanoic acid. The latter
one is present in a concentration 20–80 times higher thus interfer-
ing with the possibility to correlate the ethyl hexanoate with PTR-
MS profiling. Therefore, in general, poorly predicted compounds
may be molecules that produce overlapping peaks.

Furthermore, 4-methyl-2-pentanone, ethyl heptanoate and
isobutanoic acid are included among compounds with a prediction
error very close to 1 as well. These compounds are standards that
are introduced into the GC column for calibration purposes but
not added for PTR-MS measurements and therefore no relation is
expected with the PTR-TOF-MS variables. This observation may
thus be seen as mere check of consistency.
TOF-MS fingerprints of food samples, Chemometr. Intell. Lab. Syst.
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Table 2
Case study 2: extravirgin olive oils. Root mean square prediction error for the multivar-
iate calibration models PLS and LASSO. In brackets the optimal model parameter (λ for
LASSO and number of components for PLS) is reported.

Compound RMSE

LASSO PLS

Acetaldehyde 0.63 (0.24) 0.55 (3)
trans-1,3-pentadiene 0.6 (0.26) 0.54 (3)
Ethanol 0.81 (0.34) 0.72 (3)
2-Methylbutanal 1.06 (0.44) 1 (1)
3-Methylbutanal 0.75 (0.23) 0.64 (3)
Benzene 0.74 (0.31) 0.71 (2)
Hydrocarbon (C10H18) 0.53 (0.15) 0.47 (4)
Hydrocarbon (C10H18) 0.52 (0.15) 0.5 (4)
3-Pentanone 0.72 (0.21) 0.58 (3)
3-Ethyl-1,5-octadiene 0.54 (0.09) 0.57 (3)
α-Pinene 1 (0.5) 1.02 (1)
trans-2-hexene 0.45 (0.16) 0.65 (4)
Toluene 0.38 (0.2) 0.79 (4)
3-Ethyl-1,5-octadiene (cis or trans) 0.39 (0.21) 0.46 (3)
Hexanal 1 (0.61) 0.9 (1)
trans-2-pentenal 0.62 (0.19) 0.67 (3)
cis-3-hexenal 0.66 (0.16) 0.58 (3)
1-Penten-3-ol 0.95 (0.5) 0.93 (1)
Limonene 0.65 (0.26) 0.51 (3)
4-Methyl-3-pentanal 1.01 (0.52) 0.96 (1)
3-Methyl-1-butanol+2-methyl-1-butanol 0.58 (0.15) 0.55 (3)
trans-2-hexenal 0.32 (0.1) 0.41 (3)
3-Ethyltoluene 0.46 (0.12) 0.5 (3)
β-cis-Ocimene 0.58 (0.21) 0.67 (3)
β-trans-Ocimene 0.61 (0.25) 0.77 (4)
Styrene 0.32 (0.12) 0.56 (3)
p-Cymene 0.94 (0.45) 0.89 (3)
Hexyl acetate 0.7 (0.3) 0.87 (3)
Perillene 0.38 (0.11) 0.57 (4)
trans-2-penten-1-ol 0.7 (0.22) 0.54 (3)
cis-3-hexenyl acetate 0.46 (0.14) 0.53 (3)
cis-2-penten-1-ol 0.63 (0.22) 0.52 (3)
Hexanol 0.81 (0.32) 0.68 (3)
trans-3-hexen-1-ol 0.7 (0.27) 0.67 (3)
trans-Alloocimene 0.27 (0.06) 0.69 (3)
cis-3-hexen-1-ol 0.12 (0.04) 0.36 (3)
trans-2-hexen-1-ol 0.21 (0.07) 0.55 (4)
Unknown (possibly p-mentha-1,3,8-triene) 0.74 (0.39) 0.86 (4)
Acetic acid 1.01 (0.46) 1.09 (1)
2-Ethyl-1-hexanol 0.6 (0.16) 0.52 (4)
α-Copaene 1.01 (0.44) 0.97 (2)
Benzaldehyde 0.58 (0.17) 0.55 (4)
1-Octanol 0.79 (0.23) 0.61 (4)
Dimethyl sulfoxide 0.68 (0.22) 0.89 (3)
5-Ethyl-2-(5 H)-furanone 0.65 (0.26) 0.59 (3)
Butyrolactone 0.54 (0.22) 0.47 (3)
Cis-β-farnesene 0.95 (0.54) 0.84 (1)
Acetophenone 0.56 (0.21) 0.48 (3)
Nonanol 0.96 (0.21) 0.77 (3)
Eremophilene 1.02 (0.46) 1.04 (1)
5-methyl-4-Hexen-3-one 0.15 (0.04) 0.31 (4)
trans,trans-α-farnesene 0.97 (0.35) 1.13 (1)
Methyl salicylate 0.61 (0.24) 0.72 (2)
Benzyl alcohol 0.68 (0.24) 0.71 (2)
β-Phenylethyl alcohol 0.83 (0.52) 0.79 (2)
Phenol 0.62 (0.19) 0.55 (3)
Heptanoic acid 0.77 (0.34) 0.71 (1)
Nonanoic acid 0.66 (0.31) 0.59 (2)
Benzophenone 0.57 (0.22) 0.49 (3)
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Table 2 reports the RMSE for the prediction of the VOCs identified
by SPME/GC-MS in the headspace of the olive oil samples. Analogously
to the case of Trentingrana cheese, most compounds show a reasonably
good prediction error.

LASSO and PLS provide similar results, with a few exceptions. The
prediction of some compounds was not possible with none of the two
methods. This is the case of 2-methylbutanal, α-pinene, limonene,
3-methyl-1-butanol, 2-methyl-1-butanol, p-cymene, acetic acid,
α-copaene, cis-β-farnesene and eremophilene.
Please cite this article as: L. Cappellin, et al., Linking GC-MS and PTR-
(2012), doi:10.1016/j.chemolab.2012.05.008
In olive oil, the concentration of β-trans-ocimene is more than 20
times higher than that of other isomeric terpenes such as α-pinene,
limonene and β-cis-ocimene and this explains why β-trans-ocimene
is predicted reasonably well by the models while, at the contrary,
α-pinene and limonene are not predicted. The prediction error
found for β-cis-ocimene is probably driven by the correlation that
this compound displays with β-trans-ocimene.

It is worth noting that the chromatographic signal for styrene
(retention time 687 s) is hidden in the tail of the very intense
peak corresponding to trans-2-hexenal at retention time 616 s
whose tail extends till retention time 696 s and the tail of
β-trans-ocimene (Fig. 1). Nevertheless, our peak extraction approach
is able to disentangle the three compoundsmaking use of the different
filtered signals: trans-2-hexenal or β-trans-ocimene have no signifi-
cant fragment at nominal mass 104. Moreover, this hidden peak is
well predicted from the PTR-TOF-MS fingerprint (RMSE 0.32 for
LASSO).

3.2. Model interpretation (examples)

LASSO and PLS are not only prediction tools but may also provide
insight on the relation between GC-MS and PTR-MSmeasurement, for
instance via interpretation of the model coefficients. As an example
we will discuss the cases of trans-2-hexen-1-ol and 3-ethyl-1,5-octa-
diene for the olive oil dataset and those of 3-methylbutanol and
butanoic acid for the grana cheese dataset. Our choice is based on
their different and peculiar behaviours, providing paradigmatic
examples of possible outcomes of the models.

3.2.1. Trans-2-hexen-1-ol (C6H12O)
Trans-2-hexen-1-ol is a product of trans-2-hexenal reduction.

Together the other aliphatic C6 component, it contributes signifi-
cantly to the green odours of olive oils [35].

The protonated mass of this compound is 101.096 Th. In fact cor-
relation analysis shows that trans-2-hexen-1-ol (as measured by
SPME/GC-MS) displays the largest correlation with the normalized
intensities of the PTR-TOF-MS peaks at m/z 101.095 (Pearson correla-
tion 0.97), 102.098 (0.98), 83.086 (0.95), 84.089 (0.95). The mass ac-
curacy reached in PTR-TOF-MS by proper mass calibration [7] allows
thus to identify the 101.095 Th peak as corresponding to C6H13O+

and the 102.098 Th peak to its first order isotope.
Fig. 2A plots the predicted values for trans-2-hexen-1-ol by LASSO

in a Leave-One-Out (LOO) experiment; that is the sample to be
predicted is left out and the remaining samples are used to build
the LASSO model (the optimal parameter is provided by rdCV) to be
employed in the prediction. These unbiased estimations lie very
close to the theoretical line of perfect prediction. It is very interesting
to note that even oil samples having a very different concentration of
trans-2-hexen-1-ol from all other samples are well predicted by the
LASSO models. The model coefficients of the optimal LASSO model
are depicted in Fig. 2B. It is clear that only the PTR variables at m/z
101.095 and 102.098 play a significant role in the model.

The prediction of trans-2-hexen-1-ol by the PLS method provides
worse results (RMSE 0.55, see table 2), as it is shown in Fig. 2C. For
this compound the optimum number of PLS components is 4. The
coefficients of all PTR-TOF-MS variable for the corresponding opti-
mum model are plotted in Fig. 2D. There appears no clear predomi-
nance of two variables as for the LASSO method and the differences
between coefficients are narrower. The coefficients of the PTR vari-
ables 101.095 Th, 83.086 Th, 55.0542 Th (corresponding to the frag-
mentation of trans-2-hexen-1-ol [36]) and their isotopes are
among the most important variables but many others have coeffi-
cients which are non negligible and are not suppressed as in the
case of LASSO. The interpretability of the best PLS model is not as
straightforward as in the case of the LASSO model.
TOF-MS fingerprints of food samples, Chemometr. Intell. Lab. Syst.

http://dx.doi.org/10.1016/j.chemolab.2012.05.008


Time

%

0

100

10.00 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00

10.0 10.20 10.40 10.60 10.80 11.00 11.20 11.40 11.60 11.80 12.00

%

0

100
Scan EI+ 

104 0.40Da
4.00e6

11.45

10.26 11.2910.28

11.49

11.50

11.51

11.55
11.58

11.65

11.30
10.87

11.96

Fig. 1. GC-MS. Chromatogram of an extravirgin olive oil. In the upper panel the single ion scan at m/z 104 is reported showing a peak at 11.45 min (687 s), corresponding to styrene.
In the lower panel, where total ion count spectra is reported, the styrene peak is hidden in the tails of compounds presenting very intense signals.

5L. Cappellin et al. / Chemometrics and Intelligent Laboratory Systems xxx (2012) xxx–xxx
3.2.2. 3-Ethyl-1,5-octadiene (C10H18)
A different case is that of 3-ethyl-1,5-octadiene. This is a common

compound found in the headspace of extravirgin olive oils. It is a
hydrocarbon with molecular form C10H18 and it is supposed to be
one of the pentene dimmers formed during olive oil production [37].

The mass of the protonated form is 139.148 Th. Fig. 3 shows a
mass window of the PTR-TOF-MS spectrum for an olive oil sample
at nominal mass 139. Four peaks were identified and one of them
was associated with the sum formula C10H19

+. The Pearson correlation
between the corresponding PTR variable and 3-ethyl-1,5-octadiene is
rather low (0.60), and there are many other PTR peaks having larger
correlation with 3-ethyl-1,5-octadiene; nevertheless no correlation
exceeds 0.8. A look at Fig. 4 shows that in the optimum model the
largest positive coefficient is remarkably associated with m/z
139.147, i.e. with C10H19

+. In fact in PTR-MS spectra the protonated
form of the compound is expected. In the best model, other variables
have non-negligible coefficients, for instance m/z 135.012 has the
largest negative coefficient.

PLS in this case has similar prediction capabilities to LASSO. The coef-
ficient of the PTR variable corresponding to m/z 139.148 Th is again the
largest, but, as in the case of trans-2-hexen-1-ol, the spreadwith the co-
efficients belonging to the other PTR variable is not marked as for
the LASSO model (Fig. 5). As exemplified by both PLS and LASSO
the choice of a multivariate approach leads to significant improve-
ments in the prediction error, while a monovariate approach would
Fig. 2. Trans-2-hexen-1-ol (olive oil headspace). A,C: Prediction of trans-2-Hexen-1-ol
(as measured by GC/SPME-MS) with LASSO (A) and PLS (C) from the PTR-TOF-MS fin-
gerprint using a LOO procedure (see text). B: LASSO, coefficients of the PTR variables
for the optimal LASSO model. Note that the largest coefficients are associated with
the PTR variables at m/z 101.095 Th and 102.098 Th. D: PLS, coefficients of the PTR vari-
ables for the best PLS model.
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not be suitable in this case. For instance the RMSE of the monovariate
model employing only the most correlated PTR variable to 3-ethyl-1,5-
octadiene would be 0.98.
3.2.3. 3-Methylbutanol (C5H12O)
Isoamyl alcohol, or 3-methylbutanol, is a common compound

often found in ripened cheeses. It originates from branched aliphatic
amino acid leucine that are degraded during cheese ripening to 3-
methylbutanal that is further reduced to 3-methylbutanol [38].

The mass of the protonated form of this compound is 89.0961 Th.
Upon correlation analysis, it is found that 3-methylbutanol displays
the highest correlations with the PTR-TOF-MS peak at estimated
m/z 71.087 Th (Pearson correlation 0.77) and its first order isotope
at m/z 72.090 Th. Such peaks are identified as a general fragment
corresponding to the sum formula C5H11

+. In fact alcohols typically
undergo water loss after protonation in PTR-MS producing a generic
fragment M+–(H2O). Our analysis (not shown) shows that in optimal
LASSO model the largest and most significant coefficient is indeed
associated with the peak at m/z 71.087 Th, while a negative contri-
bution comes from the PTR variable at 69.071 Th, identified as
C5H9

+. This fact could be explained by the observation that its second
order isotope has a m/z very close to 71.087 Th, thus interfering
with the signal of C5H11

+.
The prediction of 3-methylbutanol by the PLS method also provides

good results. The coefficients (not shown) of all PTR-TOF-MS variables
at this minimum do not indicate a clear predominance of a single
variable as for the LASSO method. Moreover, the differences between
coefficients are narrower. The contribution of the 71.087 Th variable
Fig. 3. Extract of a PTR-TOF-MS spectrum for an olive oil sample. The arrow indicates
the position of the peak at m/z 139.149, corresponding to C10H19

+ . The ordinate axis
units are counts per second (cps).
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Fig. 4. 3-Ethyl-1,5-octadiene (olive oil headspace). Model coefficients for LASSO. The
largest coefficients (in absolute value) are associated with m/z 139.147 and m/z
135.012.
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is still among the largest but the interpretability of the coefficients is
compromised.

3.2.4. Butanoic acid (C4H8O2)
During cheese ripening, lipolysis, due to the action of the indigenous

lipases of milk or to the action of microbial lipases, generates many free
fatty acids. At PTR-MS normal conditions (120–140 Td) the main signal
recorded for volatile fatty acids is the protonated molecular mass MH+

followed to the fragment generated from water loss M+(\H2O).
Butanoic acid plays an important role in the flavour of Grana Padano, if
present in a balanced amount, conferring a rancid cheese-like odour
[39]. Themolecularmass of butanoic acid is 88.0524 thus the protonated
form of this compound is 89.0603 Th. As expected, butanoic acid corre-
lateswith the PTR-TOF-MS peak at 89.060 Th (Pearson correlation 0.77).
Other masses, excluding for brevity isotopologues, well correlated with
butanoic acid are recorded at 99.082 Th (0.75), 103.075 Th (0.72),
117.091 Th (0.80), 131.106 (0.70), 135.102 Th (0.78), 145.121 Th
(0.77), 159.135 Th (0.71), 163.132 Th (0.73) and 173.150 Th (0.81).
Themass series 89.06025+z·14.01565 (z=1,2,…) is associated to vola-
tile fatty acids of increasing chain length, the found correlations are inter-
pretable with their common origin from lipase activity. The presence of
these correlations is reflected in the results of the LASSO models. In
fact, in the optimum model, a largely predominant positive coefficient
is associated with m/z 173.150, the reason relying in the above
considerations.

In this case, PLS provides a slightly better prediction performance
than LASSO, the RMSE being 0.41, but the interpretation of the model
coefficients is less clear, because of very large number of variables
with similar coefficients (not shown), many of those not having a
clear connection to butanoic acid.

4. Conclusions

GC-MS is a hyphenated technique widely used in food science analy-
sis; its success is mainly due to the powerful compound identification
and to the reliable quantification. However, it is time consuming and
may be not viable or too expensive if a high number of analyses are
required as in the case of food control (quality control, geographical
origin determination, contaminant screening, label protection). In
these contexts, fingerprinting techniques are becoming more and
Fig. 5. 3-Ethyl-1,5-octadiene (olive oil headspace). Model coefficients for PLS.
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more widespread and in particular direct injection mass spectrometric
fingerprinting. In general, being fingerprinting techniques non-
selective, analytical information is limited. In the case of PTR-MS fin-
gerprinting has been demonstrated in several works the possibility of
retrieving the analytical information entangled in the produced spectra.

We investigated the relationship between the data sets obtained
by these two different headspace techniques: on one side the well
established but time consuming GC-MS and, on the other, the novel
and rapid PTR-TOF-MS. Two multivariate correlation methods (PLS
and LASSO) were used to predict the concentration of the volatile or-
ganic compounds as measured by SPME/GC-MS on the basis of the
rapid PTR-TOF-MS fingerprinting. We tested our methodology on
two data sets related to complex but interesting and economically
relevant food matrixes: olive oil and ripened, parmesan like, cheese.

In the case of some compounds, a one-to-one relation between
GC-MS and a PTR-TOF-MS peaks can be established. Thus, in these
cases, the use of multivariate calibration methods would not be nec-
essary, but, in general, the prediction is more complicated, for exam-
ple, because of the interference of several compounds on the same
PTR-TOF-MS peak, and the use of multivariate methods allows a bet-
ter understanding of the data. They, in fact, consider the analytical infor-
mation contained in thewhole PTR-TOF-MS spectrum (e.g. correlations,
fragmentation or interferences of compounds having closem/z values),
thus improving the information retrievable from the PTR-TOF-MS
fingerprint and bettering the prediction.

We suggest that the calibration methods must be developed for
each food matrix. In fact, it is not realistic, given the complexity of
food samples, to expect that a single calibration model can work in
general. In our investigations, PLS and LASSO provided in general
comparable results in terms of prediction capabilities, nevertheless
LASSO produced more interpretable models.

Even if it was not possible to develop predictive models for all the
GC identified peaks, our results indicate that many relevant com-
pounds can be predicted with sufficient accuracy and the availability
of GC data improves the possibility to disentangle the information in
PTR-TOF-MS data. On the other side, even this point was not
addressed in the present work, it must be pointed out that PTR-
TOF-MS detects compounds that are not easily detectable with a sin-
gle GC-MS analysis [12]. In fact, together with information related to
the compounds detected by GC, PTR-TOF-MS data provides quantita-
tive information, for instance, on low molecular mass important me-
tabolites as methanol, acetaldehyde, ethanol, sulphur compounds and
many others.

In conclusion, the newly available PTR-TOF-MS technique may
complement the results of GC-MS and remarkably reduce of about
100 times the measuring time: our proposal is thus to measure a re-
duced number of samples with GC-MS for a reliable compound iden-
tification and then to extend the analysis to a larger number of
samples by PTR-TOF-MS. A metabolomic approach can follow on a
large samples-set characterized by PTR-TOF-MS fingerprinting and
the possibly relevant markers will then be chemically identified on
the basis of GC analysis.
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