

CERN-PH-EP-2014-094
Submitted to: Physics Letters B

Search for $W Z$ resonances in the fully leptonic channel using $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector

The ATLAS Collaboration

Abstract

A search for resonant $W Z$ production in the $\ell v \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ decay channel using $20.3 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV} p p$ collision data collected by the ATLAS experiment at LHC is presented. No significant deviation from the Standard Model prediction is observed and upper limits on the production cross sections of $W Z$ resonances from an extended gauge model W^{\prime} and from a simplified model of heavy vector triplets are derived. A corresponding observed (expected) lower mass limit of 1.52 (1.49) TeV is derived for the W^{\prime} at the 95% confidence level.

Search for $W Z$ resonances in the fully leptonic channel using $p p$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS Collaboration

Abstract

A search for resonant $W Z$ production in the $\ell \nu \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ decay channel using $20.3 \mathrm{fb}^{-1}$ of $\sqrt{s}=8 \mathrm{TeV} p p$ collision data collected by the ATLAS experiment at LHC is presented. No significant deviation from the Standard Model prediction is observed and upper limits on the production cross sections of $W Z$ resonances from an extended gauge model W^{\prime} and from a simplified model of heavy vector triplets are derived. A corresponding observed (expected) lower mass limit of $1.52(1.49) \mathrm{TeV}$ is derived for the W^{\prime} at the 95% confidence level.

1. Introduction

The search for diboson resonances is an essential complement to the investigation of the source of electroweak symmetry breaking. Despite the compatibility between the properties of the newly discovered particle at the LHC [1-4] with those expected for the Standard Model (SM) Higgs boson, the naturalness problem associated with a light Higgs boson suggests that the SM is likely to be an effective theory valid only at low energies. Extensions of the SM, such as Grand Unified Theories [5], Little Higgs models [6], Technicolor [7-10], more generic Composite Higgs models [11, 12], or models of extra dimensions [13-15], predict diboson resonances at high masses.

This Letter presents a search for resonant $W Z$ production in the fully leptonic decay channels $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}\left(\ell, \ell^{\prime}=e, \mu\right)$ using $20.3 \mathrm{fb}^{-1}$ of $p p$ collision data collected by the ATLAS detector at a centre-of-mass energy of $\sqrt{s}=8 \mathrm{TeV}$. Four possible leptonic decay channels (evee, ev $\mu \mu, \mu v e e$ and $\mu \nu \mu \mu$) are considered. To interpret the results, the extended gauge model (EGM) [16] with a spin-1 W^{\prime} boson is used as a benchmark signal hypothesis. In this model, the couplings of the EGM W^{\prime} boson to the SM particles are identical to those of the W boson, except for its coupling to $W Z$, which is suppressed with respect to the SM $W W Z$ triple gauge coupling by a factor of $\left(m_{W} / m_{W^{\prime}}\right)^{2}$ and entails a linear relationship between the resonance width and mass. In other scenarios, such as for leptophobic W^{\prime} bosons [17-19], the decay to a pair of gauge bosons can be a dominant channel. A narrow W^{\prime} resonance is predicted in the EGM, with an intrinsic decay width that is negligible with respect to the experimental resolutions on the reconstructed $W Z$ invariant mass. Possible interferences between signal and SM backgrounds are assumed to be small and are neglected. Under these assumptions, the final results presented here can be reinterpreted in terms of any narrow spin-1 resonance for a given signal efficiency and acceptance.

A phenomenological Lagrangian for heavy vector triplets (HVT) [20] has recently been introduced, where the couplings
of the new fields to fermions and gauge bosons are defined in terms of parameters. By scanning these parameters the generic Lagrangian describes a large class of models. The triplet field, which mixes with the SM gauge bosons, couples to the fermionic current through the combination of parameters $g^{2} c_{F} / g_{V}$ and to the Higgs and vector bosons through $g_{V} c_{H}$, where g is the $S U(2)_{\mathrm{L}}$ gauge coupling, the parameter g_{V} represents the coupling strength to vector bosons, and c_{F} and c_{H} allow to modify the couplings and are expected to be close to unity in most specific models. Two benchmark models, provided in Ref. [20], are used here as well. In Model A, weakly coupled vector resonances arise from an extension of the SM gauge group [21]. In Model B, the heavy vector triplet is produced in a strongly coupled scenario, for example in a Composite Higgs model [22]. In Model A, the branching fractions to fermions and gauge bosons are comparable, whereas for Model B, fermionic couplings are suppressed.

Direct searches for $W Z$ resonances have been reported by several experiments. The ATLAS collaboration reported on searches for a W^{\prime} resonance using approximately $1 \mathrm{fb}^{-1}$ of data for the $\ell \nu \ell^{\prime} \ell^{\prime}$ channel and $4.7 \mathrm{fb}^{-1}$ of data for the $\ell v j j$ channel, where j is a hadronic jet, both at $\sqrt{s}=7 \mathrm{TeV}$, and excluded an EGM W^{\prime} boson with mass below 0.76 TeV [23] and 0.95 TeV [24] respectively. The advantage of the three-lepton $W Z$ final state over its partial or fully hadronic final state counterparts is its better sensitivity at the lower end of the mass spectrum due to its significantly smaller SM backgrounds and superior mass resolution. The CMS collaboration analysed $5 \mathrm{fb}^{-1}$ of data at $\sqrt{s}=7 \mathrm{TeV}$ in the $\ell \nu \ell^{\prime} \ell^{\prime}$ channel, and EGM W^{\prime} bosons with masses below 1.143 TeV [25] were excluded.

2. The ATLAS detector

The ATLAS detector [26] consists of an inner tracking detector (ID), electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer. The ID is immersed in a 2 T axial magnetic field, generated by a superconducting solenoid, and consists of a silicon pixel detector, a silicon microstrip detector,
and a transition radiation tracker. The ID provides a pseudorapidity coverage of $|\eta|<2.5$. ${ }^{1}$

The EM calorimeters are composed of interspersed lead and liquid argon, acting as absorber and active material respectively, with high granularity in both the barrel $(|\eta|<1.475)$ and endcap up to the end of the tracker acceptance ($1.375<|\eta|<2.5$), and somewhat coarser granularity from $|\eta|=2.5$ to 3.2. The hadronic calorimeter uses steel and scintillator tiles in the barrel region, while the endcaps use liquid argon as the active material and copper as an absorber. The muon spectrometer (MS) is based on three large superconducting air-core toroids arranged with an eight-fold azimuthal coil symmetry around the calorimeters. Three layers of precision tracking chambers, consisting of drift tubes and cathode strip chambers, enable precise muon track measurements in the pseudorapidity range of $|\eta|<2.7$, and resistive-plate and thin-gap chambers provide muon triggering capability in the range of $|\eta|<2.4$.

3. Data and Monte Carlo modelling

The data analysed here were collected by the ATLAS detector at the LHC in $p p$ collisions at $\sqrt{s}=8 \mathrm{TeV}$ during the 2012 data-taking run. Events are selected using a combination (logical OR) of isolated and non-isolated single-lepton (e or μ) triggers. The p_{T} thresholds are 24 GeV for isolated singlelepton triggers and $60(36) \mathrm{GeV}$ for non-isolated single-e (μ) triggers. The requirement that three high- p_{T} leptons are in the final state gives a trigger efficiency above 99.5%. After dataquality requirements are applied, the total integrated luminosity is $20.3 \mathrm{fb}^{-1}$ with an uncertainty of 2.8% [27].

The baseline EGM W^{\prime} signals are generated with PYTHIA 8.162 [28] and the MSTW2008LO [29] parton distribution function (PDF) set. The production cross section times branching fraction (with $W \rightarrow e v, \mu \nu, \tau \nu$, where all τ decays are considered, and $Z \rightarrow e e, \mu \mu)$ are scaled to their theoretical predictions at next-to-next-to-leading order (NNLO) using ZWPROD [30], which are 1.43 pb for $m_{W^{\prime}}=200 \mathrm{GeV}, 4.12 \mathrm{fb}$ for $m_{W^{\prime}}=1 \mathrm{TeV}$, and 0.08 fb for $m_{W^{\prime}}=2 \mathrm{TeV}$. In the $W \rightarrow \tau v$ component, only the leptonic τ decays enter the signal acceptance, albeit slightly and only at high signal mass, whereas the $Z \rightarrow \tau \tau$ component is totally negligible. The intrinsic decay widths of the EGM W^{\prime} scale linearly with $m_{W^{\prime}}$ at high mass and are 5.5 GeV for $m_{W^{\prime}}=200 \mathrm{GeV}, 36 \mathrm{GeV}$ for $m_{W^{\prime}}=1 \mathrm{TeV}$, and 72 GeV for $m_{W^{\prime}}=2 \mathrm{TeV}$. These are significantly less than the experimental resolutions, which have Gaussian widths of the order of 25 GeV for $m_{W^{\prime}}=200 \mathrm{GeV}, 100 \mathrm{GeV}$ for $m_{W^{\prime}}=1 \mathrm{TeV}$, and 180 GeV for $m_{W^{\prime}}=2 \mathrm{TeV}$. MC samples were produced for the EGM W^{\prime} signal from 200 GeV to 400 GeV at intervals of 50

[^0]GeV and from 400 GeV to 2 TeV at intervals of 200 GeV . An interpolation procedure is adopted to obtain the distributions for mass points between 200 GeV and 400 GeV with 25 GeV step size and from 400 GeV to 2 TeV with 50 GeV step size.

Table 1: Overview of the primary MC samples. The backgrounds from misidentified jets are estimated from the data.

Process	Generator	Parton Shower	PDF
W^{\prime}	PYTHIA	PYTHIA	MSTW2008LO
$W Z$	POWHEG-BOX	PYTHIA	
$Z Z$	POWHEG-BOX	PYTHIA	CT10
$Z \gamma$	SHERPA	SHERPA	
$t \bar{t}+W / Z$	MadGraph	PYTHIA	CTEQ6L1

The dominant SM $W Z$ background is modelled by POWHEG-BOX [31], a next-to-leading-order (NLO) event generator combined with the NLO CT10 PDF set [32]. Background events arising from $Z Z$ are modelled with POWHEG-BOX, while those from $t \bar{t}+W / Z$ processes are generated with MadGraph 5.1.4.8 [33] together with the CTEQ6L1 [34] PDF set. All these events are interfaced with PYTHIA, using the AU2 tune [35] for parton showering.

A second category of background arises from photons misidentified as electrons, mainly from $Z \gamma$ production. A photon can be misreconstructed as an electron if it lies close to a charged particle track or if the photon converts to $e^{+} e^{-}$after interacting with the material in front of the calorimeter. This contribution is estimated using simulated $Z \gamma$ MC events generated with SHERPA 1.4.0 [36].

Finally, a third category of background includes all other sources where one or more jets are misidentified as an isolated lepton. The contributions from these fake backgrounds are estimated using a data-driven method as described in Section 6. The contribution from events with only one jet misidentified as an isolated lepton is found to be dominant while those with more than one are found to be negligible. Thus, in this analysis the fake backgrounds are denoted by $\ell \ell^{\prime}+$ jets.

An overview of the major MC samples used is presented in Table 1.

Monte Carlo (MC) events are processed through the full detector simulation [37] using geant4 [38], and their reconstruction is performed with the same software used to reconstruct data events. Correction factors for lepton reconstruction and identification efficiencies are applied to the simulation to account for differences with respect to data. The simulated lepton four-momenta are tuned, via calorimeter energy scaling and momentum resolution smearing, to reproduce the distributions observed in data from leptonic W, Z and J / ψ decays after calibration. Furthermore, additional inelastic $p p$ collision events are overlaid with the hard scattering process in the MC simulation and then reweighted to reproduce the observed average number of interactions per bunch-crossing in data.

4. Object reconstruction

Electron candidates are reconstructed in the region of the EM calorimeter with $|\eta|<2.47$ by matching the calorimeter clusters to the tracks in the ID. The transition region between the barrel and endcap calorimeters ($1.37<|\eta|<1.52$) is excluded. Candidate electrons must satisfy the medium quality definition [39] re-optimized for 2012 data-taking conditions, which is based on a set of requirements on the calorimeter shower shape, track quality, and track matching with the calorimeter cluster. The longitudinal impact parameter z_{0} of the associated track with respect to the primary vertex (PV), which is defined as the vertex with the largest sum of squared transverse momenta of associated tracks, must satisfy $\left|z_{0} \sin \theta\right|<0.5 \mathrm{~mm}$. The transverse impact parameter d_{0} of the associated track must satisfy $\left|d_{0} / \sigma_{d_{0}}\right|<6$, where $\sigma_{d_{0}}$ is the uncertainty on the measurement of d_{0}. To reduce the background due to jets misidentified as electrons, electron candidates are required to be isolated in both the calorimeter and the ID. The isolation requirements are $R_{\text {Cal }}^{\text {iso }}<0.16$ and $R_{\text {ID }}^{\text {iso }}<0.16$, where $R_{\text {Cal }}^{\text {iso }}$ is the total transverse energy recorded in the calorimeters within a cone of size $\Delta R=0.3$ around the lepton direction, excluding the energy of the lepton itself, divided by the lepton E_{T}, and $R_{\mathrm{ID}}^{\text {iso }}$ is the sum of the p_{T} of the tracks in a cone of size $\Delta R=0.3$ around the lepton direction, excluding the track of the lepton, divided by the lepton p_{T}.

Muon candidates are reconstructed within the range $|\eta|<2.5$ by combining tracks in the ID and the MS. Robust reconstruction is ensured by requiring a minimum number of hits in each of the sub-detectors of ID to be associated with the reconstructed ID tracks. Moreover, the muon reconstructed track must satisfy the requirements $\left|z_{0} \sin \theta\right|<0.5 \mathrm{~mm}$ and $\left|d_{0} / \sigma_{d_{0}}\right|<3.5$. The measured momenta in the ID and the MS are required to be consistent with each other by satisfying $\left|(q / p)^{\mathrm{ID}}-(q / p)^{\mathrm{MS}}\right|<5 \sigma$, where $(q / p)^{\mathrm{ID}}$ and $(q / p)^{\mathrm{MS}}$ are the charge q over momentum p in the ID and the MS respectively, and σ is the total uncertainty on the difference between q / p measurements in the ID and the MS. The muon isolation requirements are $R_{\text {Cal }}^{\text {iso }}<0.2$ and $R_{\mathrm{ID}}^{\text {iso }}<0.15$.

When the Z boson has high momentum ($\gtrsim 600 \mathrm{GeV}$), its collimated lepton decay products can be within a cone of size $\Delta R=0.3$. To maintain a high efficiency for high-mass signals the isolation requirements imposed on the leptons are modified to not include in the calculation of $R_{\mathrm{Cal}}^{\text {iso }}$ and $R_{\mathrm{ID}}^{\text {iso }}$ the energy and momenta of any close-by same-flavour leptons. For a $m_{W^{\prime}}=1.4 \mathrm{TeV}$ signal, the relative efficiency gain, with respect to the selection without modifying the isolation requirements, is of the order of 60%. Finally, to reduce photon conversion backgrounds from muon radiation, if a muon and an electron are separated by less than $\Delta R=0.1$ from each other, the electron candidate is discarded.

The missing transverse momentum, with magnitude $E_{\mathrm{T}}^{\text {miss }}$, is the momentum imbalance in the transverse plane. The $E_{\mathrm{T}}^{\text {miss }}$ is calculated from the negative vector sum of the transverse momenta of all reconstructed objects, including muons, electrons, photons and jets, as well as clusters of calorimeter cells not associated with these objects [40].

Attributing the $E_{\mathrm{T}}^{\text {miss }}$ to the transverse component of the neutrino momentum, its longitudinal component $\left(p_{\mathrm{z}}^{v}\right)$ is derived by requiring that the neutrino and the lepton attributed to the W boson decay have an invariant mass equal to the pole mass of the W boson: 80.385 GeV [41]. This constraint results in a quadratic equation with two solutions for p_{z}^{v}. If the solutions are real the one with the smaller absolute value is kept. If the solutions are complex only the real part is kept. In general, about 30% of the events are found to have complex solutions, mainly due to the $E_{\mathrm{T}}^{\text {miss }}$ resolution at the reconstruction level. The invariant mass of the $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ system is reconstructed from the four-vectors of the candidate W and Z bosons and is used as the discriminating variable for the signal.

5. Event selection

The PV of the event must have at least three associated tracks with $p_{\mathrm{T}}>0.4 \mathrm{GeV}$. Candidate $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ events are then required to have exactly three charged leptons with $p_{\mathrm{T}}>25 \mathrm{GeV}$ and $E_{\mathrm{T}}^{\text {miss }}>25 \mathrm{GeV}$. Events are rejected if a fourth lepton is found with $p_{\mathrm{T}}>20 \mathrm{GeV}$. At least one of the three leptons is required to be geometrically matched to an object that fired the trigger. Two opposite-sign same-flavour leptons are required to have an invariant mass ($m_{\ell \ell}$) within 20 GeV of the Z boson pole mass: 91.1875 GeV [42]. If two possibilities exist, the pair that has $m_{\ell \ell}$ closest to the Z boson pole mass is chosen to form the Z candidate. To suppress the $Z+j$ jets background where one jet is reconstructed as an isolated electron, the electrons used in the reconstruction of the W bosons are required to satisfy tighter identification criteria (tight) than those required for the leptons used in the reconstruction of Z boson decays (medium). These stricter criteria are described in Ref. [39].

To improve the sensitivity to resonant signals, events are further required to have $\Delta y(W, Z)<1.5$, where $\Delta y(W, Z)$ is the rapidity ${ }^{2}$ difference between the W and Z bosons. This selection has an efficiency exceeding 82% for all W^{\prime} masses and reaching 94% for $m_{W^{\prime}}=200 \mathrm{GeV}$.

Finally, two signal regions are defined, one more sensitive for high-mass W^{\prime} signals ($m_{W^{\prime}} \gtrsim 250 \mathrm{GeV}$) and the other one for low-mass W^{\prime} signals ($m_{W^{\prime}} \lesssim 250 \mathrm{GeV}$). The high-mass signal region $\left(\mathrm{SR}_{\mathrm{HM}}\right)$ is defined by the additional requirement $\Delta \phi\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)<1.5$, where $\Delta \phi\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)$ is the azimuthal angle between the lepton attibuted to the W candidate decay and the missing transverse momentum vector. Conversely, the lowmass signal region $\left(\mathrm{SR}_{\mathrm{LM}}\right)$ is required to have $\Delta \phi\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)>$ 1.5 , which has high acceptance for low-mass signals.

6. Background estimations

The major backgrounds come from the SM $W Z, Z Z$ and $t \bar{t}+W / Z$ processes with at least three prompt leptons in the final state. A control region dominated by SM $W Z$ events $\left(\mathrm{CR}_{\text {SMwZ }}\right)$ is defined to check the modelling of the MC predictions for these backgrounds. The selection criteria used for

[^1]this region are similar to those for the signal regions except that the requirement on $\Delta y(W, Z)$ is reversed and the requirement on $\Delta \phi\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)$ is removed. The reversal of the $\Delta y(W, Z)$ selection reduces possible signal contamination to negligible levels, assuming previous exclusion results [23, 25]. In total, 323 events are observed in data for all four channels combined and the SM backgrounds are expected to be 298 ± 4 (stat.) ± 26 (syst.) events, where the computation of the systematic uncertainties is detailed in Section 7. Good agreement is also found between data and the SM predictions in the shapes of various kinematical distributions. The $m_{W Z}$ distribution in the SM $W Z$ control region is shown in Fig. 1.

Fig. 1: Distribution of $W Z$ invariant mass ($m_{W Z}$) in the SM $W Z$ control region ($\mathrm{CR}_{\text {SMWZ }}$) for the four $\ell v \ell^{\prime} \ell^{\prime}$ channels combined. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.

Contributions from the $\ell \ell^{\prime}+$ jets background, where at least one lepton originates from hadronic jets, are estimated using a data-driven method. A lepton-like jet is defined as a jet that is reconstructed as a lepton and satisfies all lepton selection criteria but, in the muon case, fails either the calorimeter or track isolation requirement, or, in the electron case, fails the isolation or medium quality requirement but passes a looser set of electron identification quality requirements. A "fake factor", defined as the number of events in which a jet satisfies the nominal lepton selection criteria divided by the number of events in which a jet satisfies the lepton-like jet criteria, is computed. It can be interpreted as the probability that a lepton-like jet is instead reconstructed as a nominal lepton. The fake background is dominated by events with one jet misidentified as an isolated lepton, while contributions from other processes with two or three jets misidentified as isolated leptons are found to be negligible. The fake background is thus estimated by applying the fake factor to a data sample (denoted as "tight+loose sample") selected using all signal selection criteria except for a require-
ment that one of the three leptons must be a lepton-like jet. Since the electron identification and isolation requirements are different for those coming from a Z or a W candidate decay, the electron fake factor is calculated separately for these two cases.

The lepton fake factor is measured in two different data samples: dijet and $Z+$ jets events. In both cases the tag-and-probe method $[43,44]$ is used, but the tag objects are different. The larger number of events within the dijet sample permits a measurement of the dependence of the lepton fake factor on the lepton p_{T} or η. Using the $Z+$ jets sample, on the other hand, leads to a measurement where the kinematic distributions and flavour compositions are closer to that of the signal region, albeit with significantly fewer events allowing only a measurement of the fake factor as a single number.

In the tight+loose sample and the two samples used for the fake-factor measurement, the backgrounds containing prompt leptons are estimated using MC simulation and subtracted from the data samples. These include the production of $Z+j$ jets simulated with ALPGEN 2.14 [45], $t \bar{t}$ with MC@NLO 4.03 [46], $W+$ jets and $W \gamma$ with ALPGEN, as well as the previously mentioned $W Z$, $Z Z, Z \gamma$, and $t \bar{t}+W / Z$ MC samples. The parton showering is modelled by HERWIG/JIMMY [47, 48] for $Z+$ jets, $t \bar{t}, W+$ jets, and $W \gamma$ events. The events remaining after subtraction are thus the expected lepton yields due to misidentified jets.

The dijet sample is selected with one tag jet and one probe jet that are almost back-to-back, with $\Delta \phi>2.5$. The tag jets are normal hadronic jets and the probe jet is required to satisfy the selection criteria for a lepton-like jet or a nominal lepton. The tag jets are reconstructed up to $|\eta|=4.5$ from calorimeter clusters with the anti- k_{t} algorithm [49] using a distance parameter of 0.4 and are calibrated to the hadronic energy scale. They are required to have $p_{\mathrm{T}}>25 \mathrm{GeV}$. For jets with $p_{\mathrm{T}}<50 \mathrm{GeV}$ and $|\eta|<2.4$, the scalar p_{T} sum of the tracks that are associated with the PV and that fall into the jet area must be at least 50% of the scalar p_{T} sum of all tracks falling into the same jet area. The dijet events are selected by single-muon and single-photon triggers, with p_{T} and E_{T} thresholds of 24 and 20 GeV in the muon and electron cases respectively. The muon/electron requirements at the trigger level are looser than the lepton-like jet selection criteria in order to allow for an unbiased measurement of the lepton fake factor. To better mimic the kinematic properties of the signal region, the $E_{\mathrm{T}}^{\text {miss }}$ is required to be higher than 25 GeV , which also helps reject the $Z+$ jets background. The probe jet and the missing transverse momentum are required to have a transverse mass smaller than 40 GeV to suppress the $W+$ jets background. The probe jet is then examined to determine whether it satisfies the nominal lepton selection criteria or those of the lepton-like jet.

The $Z+$ jets sample is defined as having one same-flavour opposite-charge lepton pair consistent with the Z boson decay as the tagged object, and a probe jet that satisfies the selection criteria for a lepton-like jet or a nominal lepton. They are selected by a set of single-lepton and dilepton triggers to improve the trigger efficiency. To suppress the contribution from prompt leptons from $W Z$ production, events are required to have $E_{\mathrm{T}}^{\text {miss }}<25 \mathrm{GeV}$. The probe jet is used for measuring the fake factor.

In both the dijet and $Z+$ jets samples, several sources of systematic uncertainty for the measurement of the fake factors are considered, stemming from the trigger bias, kinematic and flavour differences with respect to the signal region, the $E_{\mathrm{T}}^{\text {miss }}$ threshold requirement, and prompt-lepton subtraction. In the dijet sample, possible biases related to the tag-jet $p_{\text {T }}$ threshold, the transverse mass requirement on the probe jet and $E_{\mathrm{T}}^{\text {miss }}$ system, and the azimuthal angle between the tag jet and the probe jet are also considered. Likewise, additional biases associated with the measurement in the $Z+$ jets sample, such as potential systematic kinematic differences between the low- and high $-E_{\mathrm{T}}^{\text {miss }}$ regions, are also considered. The total uncertainties on the fake factors measured using the dijet sample ranges from 8% to 33% for muons with $p_{\mathrm{T}}<50 \mathrm{GeV}$ and electrons with $p_{\mathrm{T}}<70 \mathrm{GeV}$. Beyond the above p_{T} ranges the fake factors are assigned a $\gtrsim 100 \%$ systematic uncertainty due to the subtraction of prompt backgrounds. The total uncertainties on the fake factors measured using the $Z+$ jets sample range from 27% to 36% for different lepton flavours and definitions. The uncertainties on the fake factors are applied to the fake-background estimate as normalization uncertainties.

The fake factors, which are of the order of 0.1 for both lepton flavours, are measured in both samples. The p_{T}-binned central values from the dijet sample measurement are the ones used in this analysis. The differences between the fake factors from the two samples can be up to $\sim 60 \%$ and are the dominant contributions to the fake-factor uncertainty.

The observed and predicted background event yields are compared in a $\ell \ell^{\prime}+$ jets-enriched control region $\left(\mathrm{CR}_{\ell \ell^{\prime}+\mathrm{jets}}\right)$ where events are required to have the same lepton selection and Z mass requirement as in the nominal signal selection but with $E_{\mathrm{T}}^{\text {miss }}$ less than 25 GeV and the transverse mass of the W candidate less than 25 GeV . In this region, a total of 204 events are observed in data with an SM expectation of 195 ± 4 (stat.) ± 38 (syst.) events. Good agreement is found between observed data and estimated background for various kinematic distributions. The Z candidate invariant mass distribution is shown in Fig. 2.

7. Systematic uncertainties

Relative uncertainties on the expected yields of the dominant $W Z$ background and the EGM W^{\prime} signal with $m_{W^{\prime}}=1 \mathrm{TeV}$ in $\mathrm{SR}_{\mathrm{HM}}$ are shown in Table 2. These uncertainties are representative of those found for other signal masses and background types. The lepton-related ones include uncertainties from the lepton trigger, identification, energy scale, energy resolution, isolation, and impact parameters. The uncertainties on the lepton momentum and jet energy scales and resolutions are propagated to the $E_{\mathrm{T}}^{\text {miss }}$ calculation. Other $E_{\mathrm{T}}^{\text {miss }}$-related uncertainties include those on soft energy deposits due to additional $p p$ collisions, and energy deposits not associated with any reconstructed object. Both the normalization and shape uncertainties are taken into account from the above sources.

Cross-section uncertainties for the dominant SM physics processes are computed via MCFM [50], which provides NLO QCD calculations for diboson production cross sections. The relative

Fig. 2: Z candidate invariant mass distribution in the $\ell \ell^{\prime}+$ jets background control region $\left(\mathrm{CR}_{\ell \ell^{\prime}+\mathrm{jets}}\right)$. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.
uncertainty due to higher-order corrections to the $W Z$ cross sections is 5% [51]. The renormalization and factorization scales are varied by a factor of two relative to their nominal values. The resulting sum in quadrature of the uncertainties in $\mathrm{SR}_{\mathrm{HM}}$ on the $W Z, Z Z$, and $Z \gamma$ cross sections are found to be $6.9 \%, 4.3 \%$, and 5.0% respectively. PDF uncertainties are derived by comparing the predicted cross sections using the NLO CT10 and MSTW PDF as well as the CT10 eigenvector error PDF sets (90% confidence level). The resulting uncertainties are 4.1%, 4.7% and 3.2% for these three processes respectively.

Given that the SM background modelling suffers from low MC event counts in the tail of the $m_{W Z}$ distribution, an extrapolation method is devised to smooth the predicted yields. The method consists in performing two independent χ^{2} fits, one on the $W Z$ background in the region with $m_{W Z}>500 \mathrm{GeV}$, and a second on the sum of all non- $W Z$ backgrounds in the region with $m_{W Z}>300 \mathrm{GeV}$, each with the power-law function $N(x)=c_{0} x^{c_{1}}$, where x is $m_{W Z}$. The overall normalization of the fitted function is set to the expected number of events for each of the two types of background. The non- $W Z$ backgrounds are fitted jointly to gain from their combined size, thus reducing the total uncertainty in the fit, which is computed via the minimization function's Hessian error matrix. Other fitting functions such as an exponential or more elaborate power-law functions were tested, but their shapes were found to be within the uncertainties from the simple power-law function given above. Hence, only the uncertainties from the simple power-law function are considered, and these dominate all other uncertainties in the range $m_{W Z}>800 \mathrm{GeV}$ (e.g. the fit uncertainty reaches 50% of the total expected yields at $m_{W Z}=800 \mathrm{GeV}$, and 400% at $m_{W Z}=1.6 \mathrm{TeV}$).

Additionally, the shapes of the $m_{W Z}$ distribution for the SM

WZ process predicted by POWHEG-BOX and the multi-leg generators SHERPA and MadGraph, as well as NLO generators such as MC@NLO are compared. The largest deviations from the POWHEG-BOX distribution are used as systematic uncertainties on the predicted $m_{W Z}$ shape.

A procedure was developed to obtain the $m_{W Z}$ distribution for any given $m_{W^{\prime}}$ mass point using a functional interpolation between the available $m_{W Z}$ signal templates. These distributions are individually fitted with a crystal ball function using RooFit [52]. The 4 crystal ball parameters are then each fitted as a function of the W^{\prime} mass to build the $m_{W Z}$ template for any intermediate W^{\prime} mass point. All systematic uncertainties are individually interpolated.

Theoretical uncertainties on the EGM W^{\prime} signal yields primarily come from uncertainties on the reconstructed signal's acceptance times efficiency due to the PDF set used. The uncertainties in the signal acceptance due to the PDF are derived from the MSTW eigenvector error sets, and the difference between the predictions of the CT10 and MSTW PDF sets, combined in quadrature.

8. Results

The $m_{W Z}$ spectrum in the two signal regions is scrutinized for excesses of data over the predicted SM backgrounds. A total of 449 WZ candidate events in $\mathrm{SR}_{\mathrm{HM}}$ are observed in the data after applying all event selection criteria, to be compared with the SM prediction of 421 ± 5 (stat. $)_{-39}^{+56}$ (syst.) events. The corresponding numbers in $\mathrm{SR}_{\mathrm{LM}}$ are 617 events selected in the data and 563 ± 5 (stat. $)_{-43}^{+55}$ (syst.) events expected from SM processes. The observed $m_{W Z}$ distribution in $\mathrm{SR}_{\mathrm{HM}}$ is compared to the expected SM background distribution in Fig. 3, which combines all four lepton decay channels. The contributions from hypothetical EGM W^{\prime} bosons with masses of 600,1000 , and 1400 GeV are also shown. A breakdown of the signal, backgrounds, and observed data yields in $\mathrm{SR}_{\mathrm{HM}}$ is shown in Table 3 for each individual channel and also for all four channels combined. The $m_{W Z}$ distribution in $\mathrm{SR}_{\mathrm{LM}}$ is shown in Fig. 4.

The $m_{W Z}$ distribution is used to build a binned log-likelihood ratio (LLR) test statistic [53]. The systematic uncertainties are represented by nuisance parameters for both the backgrounds and signals. Confidence levels (CL) for the signal-plus-background hypothesis $\left(\mathrm{CL}_{\mathrm{s}+\mathrm{b}}\right)$ and background-only hypothesis $\left(\mathrm{CL}_{\mathrm{b}}\right)$ are computed by integrating the LLR distributions obtained from simulated pseudo-experiments using Poisson statistics.

To check the consistency between the observed data and expected SM backgrounds, the p-value, defined as $1-\mathrm{CL}_{\mathrm{b}}$, for a background fluctuation to give rise to an excess at least as large as that observed in data is computed. The obtained p-values are reported in Table 4 for the signal hypothesis of a W^{\prime} particle with mass from 200 GeV to 2 TeV . The lowest local p-value probability is found to be 8% for the 375 GeV resonance mass hypothesis, equivalent to a 1.75σ local excess, indicating that no significant excess is observed.

In the modified frequentist approach [54], the 95\% CL excluded cross section is computed as the cross section for which

Fig. 3: Observed and predicted $W Z$ invariant mass ($m_{W Z}$) distribution for events in the high-mass signal region $\left(\mathrm{SR}_{\mathrm{HM}}\right)$. An extrapolation of the backgrounds to the very-high-mass region was performed using a power-law function to fit for the SM $W Z$ and the sum of all other backgrounds separately. Predictions from W^{\prime} samples with masses of $600 \mathrm{GeV}, 1000 \mathrm{GeV}$ and 1400 GeV are also shown, stacked on top of the expected backgrounds. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.

Fig. 4: Observed and predicted $W Z$ invariant mass $\left(m_{W Z}\right)$ distribution for events in the low-mass signal region $\left(\mathrm{SR}_{\mathrm{LM}}\right)$. Predictions from a W^{\prime} sample with mass of 200 GeV are also shown. The W^{\prime} curve is scaled by $1 / 10$ for better display. The uncertainty bands upon the expected background include both the statistical and systematic uncertainties in the MC simulation and the fake-background estimation added in quadrature.

Table 2: Relative uncertainties in the expected yields for the SM $W Z$ background and the EGM W^{\prime} signal with $m_{W^{\prime}}=1 \mathrm{TeV}$ in the high-mass signal region (SR ${ }_{\mathrm{HM}}$). The renormalization and factorization scales, together with the PDF uncertainties on the fiducial cross section are included under theoretical uncertainty for SM $W Z$ background. For EGM W^{\prime} signal, the theoretical uncertainty stands for the effects of the scale and PDF uncertainties, added in quadrature, on its acceptance. Shape-related uncertainties are not included here. Similar results are found in the low-mass signal region $\left(\mathrm{SR}_{\mathrm{LM}}\right)$.

Uncertainty	SM $W Z$				EGM $W^{\prime}\left(m_{W^{\prime}}=1 \mathrm{TeV}\right)$			
sources	$e v e e$	$\mu v e e$	$e v \mu \mu$	$\mu v \mu \mu$	evee	$\mu v e e$	$e v \mu \mu$	$\mu \nu \mu \mu$
MC statistics	2.7%	2.0%	2.0%	2.2%	2.5%	2.5%	2.5%	2.5%
Lepton-related	3.1%	1.8%	1.8%	1.9%	3.7%	2.6%	2.1%	2.4%
$E_{\mathrm{T}}^{\text {miss_related }}$	2.8%	1.9%	2.6%	1.7%	1.1%	0.4%	0.4%	0.4%
Luminosity	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%	2.8%
Theory	9.5%	9.5%	9.5%	9.5%	0.6%	0.5%	0.2%	0.2%

Table 3: The estimated background yields, the observed number of data events, and the predicted signal yield for a set of W^{\prime} resonance masses in the high-mass signal region $\left(\mathrm{SR}_{\mathrm{H}}\right)$.

	evee	$\mu v e e$	$e v \mu \mu$	$\mu v \mu \mu$	Combined
Backgrounds:					
$W Z$	$56.5 \pm 1.5 \pm 6.1$	$68.6 \pm 1.4 \pm 7.0$	$70.1 \pm 1.4 \pm 7.2$	$89.8 \pm 2.0 \pm 9.1$	$285 \pm 3 \pm 29$
$Z Z$	$8.7 \pm 0.1 \pm 0.9$	$8.7 \pm 0.2 \pm 0.8$	$11.7 \pm 0.2 \pm 1.3$	$11.6 \pm 0.2 \pm 1.1$	$40.7 \pm 0.4 \pm 3.9$
$Z \gamma$	$6.4 \pm 0.8 \pm 1.5$	<0.05	$8.1 \pm 0.9 \pm 1.2$	<0.05	$14.5 \pm 1.2 \pm 2.2$
$t \bar{t}+W / Z$	$2.5 \pm 0.1 \pm 0.8$	$3.2 \pm 0.1 \pm 1.0$	$2.6 \pm 0.1 \pm 0.8$	$3.3 \pm 0.1 \pm 1.0$	$11.6 \pm 0.2 \pm 3.5$
$\ell \ell^{\prime}+$ jets	$12.7 \pm 1.0_{-5.6}^{+8.9}$	$19 \pm 2_{-4}^{+11}$	$14 \pm 1_{-7}^{+13}$	$23 \pm 2_{-7}^{+15}$	$69 \pm 3_{-24}^{+47}$
Sum of Backgrounds	$87 \pm 2_{-9}^{+11}$	$100 \pm 2_{-8}^{+13}$	$107 \pm 2_{-11}^{+15}$	$128 \pm 3_{-12}^{+18}$	$421 \pm 5_{-39}^{+56}$
Data	99	90	136	124	449
Signals:					
$W^{\prime} \rightarrow W Z\left(M\left(W^{\prime}\right)=600 \mathrm{GeV}\right)$	$54.2 \pm 1.6 \pm 2.7$	$62.2 \pm 1.7 \pm 3.1$	$59.9 \pm 1.7 \pm 3.0$	$68.2 \pm 1.8 \pm 3.4$	$244 \pm 3 \pm 12$
$W^{\prime} \rightarrow W Z\left(M\left(W^{\prime}\right)=1000 \mathrm{GeV}\right)$	$7.1 \pm 0.2 \pm 0.4$	$7.4 \pm 0.2 \pm 0.4$	$7.1 \pm 0.2 \pm 0.4$	$7.1 \pm 0.2 \pm 0.4$	$28.6 \pm 0.4 \pm 1.3$
$W^{\prime} \rightarrow W Z\left(M\left(W^{\prime}\right)=1400 \mathrm{GeV}\right)$	$1.3 \pm 0.1 \pm 0.1$	$1.3 \pm 0.1 \pm 0.1$	$1.3 \pm 0.1 \pm 0.1$	$1.2 \pm 0.1 \pm 0.1$	$5.1 \pm 0.1 \pm 0.2$

CL_{s}, defined as the ratio $\mathrm{CL}_{\mathrm{s}+\mathrm{b}} / \mathrm{CL}_{\mathrm{b}}$, is equal to 0.05 . For the mass points above 400 GeV , only the high-mass signal region is used in the calculation by statistically combining all lepton decay channels. For the mass points below or equal to 400 GeV , the two signal regions are further combined to maximize the sensitivity of the search.

Fig. 5 presents the 95% CL upper limits on $\sigma(p p \rightarrow X) \times$ $\mathrm{B}(X \rightarrow W Z)$ as a function of the signal resonance mass, where X stands for the signal resonance, together with the theoretical cross sections of the EGM W^{\prime} and HVT benchmark models. The latter cross sections are calculated via the web interface [55] provided by the authors of Ref. [20]. The exclusion region in parameter space $\left\{\left(g^{2} / g_{V}\right) c_{F}, g_{V} c_{H}\right\}$ is shown in Fig. 6. The fermion coupling c_{F} was set to the same value for quarks and leptons. The couplings $c_{V V V}, c_{V V H H}$ and $c_{V V W}$, which involve vertices with more than one heavy vector boson and which have negligible effect on the cross section, were set to zero. Table 4 presents the expected and observed limits for a selected set of signal mass points as well as the EGM W^{\prime} signal acceptance A and correction factor C. The acceptance A is defined as the number of generated events found within the fiducial region at particle level divided by the total number of generated events, while C is defined as the number of reconstructed events passing the nominal selection requirements divided by the number of generated events within the fiducial region at particle level. The fiducial region selection criteria consist of the same kinematic selections (lepton p_{T}, lepton η, Z boson mass, $E_{\mathrm{T}}^{\text {miss }}, \Delta y(W, Z)$ and $\left.\Delta \phi\left(\ell, E_{\mathrm{T}}^{\text {miss }}\right)\right)$ and lepton isolation requirements as in the nominal selections. Particle level refers to particle states that stem from the hard scatter, including those that are the product of hadronization, but before their interaction with the detector. Table 5 presents the 95% CL expected and observed lower limits on the EGM W^{\prime} boson mass for each decay channel and their combination. The observed (expected) exclusion limit on the EGM W^{\prime} mass is found to be $1.52(1.49) \mathrm{TeV}$, and the limits in each channel are shown in Table 5. The simulated HVT resonances are found to have kinematic distributions similar to those of the W^{\prime} and thus have similar acceptances to the EGM model. The corresponding observed (expected) limits for the $A\left(g_{V}=1\right), A\left(g_{V}=3\right)$, and $B\left(g_{V}=3\right)$ HVT resonances from Ref. [20] are 1.49 (1.45) TeV, 0.76 (0.69) TeV, and 1.56 (1.53) TeV respectively. In Fig. 5, the HVT benchmark model curves are not shown for low resonance mass where the models do not apply.

Table 5: Expected and observed lower mass limits at 95\% CL in TeV for the EGM W^{\prime} boson in the evee, ev $\mu \mu, \mu v e e, \mu \nu \mu \mu$ channels as well as the four channels combined.

	Excluded EGM W^{\prime} lower mass [TeV]				
	$e v e e$	$\mu v e e$	$e v \mu \mu$	$\mu \nu \mu \mu$	combined
Expected	1.21	1.16	1.17	1.16	1.49
Observed	1.20	1.19	1.06	1.17	1.52

Fig. 5: The observed 95\% CL upper limits on $\sigma(p p \rightarrow X) \times \mathrm{B}(X \rightarrow W Z)$ as a function of the signal mass m, where X stands for the signal resonance. The expected limits are also shown together with the ± 1 and ± 2 standard deviation uncertainty bands. Both the expected and observed upper limits assume the EGM W^{\prime} signal acceptance times efficiency as presented in Table 4. Theoretical cross sections for the EGM W^{\prime} and the HVT benchmark models are also shown. The uncertainty band around the EGM W^{\prime} cross-section line represents the theoretical uncertainty on the NNLO cross-section calculation using ZWPROD [30].

Fig. 6: Observed 95% CL exclusion contours in the HVT parameter space $\left\{\left(g^{2} / g_{V}\right) c_{F}, g_{V} c_{H}\right\}$ for resonances of mass $1 \mathrm{TeV}, 1.5 \mathrm{TeV}$ and 2 TeV . Also shown are the benchmark model parameters $A_{\left(g_{V}=1\right)}$ (circle) and $A_{\left(g_{V}=3\right)}$ (square) and $B_{\left(g_{V}=3\right)}$ (triangle).

Table 4: The expected and observed 95% CL upper limits on the production cross section of narrow resonances decaying to $W Z$ as a function of their mass. The high-mass signal region $\left(\mathrm{SR}_{\mathrm{HM}}\right)$ and low-mass signal region ($\mathrm{SR}_{\mathrm{LM}}$) fiducial acceptances at particle level (A) and correction factors (C) for a EGM W^{\prime} as implemented in PYTHIA are also given. $\mathrm{SR}_{\mathrm{LM}}$ was not used in setting the limits for the mass points beyond 400 GeV due to their very low acceptances. Errors shown are statistical. The p-value, defined as $1-\mathrm{CL}_{\mathrm{b}}$, is also shown for each mass point in the last column.

$\begin{gathered} \hline m_{W^{\prime}} \\ {[\mathrm{GeV}]} \end{gathered}$	Excluded $\sigma \times \mathrm{B}$ [fb]		$\begin{gathered} \hline \hline \mathrm{SR}_{\mathrm{HM}} \\ A / C \end{gathered}$	$\begin{gathered} \hline \hline \mathrm{SR}_{\mathrm{LM}} \\ A / C \end{gathered}$	p-value
	Expected	Observed			
200	2613	3182	$0.025 \pm 0.001 / 0.75 \pm 0.05$	$0.135 \pm 0.003 / 0.57 \pm 0.02$	0.36
250	1902	1853	$0.111 \pm 0.002 / 0.55 \pm 0.02$	$0.070 \pm 0.002 / 0.80 \pm 0.03$	0.48
300	751	1195	$0.202 \pm 0.003 / 0.57 \pm 0.01$	$0.024 \pm 0.001 / 1.42 \pm 0.07$	0.22
350	427	894	$0.269 \pm 0.004 / 0.61 \pm 0.01$	$0.0093 \pm 0.0006 / 2.5 \pm 0.2$	0.094
375	330	670	$0.29 \pm 0.01 / 0.62 \pm 0.02$	$0.007 \pm 0.001 / 2.9 \pm 0.6$	0.080
400	281	526	$0.311 \pm 0.005 / 0.63 \pm 0.01$	$0.0048 \pm 0.0005 / 3.3 \pm 0.4$	0.094
600	90	115	$0.426 \pm 0.006 / 0.68 \pm 0.01$		0.29
800	52	40	$0.475 \pm 0.006 / 0.68 \pm 0.01$		0.71
1000	38	33	$0.505 \pm 0.007 / 0.68 \pm 0.01$		0.59
1200	31	24	$0.526 \pm 0.007 / 0.66 \pm 0.01$		0.71
1400	25	21	$0.530 \pm 0.007 / 0.66 \pm 0.01$	not used	0.81
1600	23	21	$0.533 \pm 0.007 / 0.63 \pm 0.01$		0.83
1800	23	21	$0.544 \pm 0.007 / 0.60 \pm 0.01$		0.82
2000	24	22	$0.535 \pm 0.007 / 0.57 \pm 0.01$		0.85

9. Conclusion

A search for resonant $W Z$ diboson production in the fully leptonic channel has been performed with the ATLAS detector, using $20.3 \mathrm{fb}^{-1}$ of $p p$ collision data collected at $\sqrt{s}=8 \mathrm{TeV}$ at the LHC. No excess is found in data compared to the SM expectations. Stringent limits on the production cross section times $W Z$ branching ratio are obtained as a function of the resonance mass for a W^{\prime} arising from an extended gauge model and decaying to WZ. A corresponding observed (expected) mass limit of $1.52(1.49) \mathrm{TeV}$ is derived for the W^{\prime}.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal;

MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

[1] Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 129. arXiv:1207.7214, doi:10.1016/j.physletb.2012.08.020.
[2] Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716 (2012) 30-61. arXiv:1207.7235, doi:10.1016/j.physletb.2012.08.021.
[3] Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B726 (2013) 120-144. arXiv:1307.1432, doi:10.1016/j.physletb.2013.08.026.
[4] Study of the Mass and Spin-Parity of the Higgs Boson Candidate Via Its Decays to Z Boson Pairs, Phys. Rev. Lett. 110 (2013) 081803. arXiv:1212.6639, doi:10.1103/PhysRevLett.110.081803.
[5] P. Langacker, R. W. Robinett, J. L. Rosner, New Heavy Gauge Bosons in $p p$ and $p \bar{p}$ Collisions, Phys. Rev. D30 (1984) 1470. doi:10.1103/PhysRevD.30.1470.
[6] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson, The littlest Higgs, JHEP 07 (2002) 034. arXiv:hep-ph/0206021.
[7] K. Lane, S. Mrenna, The Collider phenomenology of technihadrons in the technicolor straw man model, Phys. Rev. D67 (2003) 115011. arXiv:hep-ph/0210299, doi:10.1103/PhysRevD.67.115011.
[8] E. Eichten, K. Lane, Low-scale technicolor at the Tevatron and LHC, Phys. Lett. B669 (2008) 235-238. arXiv:0706.2339, doi:10.1016/j.physletb.2008.09.047.
[9] F. Sannino, K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D71 (2005) 051901. arXiv:hep-ph/0405209, doi:10.1103/PhysRevD.71.051901.
[10] A. Belyaev, et al., Technicolor Walks at the LHC, Phys. Rev. D79 (2009) 035006. arXiv:0809.0793, doi:10.1103/PhysRevD.79.035006.
[11] K. Agashe, R. Contino, A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B719 (2005) 165-187. arXiv:hep-ph/0412089, doi:10.1016/j.nuclphysb.2005.04.035.
[12] G. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 0706 (2007) 045. arXiv:hep-ph/0703164, doi:10.1088/1126-6708/2007/06/045.
[13] L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370-3373. arXiv:hep-ph/9905221, doi:10.1103/PhysRevLett.83.3370.
[14] H. Davoudiasl, J. L. Hewett, T. G. Rizzo, Bulk gauge fields in the Randall-Sundrum model, Phys. Lett. B473 (2000) 43-49. arXiv:hep-ph/9911262, doi:10.1016/S0370-2693(99)01430-6.
[15] C. Csaki, C. Grojean, H. Murayama, L. Pilo, J. Terning, Gauge theories on an interval: Unitarity without a Higgs, Phys. Rev. D69 (2004) 055006. arXiv:hep-ph/0305237, doi:10.1103/PhysRevD.69.055006.
[16] G. Altarelli, B. Mele, M. Ruiz-Altaba, Searching for new Heavy Vector Bosons in $p \bar{p}$ Colliders, Z. Phys. C45 (1989) 109. doi:10.1007/BF01556677.
[17] K. Babu, C. F. Kolda, J. March-Russell, Leptophobic U(1)'s and the $\mathrm{R}(b)-\mathrm{R}(c)$ crisis, Phys. Rev. D54 (1996) 4635-4647. arXiv:hep-ph/9603212, doi:10.1103/PhysRevD.54.4635.
[18] T. G. Rizzo, Gauge kinetic mixing and leptophobic Z^{\prime} in $\mathrm{E}(6)$ and SO(10), Phys. Rev. D59 (1999) 015020. arXiv:hep-ph/9806397, doi:10.1103/PhysRevD.59.015020.
[19] J. Hewett, T. Rizzo, Dissecting the Wjj Anomaly: Diagnostic Tests of a Leptophobic Z'arXiv:1106.0294.
[20] D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer, Heavy Vector Triplets: Bridging Theory and DataarXiv:1402.4431.
[21] V. D. Barger, W.-Y. Keung, E. Ma, A Gauge Model With Light W and Z Bosons, Phys.Rev. D22 (1980) 727. doi:10.1103/PhysRevD.22.727.
[22] R. Contino, D. Marzocca, D. Pappadopulo, R. Rattazzi, On the effect of resonances in composite Higgs phenomenology, JHEP 1110 (2011) 081. arXiv:1109.1570, doi:10.1007/JHEP10 (2011) 081.
[23] Search for resonant $W Z$ production in the $W Z \rightarrow \ell \nu \ell^{\prime} \ell^{\prime}$ channel in $\sqrt{s}=$ $7 \mathrm{TeV} p p$ collisions with the ATLAS detector, Phys. Rev. D85 (2012) 112012. arXiv:1204.1648, doi:10.1103/PhysRevD.85.112012.
[24] Search for resonant diboson production in the lvjj decay channels with the ATLAS detector, Phys. Rev. D87 (2013) 112006. arXiv:1305.0125, doi:10.1103/PhysRevD.87.112006.
[25] Search for a W^{\prime} or Techni- ρ Decaying into $W Z$ in $p p$ Collisions at $\sqrt{s}=7 \mathrm{TeV}$, Phys. Rev. Lett. 109 (2012) 141801. arXiv:1206.0433, doi:10.1103/PhysRevLett.109.141801.
[26] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003. doi:10.1088/1748-0221/3/08/S08003.
[27] Improved luminosity determination in $p p$ collisions at $\sqrt{s}=7 \mathrm{TeV}$ using the ATLAS detector at the LHC, Eur. Phys. J. C73 (2013) 2518. arXiv:1302.4393, doi:10.1140/epjc/s10052-013-2518-3.
[28] T. Sjostrand, S. Mrenna, P. Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852-867. arXiv:0710.3820, doi:10.1016/j.cpc.2008.01.036.
[29] A. Martin, W. Stirling, R. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C63 (2009) 189-285. arXiv:0901.0002, doi:10.1140/epjc/s10052-009-1072-5.
[30] R. Hamberg, W. van Neerven, T. Matsuura, A Complete calculation of the order $\alpha-s^{2}$ correction to the Drell-Yan K factor, Nucl. Phys. B359 (1991) 343-405. doi:10.1016/0550-3213 (91) 90064-5.
[31] S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 1006 (2010) 043. arXiv:1002.2581,
doi:10.1007/JHEP06(2010) 043.
[32] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, C.-P. Yuan, New parton distributions for collider physics, Phys. Rev. D82 (2010) 074024. arXiv:1007.2241, doi:10.1103/PhysRevD.82.074024.
[33] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5 : Going Beyond, JHEP 1106 (2011) 128. arXiv:1106.0522, doi:10.1007/JHEPO6(2011) 128.
[34] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D78 (2008) 013004. arXiv:0802.0007, doi:10.1103/PhysRevD.78.013004.
[35] Summary of ATLAS Pythia 8 tunes, Tech. Rep. ATL-PHYS-PUB-2012-003, CERN, Geneva (Aug 2012).
[36] J. Archibald, et al., Simulation of photon-photon interactions in hadron collisions with SHERPA, Nucl. Phys. Proc. Suppl. 179-180 (2008) 218225. doi:10.1016/j.nuclphysbps.2008.07.027.
[37] The ATLAS Simulation Infrastructure, Eur. Phys. J. C70 (2010) 823-874. arXiv:1005.4568, doi:10.1140/epjc/s10052-010-1429-9.
[38] S. Agostinelli, et al., GEANT4: A Simulation toolkit, Nucl.Instrum.Meth. A506 (2003) 250-303. doi:10.1016/S0168-9002(03) 01368-8.
[39] Electron reconstruction and identification efficiency measurements with the ATLAS detector using the 2011 LHC proton-proton collision dataarXiv:1404.2240.
[40] Performance of Missing Transverse Momentum Reconstruction in Proton-Proton Collisions at 7 TeV with ATLAS, Eur. Phys. J. C72 (2012) 1844. arXiv:1108.5602, doi:10.1140/epjc/s10052-011-1844-6.
[41] T. Aaltonen, et al., Combination of CDF and D0 W-Boson Mass Measurements, Phys. Rev. D88 (5) (2013) 052018. arXiv:1307.7627, doi:10.1103/PhysRevD. 88.052018.
[42] S. Schael, et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257-454. arXiv:hep-ex/0509008, doi:10.1016/j.physrep.2005.12.006.
[43] T. Aaltonen, et al., First measurement of inclusive W and Z cross sections from Run II of the Fermilab Tevatron Collider, Phys. Rev. Lett. 94 (2005) 091803. arXiv:0406078, doi:10.1103/PhysRevLett.94.091803.
[44] V. M. Abazov, et al., Measurement of the shape of the boson rapidity distribution for $p \bar{p} \rightarrow Z / \gamma^{*} \rightarrow e^{+} e^{-}+X$ events produced at \sqrt{s} of 1.96 TeV , Phys. Rev. D76 (2007) 012003. arXiv:0702025, doi:10.1103/PhysRevD.76.012003.
[45] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A. D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 0307 (2003) 001. arXiv:hep-ph/0206293, doi:10.1088/1126-6708/2003/07/001.
[46] S. Frixione, B. R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 0206 (2002) 029. arXiv: hep-ph/0204244, doi:10.1088/1126-6708/2002/06/029.
[47] G. Corcella, I. Knowles, G. Marchesini, S. Moretti, K. Odagiri, et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 0101 (2001) 010. arXiv:hep-ph/0011363, doi:10.1088/1126-6708/2001/01/010.
[48] J. Butterworth, J. R. Forshaw, M. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C72 (1996) 637-646. arXiv:hep-ph/9601371, doi:10.1007/s002880050286.
[49] M. Cacciari, G. P. Salam, G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 0804 (2008) 063. arXiv:0802.1189, doi:10.1088/1126-6708/2008/04/063.
[50] J. M. Campbell, R. K. Ellis, C. Williams, Vector boson pair production at the LHC, JHEP 1107 (2011) 018. arXiv:1105.0020, doi:10.1007/JHEPO7(2011) 018.
[51] F. Campanario, S. Sapeta, WZ production beyond NLO for high- p_{T} observables, Phys. Lett. B718 (2012) 100-104. arXiv:1209.4595, doi:10.1016/j.physletb.2012.10.013.
[52] W. Verkerke, D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241 (2003) MOLT007. arXiv:physics/0306116.
[53] M. G. Kendall, A. Stuart, The Advanced Theory of Statistics, Charles Griffin and Company Limited, London, 1967.
[54] A. L. Read, Presentation of search results: The CL(s) technique, J. Phys. G28 (2002) 2693-2704. doi:10.1088/0954-3899/28/10/313.
[55] D. Pappadopulo, A. Thamm, R. Torre, A. Wulzer, http://rtorre.web.cern.ch/rtorre/Riccardotorre/vector_triplet_t.html.

The ATLAS Collaboration

G. Aad ${ }^{84}$, B. Abbott ${ }^{112}$, J. Abdallah ${ }^{152}$, S. Abdel Khalek ${ }^{116}$, O. Abdinov ${ }^{11}$, R. Aben ${ }^{106}$, B. Abi ${ }^{113}$, M. Abolins ${ }^{89}$, O.S. AbouZeid ${ }^{159}$, H. Abramowicz ${ }^{154}$, H. Abreu ${ }^{153}$, R. Abreu ${ }^{30}$, Y. Abulaiti ${ }^{147 a, 147 \mathrm{~b}}$, B.S. Acharya ${ }^{165 \mathrm{a}, 165 \mathrm{~b}, a}$, L. Adamczyk ${ }^{38 \mathrm{a}}$, D.L. Adams ${ }^{25}$, J. Adelman ${ }^{177}$, S. Adomeit ${ }^{99}$, T. Adye ${ }^{130}$, T. Agatonovic-Jovin ${ }^{13 a}$, J.A. Aguilar-Saavedra ${ }^{125 a, 125 f}$, M. Agustoni ${ }^{17}$, S.P. Ahlen ${ }^{22}$, F. Ahmadov ${ }^{64, b}$, G. Aielli ${ }^{134 a, 134 b}$, H. Akerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.P.A. Åkesson ${ }^{80}$, G. Akimoto ${ }^{156}$, A.V. Akimov ${ }^{95}$, G.L. Alberghi ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, J. Albert ${ }^{170}$, S. Albrand ${ }^{55}$, M.J. Alconada Verzini ${ }^{70}$, M. Aleksa ${ }^{30}$, I.N. Aleksandrov ${ }^{64}$, C. Alexa ${ }^{26 \mathrm{a}}$, G. Alexander ${ }^{154}$, G. Alexandre ${ }^{49}$, T. Alexopoulos ${ }^{10}$, M. Alhroob ${ }^{165 a, 165 c}$, G. Alimonti ${ }^{90 \mathrm{a}}$, L. Alio 84, J. Alison ${ }^{31}$, B.M.M. Allbrooke ${ }^{18}$, L.J. Allison ${ }^{71}$, P.P. Allport ${ }^{73}$, J. Almond ${ }^{83}$, A. Aloisio ${ }^{103 a, 103 b}$, A. Alonso ${ }^{36}$, F. Alonso ${ }^{70}$, C. Alpigiani ${ }^{75}$, A. Altheimer ${ }^{35}$, B. Alvarez Gonzalez ${ }^{89}$, M.G. Alviggi ${ }^{103 a, 103 b}$, K. Amako ${ }^{65}$, Y. Amaral Coutinho ${ }^{24 \mathrm{a}}$, C. Amelung ${ }^{23}$, D. Amidei ${ }^{88}$, S.P. Amor Dos Santos ${ }^{125 \mathrm{a}, 125 \mathrm{c}}$, A. Amorim ${ }^{125 \mathrm{a}, 125 \mathrm{~b}}$, S. Amoroso ${ }^{48}$, N. Amram ${ }^{154}$, G. Amundsen ${ }^{23}$, C. Anastopoulos ${ }^{140}$, L.S. Ancu ${ }^{49}$, N. Andari ${ }^{30}$, T. Andeen ${ }^{35}$, C.F. Anders ${ }^{58 \mathrm{~b}}$, G. Anders ${ }^{30}$, K.J. Anderson ${ }^{31}$, A. Andreazza ${ }^{90 a, 90 b}$, V. Andrei ${ }^{58 \mathrm{a}}$, X.S. Anduaga ${ }^{70}$, S. Angelidakis ${ }^{9}$, I. Angelozzi ${ }^{106}$, P. Anger ${ }^{44}$, A. Angerami ${ }^{35}$, F. Anghinolfi ${ }^{30}$, A.V. Anisenkov ${ }^{108}$, N. Anjos ${ }^{125 a}$, A. Annovi ${ }^{47}$, A. Antonaki ${ }^{9}$, M. Antonelli ${ }^{47}$, A. Antonov ${ }^{97}$, J. Antos ${ }^{145 b}$, F. Anulli ${ }^{133 \mathrm{a}}$, M. Aoki ${ }^{65}$, L. Aperio Bella ${ }^{18}$, R. Apolle ${ }^{119, c}$, G. Arabidze ${ }^{89}$, I. Aracena ${ }^{144}$, Y. Arai ${ }^{65}$, J.P. Araque ${ }^{125 \mathrm{a}}$, A.T.H. Arce ${ }^{45}$, J-F. Arguin ${ }^{94}$, S. Argyropoulos ${ }^{42}$, M. Arik ${ }^{19 \mathrm{a}}$, A.J. Armbruster ${ }^{30}$, O. Arnaez ${ }^{30}$, V. Arnal ${ }^{81}$, H. Arnold ${ }^{48}$, M. Arratia ${ }^{28}$, O. Arslan ${ }^{21}$, A. Artamonov ${ }^{96}$, G. Artoni ${ }^{23}$, S. Asai ${ }^{156}$, N. Asbah ${ }^{42}$, A. Ashkenazi ${ }^{154}$, B. Åsman ${ }^{147 a, 147 \mathrm{~b}}$, L. Asquith ${ }^{6}$, K. Assamagan ${ }^{25}$, R. Astalos ${ }^{145 \mathrm{a}}$, M. Atkinson ${ }^{166}$, N.B. Atlay ${ }^{142}$, B. Auerbach ${ }^{6}$, K. Augsten ${ }^{127}$, M. Aurousseau ${ }^{146 \mathrm{~b}}$, G. Avolio ${ }^{30}$, G. Azuelos ${ }^{94, d}$, Y. Azuma ${ }^{156}$, M.A. Baak ${ }^{30}$, C. Bacci ${ }^{135 a, 135 b}$, H. Bachacou ${ }^{137}$, K. Bachas ${ }^{155}$, M. Backes ${ }^{30}$, M. Backhaus ${ }^{30}$, J. Backus Mayes ${ }^{144}$, E. Badescu ${ }^{26 a}$, P. Bagiacchi ${ }^{133 a, 133 b}$, P. Bagnaia ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, Y. Bai ${ }^{33 \mathrm{a}}$, T. Bain ${ }^{35}$, J.T. Baines ${ }^{130}$, O.K. Baker ${ }^{177}$, S. Baker ${ }^{77}$, P. Balek ${ }^{128}$, F. Balli ${ }^{137}$, E. Banas ${ }^{39}$, Sw. Banerjee ${ }^{174}$, A.A.E. Bannoura ${ }^{176}$, V. Bansal ${ }^{170}$, H.S. Bansil ${ }^{18}$, L. Barak ${ }^{173}$, S.P. Baranov ${ }^{95}$, E.L. Barberio ${ }^{87}$, D. Barberis ${ }^{50,50 \mathrm{~b}}$, M. Barbero ${ }^{84}$, T. Barillari ${ }^{100}$, M. Barisonzi ${ }^{176}$, T. Barklow ${ }^{144}$, N. Barlow ${ }^{28}$, B.M. Barnett ${ }^{130}$, R.M. Barnett ${ }^{15}$, Z. Barnovska ${ }^{5}$, A. Baroncelli ${ }^{135 \mathrm{a}}$, G. Barone ${ }^{49}$, A.J. Barr ${ }^{119}$, F. Barreiro ${ }^{81}$, J. Barreiro Guimarães da Costa ${ }^{57}$, R. Bartoldus ${ }^{144}$, A.E. Barton ${ }^{71}$, P. Bartos ${ }^{145 \mathrm{a}}$, V. Bartsch ${ }^{150}$, A. Bassalat ${ }^{116}$, A. Basye ${ }^{166}$, R.L. Bates ${ }^{53}$, L. Batkova ${ }^{145 \mathrm{a}}$, J.R. Batley ${ }^{28}$, M. Battaglia ${ }^{138}$, M. Battistin ${ }^{30}$, F. Bauer ${ }^{137}$, H.S. Bawa ${ }^{144, e}$, T. Beau ${ }^{79}$, P.H. Beauchemin ${ }^{162}$, R. Beccherle ${ }^{123 a, 123 b}$, P. Bechtle ${ }^{21}$, H.P. Beck ${ }^{17}$, K. Becker ${ }^{176}$, S. Becker ${ }^{99}$, M. Beckingham ${ }^{139}$, C. Becot ${ }^{116}$, A.J. Beddall ${ }^{19 \mathrm{c}}$, A. Beddall ${ }^{19 \mathrm{c}}$, S. Bedikian ${ }^{177}$, V.A. Bednyakov ${ }^{64}$, C.P. Bee ${ }^{149}$, L.J. Beemster ${ }^{106}$, T.A. Beermann ${ }^{176}$, M. Begel ${ }^{25}$, K. Behr ${ }^{119}$, C. Belanger-Champagne ${ }^{86}$, P.J. Bell ${ }^{49}$, W.H. Bell ${ }^{49}$, G. Bella ${ }^{154}$, L. Bellagamba ${ }^{20 \mathrm{a}}$, A. Bellerive ${ }^{29}$, M. Bellomo ${ }^{85}$, K. Belotskiy ${ }^{97}$, O. Beltramello ${ }^{30}$, O. Benary ${ }^{154}$, D. Benchekroun ${ }^{136 \mathrm{a}}$, K. Bendtz ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, N. Benekos ${ }^{166}$, Y. Benhammou ${ }^{154}$, E. Benhar Noccioli4 ${ }^{49}$, J.A. Benitez Garcia ${ }^{160 \mathrm{~b}}$, D.P. Benjamin ${ }^{45}$, J.R. Bensinger ${ }^{23}$, K. Benslama ${ }^{131}$, S. Bentvelsen ${ }^{106}$, D. Berge ${ }^{106}$, E. Bergeaas Kuutmann ${ }^{16}$, N. Berger ${ }^{5}$, F. Berghaus ${ }^{170}$, E. Berglund ${ }^{106}$, J. Beringer ${ }^{15}$, C. Bernard ${ }^{22}$, P. Bernat ${ }^{77}$, C. Bernius ${ }^{78}$, F.U. Bernlochner ${ }^{170}$, T. Berry ${ }^{76}$, P. Berta ${ }^{128}$, C. Bertella ${ }^{84}$, G. Bertoli ${ }^{147 a, 147 \mathrm{~b}}$, F. Bertolucci ${ }^{123 a, 123 b}$, D. Bertsche ${ }^{112}$, M.I. Besana ${ }^{90 \mathrm{a}}$, G.J. Besjes ${ }^{105}$, O. Bessidskaia ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M.F. Bessner ${ }^{42}$, N. Besson ${ }^{137}$, C. Betancourt ${ }^{48}$, S. Bethke ${ }^{100}$, W. Bhimji4 ${ }^{46}$, R.M. Bianchi ${ }^{124}$, L. Bianchini ${ }^{23}$, M. Bianco ${ }^{30}$, O. Biebel ${ }^{99}$, S.P. Bieniek ${ }^{77}$, K. Bierwagen ${ }^{54}$, J. Biesiada ${ }^{15}$, M. Biglietti ${ }^{135 a}$, J. Bilbao De Mendizabal ${ }^{49}$, H. Bilokon ${ }^{47}$, M. Bindi ${ }^{54}$, S. Binet ${ }^{116}$, A. Bingul ${ }^{19 \mathrm{c}}$, C. Bini ${ }^{133 \mathrm{a}, 133 \mathrm{~b}}$, C.W. Black ${ }^{151}$, J.E. Black ${ }^{144}$, K.M. Black ${ }^{22}$, D. Blackburn ${ }^{139}$, R.E. Blair ${ }^{6}$, J.-B. Blanchard ${ }^{137}$, T. Blazek ${ }^{145 \mathrm{a}}$, I. Bloch ${ }^{42}$, C. Blocker ${ }^{23}$, W. Blum ${ }^{82, *}$, U. Blumenschein ${ }^{54}$, G.J. Bobbink ${ }^{106}$, V.S. Bobrovnikov ${ }^{108}$, S.S. Bocchetta ${ }^{80}$, A. Bocci ${ }^{45}$, C. Bock ${ }^{99}$, C.R. Boddy ${ }^{119}$, M. Boehler ${ }^{48}$, J. Boek ${ }^{176}$, T.T. Boek ${ }^{176}$, J.A. Bogaerts ${ }^{30}$, A.G. Bogdanchikov ${ }^{108}$, A. Bogouch ${ }^{91, *}$, C. Bohm ${ }^{147 a}$, J. Bohm ${ }^{126}$, V. Boisvert ${ }^{76}$, T. Bold ${ }^{38 a}$, V. Boldea ${ }^{26 a}$, A.S. Boldyrev ${ }^{98}$, M. Bomben ${ }^{79}$, M. Bona ${ }^{75}$, M. Boonekamp ${ }^{137}$, A. Borisov ${ }^{129}$, G. Borissov ${ }^{71}$, M. Borri ${ }^{83}$, S. Borroni ${ }^{42}$, J. Bortfeldt ${ }^{99}$, V. Bortolotto ${ }^{135 a, 135 b}$, K. Bos ${ }^{106}$, D. Boscherini ${ }^{20 a}$, M. Bosman ${ }^{12}$, H. Boterenbrood ${ }^{106}$, J. Boudreau ${ }^{124}$, J. Bouffard ${ }^{2}$, E.V. Bouhova-Thacker ${ }^{71}$, D. Boumediene ${ }^{34}$, C. Bourdarios ${ }^{116}$, N. Bousson ${ }^{113}$, S. Boutouil ${ }^{136 d}$, A. Bovei ${ }^{31}$, J. Boyd ${ }^{30}$, I.R. Boyko ${ }^{64}$, I. Bozovic-Jelisavcic ${ }^{136}$, J. Bracinik ${ }^{18}$, A. Brandt ${ }^{8}$, G. Brandt ${ }^{15}$, O. Brandt ${ }^{58 \mathrm{a}}$, U. Bratzler ${ }^{157}$, B. Brau ${ }^{85}$, J.E. Brau ${ }^{115}$, H.M. Braun ${ }^{176, *}$, S.F. Brazzale ${ }^{165 a, 165 c}$, B. Brelier ${ }^{159}$, K. Brendlinger ${ }^{121}$, A.J. Brennan ${ }^{87}$, R. Brenner ${ }^{167}$, S. Bressler ${ }^{173}$, K. Bristow ${ }^{146 c}$, T.M. Bristow ${ }^{46}$, D. Britton ${ }^{53}$, F.M. Brochu ${ }^{28}$, I. Brock ${ }^{21}$, R. Brock ${ }^{89}$, C. Bromberg ${ }^{89}$, J. Bronner ${ }^{100}$, G. Brooijmans ${ }^{35}$, T. Brooks ${ }^{76}$, W.K. Brooks ${ }^{32 b}$, J. Brosamer ${ }^{15}$, E. Brost ${ }^{115}$, G. Brown ${ }^{83}$, J. Brown ${ }^{55}$, P.A. Bruckman de Renstrom ${ }^{39}$, D. Bruncko ${ }^{145 b}$, R. Bruneliere ${ }^{48}$, S. Brunet ${ }^{60}$, A. Bruni ${ }^{20 \mathrm{a}}$, G. Bruni ${ }^{20 \mathrm{a}}$, M. Bruschi ${ }^{20 \mathrm{a}}$, L. Bryngemark ${ }^{80}$, T. Buanes ${ }^{14}$, Q. Buat ${ }^{143}$, F. Bucci ${ }^{49}$, P. Buchholz ${ }^{142}$, R.M. Buckingham ${ }^{119}$, A.G. Buckley ${ }^{53}$, S.I. Buda ${ }^{26 a}$, I.A. Budagov ${ }^{64}$, F. Buehrer ${ }^{48}$, L. Bugge ${ }^{118}$, M.K. Bugge ${ }^{118}$, O. Bulekov ${ }^{97}$, A.C. Bundock ${ }^{73}$, H. Burckhart ${ }^{30}$, S. Burdin ${ }^{73}$, B. Burghgrave ${ }^{107}$, S. Burke ${ }^{130}$, I. Burmeister ${ }^{43}$, E. Busato ${ }^{34}$, D. Büscher ${ }^{48}$, V. Büscher ${ }^{82}$, P. Bussey ${ }^{53}$, C.P. Buszello ${ }^{167}$, B. Butler ${ }^{57}$, J.M. Butler ${ }^{22}$, A.I. Butt ${ }^{3}$, C.M. Buttar ${ }^{53}$, J.M. Butterworth ${ }^{77}$, P. Butti ${ }^{106}$, W. Buttinger ${ }^{28}$, A. Buzatu ${ }^{53}$, M. Byszewski ${ }^{10}$, S. Cabrera Urbán ${ }^{168}$, D. Caforio ${ }^{20 a, 20 b}$, O. Cakir ${ }^{4 a}$, P. Calafiura ${ }^{15}$, A. Calandri ${ }^{137}$, G. Calderini ${ }^{79}$, P. Calfayan ${ }^{99}$, R. Calkins ${ }^{107}$, L.P. Caloba ${ }^{24 a}$, D. Calvet ${ }^{34}$, S. Calvet ${ }^{34}$, R. Camacho Toro ${ }^{49}$, S. Camarda ${ }^{42}$, D. Cameron ${ }^{118}$, L.M. Caminada ${ }^{15}$, R. Caminal Armadans ${ }^{12}$, S. Campana ${ }^{30}$, M. Campanelli ${ }^{77}$, A. Campoverde ${ }^{149}$, V. Canale ${ }^{103 a, 103 b}$, A. Canepa ${ }^{160 a}$, M. Cano Bret ${ }^{75}$, J. Cantero ${ }^{81}$, R. Cantrill ${ }^{76}$, T. Cao ${ }^{40}$, M.D.M. Capeans Garrido ${ }^{30}$, I. Caprini ${ }^{26 \mathrm{a}}$, M. Caprini ${ }^{26 \mathrm{a}}$, M. Capua ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, R. Caputo ${ }^{82}$, R. Cardarelli ${ }^{134 \mathrm{a}}$, T. Carli ${ }^{30}$, G. Carlino ${ }^{103 \mathrm{a}}$, L. Carminati ${ }^{90 \mathrm{a}, 90 \mathrm{~b}}$, S. Caron ${ }^{105}$, E. Carquin ${ }^{32 \mathrm{a}}$, G.D. Carrillo-Montoya ${ }^{146 \mathrm{c}}$, J.R. Carter ${ }^{28}$, J. Carvalho ${ }^{125 a, 125 \mathrm{c}}$, D. Casadei ${ }^{77}$, M.P. Casado ${ }^{12}$, M. Casolino ${ }^{12}$, E. Castaneda-Miranda ${ }^{146 \mathrm{~b}}$, A. Castelli ${ }^{106}$, V. Castillo Gimenez ${ }^{168}$, N.F. Castro ${ }^{125 a}$, P. Catastini ${ }^{57}$, A. Catinaccio ${ }^{30}$, J.R. Catmore ${ }^{118}$, A. Cattai ${ }^{30}$, G. Cattani ${ }^{134 a, 134 b}$, S. Caughron ${ }^{89}$, V. Cavaliere ${ }^{166}$, D. Cavalli ${ }^{90 \mathrm{a}}$, M. Cavalli-Sforza ${ }^{12}$, V. Cavasinni ${ }^{123 a, 123 b}$, F. Ceradini ${ }^{135 a, 135 b}$, B. Cerio ${ }^{45}$,
K. Cerny ${ }^{128}$, A.S. Cerqueira ${ }^{24 \mathrm{~b}}$, A. Cerri ${ }^{150}$, L. Cerrito ${ }^{75}$, F. Cerutti ${ }^{15}$, M. Cerv ${ }^{30}$, A. Cervelli ${ }^{17}$, S.A. Cetin ${ }^{19 b}$, A. Chafaq ${ }^{136 a}$, D. Chakraborty ${ }^{107}$, I. Chalupkova ${ }^{128}$, K. Chan ${ }^{3}$, P. Chang ${ }^{166}$, B. Chapleau ${ }^{86}$, J.D. Chapman ${ }^{28}$, D. Charfeddine ${ }^{116}$, D.G. Charlton ${ }^{18}$, C.C. Chau ${ }^{159}$, C.A. Chavez Barajas ${ }^{150}$, S. Cheatham ${ }^{86}$, A. Chegwidden ${ }^{89}$, S. Chekanov ${ }^{6}$, S.V. Chekulaev ${ }^{160 a}$, G.A. Chelkov ${ }^{64, f}$, M.A. Chelstowska ${ }^{88}$, C. Chen ${ }^{63}$, H. Chen ${ }^{25}$, K. Chen ${ }^{149}$, L. Chen ${ }^{33 \mathrm{~d}, g}$, S. Chen ${ }^{33 \mathrm{c}}$, X. Chen ${ }^{146 \mathrm{c}}$, Y. Chen ${ }^{35}$, H.C. Cheng ${ }^{88}$, Y. Cheng ${ }^{31}$, A. Cheplakov ${ }^{64}$, R. Cherkaoui El Moursli ${ }^{136 e}$, V. Chernyatin ${ }^{25, *}$, E. Cheu ${ }^{7}$, L. Chevalier ${ }^{137}$, V. Chiarella ${ }^{47}$, G. Chiefari ${ }^{103 a, 103 b}$, J.T. Childers ${ }^{6}$, A. Chilingarov ${ }^{71}$, G. Chiodini ${ }^{72 \mathrm{a}}$, A.S. Chisholm ${ }^{18}$, R.T. Chislett ${ }^{77}$, A. Chitan ${ }^{26 a}$, M.V. Chizhov ${ }^{64}$, S. Chouridou ${ }^{9}$, B.K.B. Chow ${ }^{99}$, D. Chromek-Burckhart ${ }^{30}$, M.L. Chu ${ }^{152}$, J. Chudoba ${ }^{126}$, J.J. Chwastowski ${ }^{39}$, L. Chytka ${ }^{114}$, G. Ciapetti ${ }^{133 a, 133 b}$, A.K. Ciftci ${ }^{4 \mathrm{a}}$, R. Ciftci ${ }^{4 \mathrm{a}}$, D. Cinca ${ }^{62}$, V. Cindro ${ }^{74}$, A. Ciocio ${ }^{15}$, P. Cirkovic ${ }^{13 \mathrm{~b}}$, Z.H. Citron ${ }^{173}$, M. Citterio ${ }^{90 \mathrm{a}}$, M. Ciubancan ${ }^{26 \mathrm{a}}$, A. Clark ${ }^{49}$, P.J. Clark ${ }^{46}$, R.N. Clarke ${ }^{15}$, W. Cleland ${ }^{124}$, J.C. Clemens ${ }^{84}$, C. Clement ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, Y. Coadou ${ }^{84}$, M. Cobal ${ }^{165 a, 165 c}$, A. Coccaro ${ }^{139}$, J. Cochran ${ }^{63}$, L. Coffey ${ }^{23}$, J.G. Cogan ${ }^{144}$, J. Coggeshall ${ }^{166}$, B. Cole ${ }^{35}$, S. Cole ${ }^{107}$, A.P. Colijn ${ }^{106}$, J. Collot ${ }^{55}$, T. Colombo ${ }^{58 \mathrm{c}}$, G. Colon ${ }^{85}$, G. Compostella ${ }^{100}$, P. Conde Muiño ${ }^{125 a},{ }^{125 b}$, E. Coniavitis ${ }^{167}$, M.C. Conidi ${ }^{12}$, S.H. Connell ${ }^{146 \mathrm{~b}}$, I.A. Connelly ${ }^{76}$, S.M. Consonni ${ }^{90 \mathrm{a}, 90 \mathrm{~b}}$, V. Consorti ${ }^{48}$, S. Constantinescu ${ }^{26 \mathrm{a}}$, C. Conta ${ }^{120 \mathrm{a}, 120 \mathrm{~b}}$, G. Conti ${ }^{57}$, F. Conventi ${ }^{103 a, h}$, M. Cooke ${ }^{15}$, B.D. Cooper ${ }^{77}$, A.M. Cooper-Sarkar ${ }^{119}$, N.J. Cooper-Smith ${ }^{76}$, K. Copic ${ }^{15}$, T. Cornelissen ${ }^{176}$, M. Corradi ${ }^{20 a}$, F. Corriveau ${ }^{86, i}$, A. Corso-Radu ${ }^{164}$, A. Cortes-Gonzalez ${ }^{12}$, G. Cortiana ${ }^{100}$, G. Costa ${ }^{90 a}$, M.J. Costa ${ }^{168}$, D. Costanzo ${ }^{140}$, D. Côtée ${ }^{8}$, G. Cottin ${ }^{28}$, G. Cowan ${ }^{76}$, B.E. Cox ${ }^{83}$, K. Cranmer ${ }^{109}$, G. Cree ${ }^{29}$, S. Crépé-Renaudin ${ }^{55}$, F. Crescioli ${ }^{79}$, W.A. Cribbs ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Crispin Ortuzar ${ }^{119}$, M. Cristinziani ${ }^{21}$, V. Croft ${ }^{105}$, G. Crosetti ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, C.-M. Cuciuc ${ }^{26 \mathrm{a}}$, T. Cuhadar Donszelmann ${ }^{140}$, J. Cummings ${ }^{177}$, M. Curatolo ${ }^{47}$, C. Cuthbert ${ }^{151}$, H. Czirr 142, P. Czodrowski ${ }^{3}$, Z. Czyczula ${ }^{177}$, S. D'Auria ${ }^{53}$, M. D'Onofrio ${ }^{73}$, M.J. Da Cunha Sargedas De Sousa ${ }^{125 a, 125 b}$, C. Da Via ${ }^{83}$, W. Dabrowski ${ }^{38 a}$, A. Dafinca ${ }^{119}$, T. Dai ${ }^{88}$, O. Dale ${ }^{14}$, F. Dallaire ${ }^{94}$, C. Dallapiccola ${ }^{85}$, M. Dam ${ }^{36}$, A.C. Daniells ${ }^{18}$, M. Dano Hoffmann ${ }^{137}$, V. Dao ${ }^{105}$, G. Darbo ${ }^{50 \mathrm{a}}$, S. Darmora ${ }^{8}$, J.A. Dassoulas ${ }^{42}$, A. Dattagupta ${ }^{60}$, W. Davey ${ }^{21}$, C. David ${ }^{170}$, T. Davidek ${ }^{128}$, E. Davies ${ }^{119, c}$, M. Davies ${ }^{154}$, O. Davignon ${ }^{79}$, A.R. Davison ${ }^{77}$, P. Davison ${ }^{77}$, Y. Davygora ${ }^{58 \mathrm{a}}$, E. Dawe ${ }^{143}$, I. Dawson ${ }^{140}$, R.K. Daya-Ishmukhametova ${ }^{85}$, K. De ${ }^{8}$, R. de Asmundis ${ }^{103 a}$, S. De Castro ${ }^{20 a, 20 b}$, S. De Cecco ${ }^{79}$, N. De Groot ${ }^{105}$, P. de Jong ${ }^{106}$, H. De la Torre ${ }^{81}$, F. De Lorenzi ${ }^{63}$, L. De Nooij ${ }^{106}$, D. De Pedis ${ }^{133 a}$, A. De Salvo ${ }^{133 a}$, U. De Sanctis ${ }^{165 a}$, 165 b , A. De Santo ${ }^{150}$, J.B. De Vivie De Regie ${ }^{116}$, W.J. Dearnaley ${ }^{71}$, R. Debbe ${ }^{25}$, C. Debenedetti ${ }^{46}$, B. Dechenaux ${ }^{55}$, D.V. Dedovich ${ }^{64}$, I. Deigaard ${ }^{106}$, J. Del Peso ${ }^{81}$, T. Del Prete ${ }^{123 a, 123 b}$, F. Deliot ${ }^{137}$, C.M. Delitzsch ${ }^{49}$, M. Deliyergiyev ${ }^{74}$, A. Dell'Acqua ${ }^{30}$, L. Dell'Asta ${ }^{22}$, M. Dell’Orso ${ }^{123 a, 123 b}$, M. Della Pietra ${ }^{103 a, h}$, D. della Volpe ${ }^{49}$, M. Delmastro ${ }^{5}$, P.A. Delsart ${ }^{55}$, C. Deluca ${ }^{106}$, S. Demers ${ }^{177}$, M. Demichev ${ }^{64}$, A. Demilly ${ }^{79}$, S.P. Denisov ${ }^{129}$, D. Derendarz ${ }^{39}$, J.E. Derkaoui ${ }^{136 d}$, F. Derue ${ }^{79}$, P. Dervan ${ }^{73}$, K. Desch ${ }^{21}$, C. Deterre ${ }^{42}$, P.O. Deviveiros ${ }^{106}$, A. Dewhurst ${ }^{130}$, S. Dhaliwal ${ }^{106}$, A. Di Ciaccio ${ }^{134 a, 134 b}$, L. Di Ciaccio ${ }^{5}$, A. Di Domenico ${ }^{133 a, 133 b}$, C. Di Donato ${ }^{103 a, 103 b}$, A. Di Girolamo ${ }^{30}$, B. Di Girolamo ${ }^{30}$, A. Di Mattia ${ }^{153}$, B. Di Micco ${ }^{135 a, 135 b}$, R. Di Nardo ${ }^{47}$, A. Di Simone ${ }^{48}$, R. Di Sipio ${ }^{20 a, 20 b}$, D. Di Valentino ${ }^{29}$, M.A. Diaz ${ }^{32 \mathrm{a}}$, E.B. Diehl ${ }^{88}$, J. Dietrich ${ }^{42}$, T.A. Dietzsch ${ }^{58 \mathrm{a}}$, S. Diglio ${ }^{84}$, A. Dimitrievska ${ }^{13 \mathrm{a}}$, J. Dingfelder ${ }^{21}$, C. Dionisi ${ }^{133 a, 133 b}$, P. Dita ${ }^{26 a}$, S. Dita ${ }^{26 a}$, F. Dittus ${ }^{30}$, F. Djama ${ }^{84}$, T. Djobava ${ }^{51 b}$, M.A.B. do Vale ${ }^{24 \mathrm{c}}$, A. Do Valle Wemans ${ }^{125 a, 125 \mathrm{~g}}$, T.K.O. Doan ${ }^{5}$, D. Dobos ${ }^{30}$, C. Doglioni ${ }^{49}$, T. Doherty ${ }^{53}$, T. Dohmae ${ }^{156}$, J. Dolejsi ${ }^{128}$, Z. Dolezal ${ }^{128}$, B.A. Dolgoshein ${ }^{97, *}$, M. Donadelli ${ }^{24 d}$, S. Donati ${ }^{123 a, 123 b}$, P. Dondero ${ }^{120 a, 120 b}$, J. Donini ${ }^{34}$, J. Dopke ${ }^{30}$, A. Doria ${ }^{103 a}$, M.T. Dova ${ }^{70}$, A.T. Doyle ${ }^{53}$, M. Dris ${ }^{10}$, J. Dubbert ${ }^{88}$, S. Dube ${ }^{15}$, E. Dubreuil ${ }^{34}$, E. Duchovni ${ }^{173}$, G. Duckeck ${ }^{99}$, O.A. Ducu ${ }^{26 a}$, D. Duda ${ }^{176}$, A. Dudarev ${ }^{30}$, F. Dudziak ${ }^{63}$, L. Duflot ${ }^{116}$, L. Duguid ${ }^{76}$, M. Dührssen ${ }^{30}$, M. Dunford ${ }^{58 \mathrm{a}}$, H. Duran Yildiz ${ }^{4 \mathrm{a}}$, M. Düren ${ }^{52}$, A. Durglishvili ${ }^{51 b}$, M. Dwuznik ${ }^{38 a}$, M. Dyndal ${ }^{38 a}$, J. Ebke ${ }^{99}$, W. Edson ${ }^{2}$, N.C. Edwards ${ }^{46}$, W. Ehrenfeld ${ }^{21}$, T. Eifert ${ }^{144}$, G. Eigen ${ }^{14}$, K. Einsweiler ${ }^{15}$, T. Ekelof ${ }^{167}$, M. El Kacimi ${ }^{136 c}$, M. Ellert ${ }^{167}$, S. Elles ${ }^{5}$, F. Ellinghaus ${ }^{82}$, N. Ellis ${ }^{30}$, J. Elmsheuser ${ }^{99}$, M. Elsing ${ }^{30}$, D. Emeliyanov ${ }^{130}$, Y. Enari ${ }^{156}$, O.C. Endner ${ }^{82}$, M. Endo ${ }^{117}$, R. Engelmann ${ }^{149}$, J. Erdmann ${ }^{177}$, A. Ereditato ${ }^{17}$, D. Eriksson ${ }^{147 a}$, G. Ernis ${ }^{176}$, J. Ernst ${ }^{2}$, M. Ernst ${ }^{25}$, J. Ernwein ${ }^{137}$, D. Errede ${ }^{166}$, S. Errede ${ }^{166}$, E. Ertel ${ }^{82}$, M. Escalier ${ }^{166}$, H. Esch ${ }^{43}$, C. Escobar ${ }^{124}$, B. Esposito ${ }^{47}$, A.I. Etienvre ${ }^{137}$, E. Etzion ${ }^{154}$, H. Evans ${ }^{60}$, A. Ezhilov ${ }^{122}$, L. Fabbri ${ }^{20 a}, 20$ b , G. Facini ${ }^{31}$, R.M. Fakhrutdinov ${ }^{129}$, S. Falciano ${ }^{133 a}$, R.J. Falla ${ }^{77}$, J. Faltova ${ }^{128}$, Y. Fang ${ }^{33 a}$, M. Fanti ${ }^{90 a, 90 b}$, A. Farbin ${ }^{8}$, A. Farilla ${ }^{135 a}$, T. Farooque ${ }^{12}$, S. Farrell ${ }^{164}$, S.M. Farrington ${ }^{171}$, P. Farthouat ${ }^{30}$, F. Fassi ${ }^{168}$, P. Fassnacht ${ }^{30}$, D. Fassouliotis ${ }^{9}$, A. Favareto ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, L. Fayard ${ }^{116}$, P. Federic ${ }^{145 \mathrm{a}}$, O.L. Fedin ${ }^{122, j}$, W. Fedorko ${ }^{169}$, M. Fehling-Kaschek ${ }^{48}$, S. Feigl ${ }^{30}$, L. Feligioni ${ }^{84}$, C. Feng ${ }^{33 \mathrm{~d}}$, E.J. Feng ${ }^{6}$, H. Feng ${ }^{88}$, A.B. Fenyuk ${ }^{129}$, S. Fernandez Perez ${ }^{30}$, S. Ferrag ${ }^{53}$, J. Ferrando ${ }^{53}$, A. Ferrari ${ }^{167}$, P. Ferrari ${ }^{106}$, R. Ferrari ${ }^{120 a}$, D.E. Ferreira de Lima ${ }^{53}$, A. Ferrer ${ }^{168}$, D. Ferrere ${ }^{49}$, C. Ferretti ${ }^{88}$, A. Ferretto Parodi ${ }^{50,50 b}$, M. Fiascaris ${ }^{31}$, F. Fiedler ${ }^{82}$, A. Filipčič ${ }^{74}$, M. Filipuzzi ${ }^{42}$, F. Filthaut ${ }^{105}$, M. Fincke-Keeler ${ }^{170}$, K.D. Finelli ${ }^{151}$, M.C.N. Fiolhais ${ }^{125 a, 125 c}$, L. Fiorini ${ }^{168}$, A. Firan ${ }^{40}$, J. Fischer ${ }^{176}$, W.C. Fisher ${ }^{89}$, E.A. Fitzgerald ${ }^{23}$, M. Flechl ${ }^{48}$, I. Fleck ${ }^{142}$, P. Fleischmann ${ }^{88}$, S. Fleischmann ${ }^{176}$, G.T. Fletcher ${ }^{140}$, G. Fletcher ${ }^{75}$, T. Flick ${ }^{176}$, A. Floderus ${ }^{80}$, L.R. Flores Castillo ${ }^{174, k}$, A.C. Florez Bustos ${ }^{160 \mathrm{~b}}$, M.J. Flowerdew ${ }^{100}$, A. Formica ${ }^{137}$, A. Forti ${ }^{83}$, D. Fortin ${ }^{160 \mathrm{a}}$, D. Fournier ${ }^{116}$, H. Fox ${ }^{71}$, S. Fracchia ${ }^{12}$, P. Francavilla ${ }^{79}$, M. Franchini ${ }^{20 a}$, 20 b , S. Franchino ${ }^{30}$, D. Francis ${ }^{30}$, M. Franklin ${ }^{57}$, S. Franz ${ }^{61}$, M. Fraternali ${ }^{120 a, 120 b}$, S.T. French ${ }^{28}$, C. Friedrich ${ }^{42}$, F. Friedrich ${ }^{44}$, D. Froidevaux ${ }^{30}$, J.A. Frost ${ }^{28}$, C. Fukunaga ${ }^{157}$, E. Fullana Torregrosa ${ }^{82}$, B.G. Fulsom ${ }^{144}$, J. Fuster ${ }^{168}$, C. Gabaldon ${ }^{55}$, O. Gabizon ${ }^{173}$, A. Gabrielli ${ }^{20 a, 20 b}$, A. Gabrielli ${ }^{133 a,}{ }^{133 b}$, S. Gadatsch ${ }^{106}$, S. Gadomski ${ }^{49}$, G. Gagliardi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, P. Gagnon ${ }^{60}$, C. Galea ${ }^{105}$, B. Galhardo ${ }^{125 \mathrm{a}, 125 \mathrm{c}}$, E.J. Gallas ${ }^{119}$, V. Gallo ${ }^{17}$, B.J. Gallop ${ }^{130}$, P. Gallus ${ }^{127}$, G. Galster ${ }^{36}$, K.K. Gan ${ }^{110}$, R.P. Gandrajula ${ }^{62}$, J. Gao ${ }^{33 \mathrm{~b}, g}$, Y.S. Gao ${ }^{144, e}$, F.M. Garay Walls ${ }^{46}$, F. Garberson ${ }^{177}$, C. García ${ }^{168}$, J.E. García Navarro ${ }^{168}$, M. Garcia-Sciveres ${ }^{15}$, R.W. Gardner ${ }^{31}$, N. Garelli ${ }^{144}$, V. Garonne ${ }^{30}$, C. Gatti ${ }^{47}$, G. Gaudio ${ }^{120 a}$, B. Gaur ${ }^{142}$, L. Gauthier ${ }^{94}$, P. Gauzzi ${ }^{133 a, 133 b}$, I.L. Gavrilenko ${ }^{95}$, C. Gay ${ }^{169}$, G. Gaycken ${ }^{21}$, E.N. Gazis ${ }^{10}$, P. Ge $^{33 \mathrm{~d}}$, Z. Gecse ${ }^{169}$, C.N.P. Gee ${ }^{130}$, D.A.A. Geerts ${ }^{106}$, Ch. Geich-Gimbel ${ }^{21}$, K. Gellerstedt ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Gemme ${ }^{50 \mathrm{a}}$, A. Gemmell ${ }^{53}$, M.H. Genest ${ }^{55}$, S. Gentile ${ }^{133 a, 133 b}$, M. George ${ }^{54}$, S. George ${ }^{76}$, D. Gerbaudo ${ }^{164}$, A. Gershon ${ }^{154}$, H. Ghazlane ${ }^{136 b}$, N. Ghodbane ${ }^{34}$,
B. Giacobbe ${ }^{20 a}$, S. Giagu ${ }^{133 a, 133 b}$, V. Giangiobbe ${ }^{12}$, P. Giannetti ${ }^{123 a, 123 b}$, F. Gianotti ${ }^{30}$, B. Gibbard ${ }^{25}$, S.M. Gibson ${ }^{76}$, M. Gilchriese ${ }^{15}$, T.P.S. Gillam ${ }^{28}$, D. Gillberg ${ }^{30}$, G. Gilles ${ }^{34}$, D.M. Gingrich ${ }^{3, d}$, N. Giokaris ${ }^{9}$, M.P. Giordani ${ }^{165 a, 165 \mathrm{c}}$, R. Giordano ${ }^{103 a, 103 b}$, F.M. Giorgi ${ }^{20 a}$, F.M. Giorgi ${ }^{16}$, P.F. Giraud ${ }^{137}$, D. Giugni ${ }^{90 a}$, C. Giuliani ${ }^{48}$, M. Giulini ${ }^{58 b}$, B.K. Gjelsten ${ }^{118}$, S. Gkaitatzis ${ }^{155}$, I. Gkialas ${ }^{155, l}$, L.K. Gladilin ${ }^{98}$, C. Glasman ${ }^{81}$, J. Glatzer ${ }^{30}$, P.C.F. Glaysher ${ }^{46}$, A. Glazov ${ }^{42}$, G.L. Glonti ${ }^{64}$, M. Goblirsch-Kolb ${ }^{100}$, J.R. Goddard ${ }^{75}$, J. Godfrey ${ }^{143}$, J. Godlewski ${ }^{30}$, C. Goeringer ${ }^{82}$, S. Goldfarb ${ }^{88}$, T. Golling ${ }^{177}$, D. Golubkov ${ }^{129}$, A. Gomes ${ }^{125 a, 125 b, 125 d}$, L.S. Gomez Fajardo ${ }^{42}$, R. Gonçalo ${ }^{125 a}$, J. Goncalves Pinto Firmino Da Costa ${ }^{137}$, L. Gonella ${ }^{21}$, S. González de la Hoz^{168}, G. Gonzalez Parra ${ }^{12}$, M.L. Gonzalez Silva ${ }^{27}$, S. Gonzalez-Sevilla ${ }^{49}$, L. Goossens ${ }^{30}$, P.A. Gorbounov ${ }^{96}$, H.A. Gordon ${ }^{25}$, I. Gorelov ${ }^{104}$, B. Gorini ${ }^{30}$, E. Gorini ${ }^{72 a, 72 b}$, A. Gorišek ${ }^{74}$, E. Gornicki ${ }^{39}$, A.T. Goshaw ${ }^{6}$, C. Gössling ${ }^{43}$, M.I. Gostkin ${ }^{64}$, M. Gouighri ${ }^{136 a}$, D. Goujdami ${ }^{136 c}$, M.P. Goulette ${ }^{49}$, A.G. Goussiou ${ }^{139}$, C. Goy ${ }^{5}$, S. Gozpinar ${ }^{23}$, H.M.X. Grabas ${ }^{137}$, L. Graber ${ }^{54}$, I. Grabowska-Bold ${ }^{38 \mathrm{a}}$, P. Grafström ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, K-J. Grahn ${ }^{42}$, J. Gramling ${ }^{49}$, E. Gramstad ${ }^{118}$, S. Grancagnolo ${ }^{16}$, V. Grassi ${ }^{149}$, V. Gratchev ${ }^{122}$, H.M. Gray ${ }^{30}$, E. Graziani ${ }^{135 \text { a }}$, O.G. Grebenyuk ${ }^{122}$, Z.D. Greenwood ${ }^{78, m}$, K. Gregersen ${ }^{77}$, I.M. Gregor ${ }^{42}$, P. Grenier ${ }^{144}$, J. Griffiths ${ }^{8}$, A.A. Grillo ${ }^{138}$, K. Grimm ${ }^{71}$, S. Grinstein ${ }^{12, n}$, Ph. Gris ${ }^{34}$, Y.V. Grishkevich ${ }^{98}$, J.-F. Grivaz ${ }^{116}$, J.P. Grohs ${ }^{44}$, A. Grohsjean ${ }^{42}$, E. Gross ${ }^{173}$, J. Grosse-Knetter ${ }^{54}$, G.C. Grossi ${ }^{134 a, 134 b}$, J. Groth-Jensen ${ }^{173}$, Z.J. Grout ${ }^{150}$, L. Guan ${ }^{33 \mathrm{~b}}$, F. Guescini ${ }^{49}$, D. Guest ${ }^{177}$, O. Gueta ${ }^{154}$, C. Guicheney ${ }^{34}$, E. Guido ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, T. Guillemin ${ }^{116}$, S. Guindon ${ }^{2}$, U. Gul ${ }^{53}$, C. Gumpert ${ }^{44}$, J. Gunther ${ }^{127}$, J. Guo ${ }^{35}$, S. Gupta ${ }^{119}$, P. Gutierrez ${ }^{112}$, N.G. Gutierrez Ortiz ${ }^{53}$, C. Gutschow ${ }^{77}$, N. Guttman ${ }^{154}$, C. Guyot ${ }^{137}$, C. Gwenlan ${ }^{119}$, C.B. Gwilliam ${ }^{73}$, A. Haas ${ }^{109}$, C. Haber ${ }^{15}$, H.K. Hadavand ${ }^{8}$, N. Haddad ${ }^{136 e}$, P. Haefner ${ }^{21}$, S. Hageböck ${ }^{21}$, Z. Hajduk ${ }^{39}$, H. Hakobyan ${ }^{178}$, M. Haleem ${ }^{42}$, D. Hall ${ }^{119}$, G. Halladjian ${ }^{89}$, K. Hamacher ${ }^{176}$, P. Hamal ${ }^{114}$, K. Hamano ${ }^{170}$, M. Hamer ${ }^{54}$, A. Hamilton ${ }^{146 a}$, S. Hamilton ${ }^{162}$, P.G. Hamnett ${ }^{42}$, L. Han ${ }^{33 b}$, K. Hanagaki ${ }^{117}$, K. Hanawa ${ }^{156}$, M. Hance ${ }^{15}$, P. Hanke ${ }^{58 \mathrm{a}}$, R. Hanna ${ }^{137}$, J.B. Hansen ${ }^{36}$, J.D. Hansen ${ }^{36}$, P.H. Hansen ${ }^{36}$, K. Hara ${ }^{161}$, A.S. Hard 174, T. Harenberg ${ }^{176}$, F. Hariri ${ }^{116}$, S. Harkusha ${ }^{91}$, D. Harper ${ }^{88}$, R.D. Harrington ${ }^{46}$, O.M. Harris ${ }^{139}$, P.F. Harrison ${ }^{171}$, F. Hartjes ${ }^{106}$, S. Hasegawa ${ }^{102}$, Y. Hasegawa ${ }^{141}$, A. Hasib ${ }^{112}$, S. Hassani ${ }^{137}$, S. Haug ${ }^{17}$, M. Hauschild ${ }^{30}$, R. Hauser ${ }^{89}$, M. Havranek ${ }^{126}$, C.M. Hawkes ${ }^{18}$, R.J. Hawkings ${ }^{30}$, A.D. Hawkins ${ }^{80}$, T. Hayashi ${ }^{161}$, D. Hayden ${ }^{89}$, C.P. Hays ${ }^{119}$, H.S. Hayward ${ }^{73}$, S.J. Haywood ${ }^{130}$, S.J. Head ${ }^{18}$, T. Heck ${ }^{82}$, V. Hedberg ${ }^{80}$, L. Heelan ${ }^{8}$, S. Heim ${ }^{121}$, T. Heim ${ }^{176}$, B. Heinemann ${ }^{15}$, L. Heinrich ${ }^{109}$, S. Heisterkamp ${ }^{36}$, J. Hejbal ${ }^{126}$, L. Helary ${ }^{22}$, C. Heller ${ }^{99}$, M. Heller ${ }^{30}$, S. Hellman ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Hellmich ${ }^{21}$, C. Helsens ${ }^{30}$, J. Henderson ${ }^{119}$, R.C.W. Henderson ${ }^{71}$, C. Hengler ${ }^{42}$, A. Henrichs ${ }^{177}$, A.M. Henriques Correia ${ }^{30}$, S. Henrot-Versille ${ }^{116}$, C. Hensel ${ }^{54}$, G.H. Herbert ${ }^{16}$, Y. Hernández Jiménez ${ }^{168}$, R. Herrberg-Schubert ${ }^{16}$, G. Herten ${ }^{48}$, R. Hertenberger ${ }^{99}$, L. Hervas ${ }^{30}$, G.G. Hesketh ${ }^{77}$, N.P. Hessey ${ }^{106}$, R. Hickling ${ }^{75}$, E. Higón-Rodriguez ${ }^{168}$, E. Hill ${ }^{170}$, J.C. Hill ${ }^{28}$, K.H. Hiller ${ }^{42}$, S. Hillert ${ }^{21}$, S.J. Hillier ${ }^{18}$, I. Hinchliffe ${ }^{15}$, E. Hines ${ }^{121}$, M. Hirose ${ }^{158}$, D. Hirschbuehl ${ }^{176}$, J. Hobbs ${ }^{149}$, N. Hod ${ }^{106}$, M.C. Hodgkinson ${ }^{140}$, P. Hodgson ${ }^{140}$, A. Hoecker ${ }^{30}$, M.R. Hoeferkamp ${ }^{104}$, J. Hoffman ${ }^{40}$, D. Hoffmann ${ }^{84}$, J.I. Hofmann ${ }^{58 \mathrm{a}}$, M. Hohlfeld ${ }^{82}$, T.R. Holmes ${ }^{15}$, T.M. Hong ${ }^{121}$, L. Hooft van Huysduynen ${ }^{109}$, J-Y. Hostachy ${ }^{55}$, S. Hou ${ }^{152}$, A. Hoummada ${ }^{136 a}$, J. Howard ${ }^{119}$, J. Howarth ${ }^{42}$, M. Hrabovsky ${ }^{114}$, I. Hristova ${ }^{16}$, J. Hrivnac ${ }^{116}$, T. Hryn'ova ${ }^{5}$, P.J. Hsu ${ }^{82}$, S.-C. Hsu ${ }^{139}$, D. Hu ${ }^{35}$, X. Hu ${ }^{25}$, Y. Huang ${ }^{42}$, Z. Hubacek ${ }^{30}$, F. Hubaut ${ }^{84}$, F. Huegging ${ }^{21}$, T.B. Huffman ${ }^{119}$, E.W. Hughes ${ }^{35}$, G. Hughes ${ }^{71}$, M. Huhtinen ${ }^{30}$, T.A. Hülsing ${ }^{82}$, M. Hurwitz ${ }^{15}$, N. Huseynov ${ }^{64, b}$, J. Huston ${ }^{89}$, J. Huth ${ }^{57}$, G. Iacobucci ${ }^{49}$, G. Iakovidis ${ }^{10}$, I. Ibragimov ${ }^{142}$, L. Iconomidou-Fayard ${ }^{116}$, E. Ideal ${ }^{177}$, P. Iengo ${ }^{103 a}$, O. Igonkina ${ }^{106}$, T. Iizawa ${ }^{172}$, Y. Ikegami ${ }^{65}$, K. Ikematsu ${ }^{142}$, M. Ikeno ${ }^{65}$, Y. Ilchenko ${ }^{31}$, D. Iliadis ${ }^{155}$, N. Ilic 159, Y. Inamaru ${ }^{66}$, T. Ince ${ }^{100}$, P. Ioannou ${ }^{9}$, M. Iodice ${ }^{135 \mathrm{a}}$, K. Iordanidou ${ }^{9}$, V. Ippolito ${ }^{57}$, A. Irles Quiles ${ }^{168}$, C. Isaksson ${ }^{167}$, M. Ishino ${ }^{67}$, M. Ishitsuka ${ }^{158}$, R. Ishmukhametov ${ }^{110}$, C. Issever ${ }^{119}$, S. Istin ${ }^{19 a}$, J.M. Iturbe Ponce ${ }^{83}$, R. Iuppa ${ }^{134 a, 134 b}$, J. Ivarsson ${ }^{80}$, W. Iwanski ${ }^{39}$, H. Iwasaki ${ }^{65}$, J.M. Izen ${ }^{41}$, V. Izzo ${ }^{\text {103a }}$, B. Jackson ${ }^{121}$, M. Jackson ${ }^{73}$, P. Jackson ${ }^{1}$, M.R. Jaekel ${ }^{30}$, V. Jain ${ }^{2}$, K. Jakobs ${ }^{48}$, S. Jakobsen ${ }^{30}$, T. Jakoubek ${ }^{126}$, J. Jakubek ${ }^{127}$, D.O. Jamin ${ }^{152}$, D.K. Jana ${ }^{78}$, E. Jansen ${ }^{77}$, H. Jansen ${ }^{30}$, J. Janssen ${ }^{21}$, M. Janus ${ }^{171}$, G. Jarlskog ${ }^{80}$, N. Javadov ${ }^{64, b}$, T. Javůrek ${ }^{48}$, L. Jeanty ${ }^{15}$, J. Jejelava ${ }^{51 a, o}$, G.-Y. Jeng ${ }^{151}$, D. Jennens ${ }^{87}$, P. Jenni ${ }^{48, p}$, J. Jentzsch ${ }^{43}$, C. Jeske ${ }^{171}$, S. Jézéquel ${ }^{5}$, H. Ji ${ }^{174}$, W. Ji ${ }^{82}$, J. Jia ${ }^{149}$, Y. Jiang ${ }^{33 \mathrm{~b}}$, M. Jimenez Belenguer ${ }^{42}$, S. Jin ${ }^{33 \mathrm{a}}$, A. Jinaru ${ }^{26 \mathrm{a}}$, O. Jinnouchi ${ }^{158}$, M.D. Joergensen ${ }^{36}$, K.E. Johansson ${ }^{147 \mathrm{a}}$, P. Johansson ${ }^{140}$, K.A. Johns ${ }^{7}$, K. Jon-And ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, G. Jones ${ }^{171}$, R.W.L. Jones ${ }^{71}$, T.J. Jones ${ }^{73}$, J. Jongmanns ${ }^{58 \mathrm{a}}$, P.M. Jorge ${ }^{125 a, 125 \mathrm{~b}}$, K.D. Joshi ${ }^{83}$, J. Jovicevic ${ }^{148}$, X. Ju ${ }^{174}$, C.A. Jung ${ }^{43}$, R.M. Jungst ${ }^{30}$, P. Jussel ${ }^{61}$, A. Juste Rozas ${ }^{12, n}$, M. Kaci ${ }^{168}$, A. Kaczmarska ${ }^{39}$, M. Kado ${ }^{116}$, H. Kagan ${ }^{110}$, M. Kagan ${ }^{144}$, E. Kajomovitz ${ }^{45}$, C.W. Kalderon ${ }^{119}$, S. Kama ${ }^{40}$, A. Kamenshchikov ${ }^{129}$, N. Kanaya ${ }^{156}$, M. Kaneda ${ }^{30}$, S. Kaneti ${ }^{28}$, T. Kanno ${ }^{158}$, V.A. Kantserov ${ }^{97}$, J. Kanzaki ${ }^{65}$, B. Kaplan ${ }^{109}$, A. Kapliy ${ }^{31}$, D. Kar ${ }^{53}$, K. Karakostas ${ }^{10}$, N. Karastathis ${ }^{10}$, M. Karnevskiy ${ }^{82}$, S.N. Karpov ${ }^{64}$, K. Karthik ${ }^{109}$, V. Kartvelishvili ${ }^{71}$, A.N. Karyukhin ${ }^{129}$, L. Kashif ${ }^{174}$, G. Kasieczka ${ }^{58 b}$, R.D. Kass ${ }^{110}$, A. Kastanas ${ }^{14}$, Y. Kataoka ${ }^{156}$, A. Katre ${ }^{49}$, J. Katzy ${ }^{42}$, V. Kaushik ${ }^{7}$, K. Kawagoe ${ }^{69}$, T. Kawamoto ${ }^{156}$, G. Kawamura ${ }^{54}$, S. Kazama ${ }^{156}$, V.F. Kazanin ${ }^{108}$, M.Y. Kazarinov ${ }^{64}$, R. Keeler ${ }^{170}$, R. Kehoe ${ }^{40}$, M. Keil ${ }^{54}$, J.S. Keller ${ }^{42}$, J.J. Kempster ${ }^{76}$, H. Keoshkerian ${ }^{5}$, O. Kepka ${ }^{126}$, B.P. Kerševan ${ }^{74}$, S. Kersten ${ }^{176}$, K. Kessoku ${ }^{156}$, J. Keung ${ }^{159}$, F. Khalil-zada ${ }^{11}$, H. Khandanyan ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Khanov ${ }^{113}$, A. Khodinov ${ }^{97}$, A. Khomich ${ }^{58 \mathrm{a}}$, T.J. Khoo ${ }^{28}$, G. Khoriauli ${ }^{21}$, A. Khoroshilov ${ }^{176}$, V. Khovanskiy ${ }^{96}$, E. Khramov ${ }^{64}$, J. Khubua ${ }^{51 \mathrm{~b}}$, H.Y. Kim 8, H. Kim ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S.H. Kim 161, N. Kimura ${ }^{172}$, O. Kind ${ }^{16}$, B.T. King 73, M. King ${ }^{168}$, R.S.B. King ${ }^{119}$, S.B. King ${ }^{169}$, J. Kirk ${ }^{130}$, A.E. Kiryunin ${ }^{100}$, T. Kishimoto ${ }^{66}$, D. Kisielewska ${ }^{38 a}$, F. Kiss ${ }^{48}$, T. Kitamura ${ }^{66}$, T. Kittelmann ${ }^{124}$, K. Kiuchi ${ }^{161}$, E. Kladiva ${ }^{145 b}$, M. Klein ${ }^{73}$, U. Klein ${ }^{73}$, K. Kleinknecht ${ }^{82}$, P. Klimek ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Klimentov ${ }^{25}$, R. Klingenberg ${ }^{43}$, J.A. Klinger ${ }^{83}$, T. Klioutchnikova ${ }^{30}$, P.F. Klok ${ }^{105}$, E.-E. Kluge ${ }^{58 \mathrm{a}}$, P. Kluit ${ }^{106}$, S. Kluth ${ }^{100}$, E. Kneringer ${ }^{61}$, E.B.F.G. Knoops 84, A. Knue ${ }^{53}$, T. Kobayashi ${ }^{156}$, M. Kobel ${ }^{44}$, M. Kocian ${ }^{144}$, P. Kodys ${ }^{128}$, P. Koevesarki ${ }^{21}$, T. Koffas ${ }^{29}$, E. Koffeman ${ }^{106}$, L.A. Kogan ${ }^{119}$, S. Kohlmann ${ }^{176}$, Z. Kohout ${ }^{127}$, T. Kohriki ${ }^{65}$, T. Koi ${ }^{144}$, H. Kolanoski ${ }^{16}$, I. Koletsou ${ }^{5}$, J. Koll ${ }^{89}$, A.A. Komar ${ }^{95, *}$, Y. Komori ${ }^{156}$, T. Kondo ${ }^{65}$, N. Kondrashova ${ }^{42}$, K. Köneke ${ }^{48}$, A.C. König ${ }^{105}$, S. König ${ }^{82}$, T. Kono ${ }^{65, q}$,
R. Konoplich ${ }^{109, r}$, N. Konstantinidis ${ }^{77}$, R. Kopeliansky ${ }^{153}$, S. Koperny ${ }^{38 \mathrm{a}}$, L. Köpke ${ }^{82}$, A.K. Kopp ${ }^{48}$, K. Korcyl ${ }^{39}$, K. Kordas ${ }^{155}$, A. Korn ${ }^{77}$, A.A. Korol ${ }^{108, s}$, I. Korolkov ${ }^{12}$, E.V. Korolkova ${ }^{140}$, V.A. Korotkov ${ }^{129}$, O. Kortner ${ }^{100}$, S. Kortner ${ }^{100}$, V.V. Kostyukhin ${ }^{21}$, V.M. Kotov ${ }^{64}$, A. Kotwal ${ }^{45}$, C. Kourkoumelis ${ }^{9}$, V. Kouskoura ${ }^{155}$, A. Koutsman ${ }^{160 a}$, R. Kowalewski ${ }^{170}$, T.Z. Kowalski ${ }^{38 a}$, W. Kozanecki ${ }^{137}$, A.S. Kozhin ${ }^{129}$, V. Kral ${ }^{127}$, V.A. Kramarenko ${ }^{98}$, G. Kramberger ${ }^{74}$, D. Krasnopevtsev ${ }^{97}$, M.W. Krasny ${ }^{79}$, A. Krasznahorkay ${ }^{30}$, J.K. Kraus ${ }^{21}$, A. Kravchenko ${ }^{25}$, S. Kreiss ${ }^{109}$, M. Kretz ${ }^{58 c}$, J. Kretzschmar ${ }^{73}$, K. Kreutzfeldt ${ }^{52}$, P. Krieger ${ }^{159}$, K. Kroeninger ${ }^{54}$, H. Kroha ${ }^{100}$, J. Kroll ${ }^{121}$, J. Kroseberg ${ }^{21}$, J. Krstic ${ }^{13 a}$, U. Kruchonak ${ }^{64}$, H. Krüger ${ }^{21}$, T. Kruker ${ }^{17}$, N. Krumnack ${ }^{63}$, Z.V. Krumshteyn ${ }^{64}$, A. Kruse ${ }^{174}$, M.C. Kruse 45, M. Kruskal ${ }^{22}$, T. Kubota ${ }^{87}$, S. Kuday ${ }^{4 a}$, S. Kuehn ${ }^{48}$, A. Kugel ${ }^{58 c}$, A. Kuhl ${ }^{138}$, T. Kuhl ${ }^{42}$, V. Kukhtin ${ }^{64}$, Y. Kulchitsky ${ }^{91}$, S. Kuleshov ${ }^{32 \mathrm{~b}}$, M. Kuna ${ }^{133 a, 133 b}$, J. Kunkle ${ }^{121}$, A. Kupco ${ }^{126}$, H. Kurashige ${ }^{66}$, Y.A. Kurochkin ${ }^{91}$, R. Kurumida ${ }^{66}$, V. Kus ${ }^{126}$, E.S. Kuwertz ${ }^{148}$, M. Kuze 158, J. Kvita ${ }^{114}$, A. La Rosa ${ }^{49}$, L. La Rotonda ${ }^{37 a, 37 b}$, C. Lacasta ${ }^{168}$, F. Lacava ${ }^{133 a, 133 b}$, J. Lacey ${ }^{29}$, H. Lacker ${ }^{16}$, D. Lacour ${ }^{79}$, V.R. Lacuesta ${ }^{168}$, E. Ladygin ${ }^{64}$, R. Lafaye ${ }^{5}$, B. Laforge ${ }^{79}$, T. Lagouri ${ }^{177}$, S. Lai ${ }^{48}$, H. Laier ${ }^{58 a}$, L. Lambourne ${ }^{77}$, S. Lammers ${ }^{60}$, C.L. Lampen ${ }^{7}$, W. Lampl ${ }^{7}$, E. Lançon ${ }^{137}$, U. Landgraf ${ }^{48}$, M.P.J. Landon ${ }^{75}$, V.S. Lang ${ }^{58 a}$, C. Lange ${ }^{42}$, A.J. Lankford ${ }^{164}$, F. Lanni ${ }^{25}$, K. Lantzsch ${ }^{30}$, S. Laplace ${ }^{79}$, C. Lapoire ${ }^{21}$, J.F. Laporte ${ }^{137}$, T. Lari ${ }^{90 a}$, M. Lassnig ${ }^{30}$, P. Laurelli ${ }^{47}$, W. Lavrijsen ${ }^{15}$, A.T. Law ${ }^{138}$, P. Laycock ${ }^{73}$, B.T. Le 55, O. Le Dortz ${ }^{79}$, E. Le Guirriec ${ }^{84}$, E. Le Menedeu ${ }^{12}$, T. LeCompte ${ }^{6}$, F. Ledroit-Guillon ${ }^{55}$, C.A. Lee ${ }^{152}$, H. Lee ${ }^{106}$, J.S.H. Lee ${ }^{117}$, S.C. Lee ${ }^{152}$, L. Lee ${ }^{177}$, G. Lefebvre ${ }^{79}$, M. Lefebvre ${ }^{170}$, F. Legger ${ }^{99}$, C. Leggett ${ }^{15}$, A. Lehan ${ }^{73}$, M. Lehmacher ${ }^{21}$, G. Lehmann Miotto ${ }^{30}$, X. Lei ${ }^{7}$, W.A. Leight ${ }^{29}$, A. Leisos ${ }^{155}$, A.G. Leister ${ }^{177}$, M.A.L. Leite ${ }^{24 \mathrm{~d}}$, R. Leitner ${ }^{128}$, D. Lellouch ${ }^{173}$, B. Lemmer ${ }^{54}$, K.J.C. Leney ${ }^{77}$, T. Lenz ${ }^{106}$, G. Lenzen ${ }^{176}$, B. Lenzi ${ }^{30}$, R. Leone ${ }^{7}$, K. Leonhardt ${ }^{44}$, C. Leonidopoulos ${ }^{46}$, S. Leontsinis ${ }^{10}$, C. Leroy ${ }^{94}$, C.G. Lester ${ }^{28}$, C.M. Lester ${ }^{121}$, M. Levchenko ${ }^{122}$, J. Levêque ${ }^{5}$, D. Levin ${ }^{88}$, L.J. Levinson ${ }^{173}$, M. Levy ${ }^{18}$, A. Lewis ${ }^{119}$, G.H. Lewis ${ }^{109}$,
 B. Liberti ${ }^{134 \mathrm{a}}$, P. Lichard ${ }^{30}$, K. Lie ${ }^{166}$, J. Liebal ${ }^{21}$, W. Liebig ${ }^{14}$, C. Limbach 21, A. Limosani ${ }^{87}$, S.C. Lin ${ }^{152, v}$, T.H. Lin ${ }^{82}$, F. Linde ${ }^{106}$, B.E. Lindquist ${ }^{149}$, J.T. Linnemann ${ }^{89}$, E. Lipeles ${ }^{121}$, A. Lipniacka ${ }^{14}$, M. Lisovyi ${ }^{42}$, T.M. Liss ${ }^{166}$, D. Lissauer ${ }^{25}$, A. Lister ${ }^{169}$, A.M. Litke ${ }^{138}$, B. Liu 152, D. Liu 152, J.B. Liu ${ }^{33 b}$, K. Liu ${ }^{33 b, w}$, L. Liu ${ }^{88}$, M. Liu ${ }^{45}$, M. Liu ${ }^{33 b}$, Y. Liu ${ }^{33 b}$, M. Livan ${ }^{120 a, 120 b}$, S.S.A. Livermore ${ }^{119}$, A. Lleres ${ }^{55}$, J. Llorente Merino ${ }^{81}$, S.L. Lloyd ${ }^{75}$, F. Lo Sterzo ${ }^{152}$, E. Lobodzinska ${ }^{42}$, P. Loch ${ }^{7}$, W.S. Lockman ${ }^{138}$, T. Loddenkoetter ${ }^{21}$, F.K. Loebinger ${ }^{83}$, A.E. Loevschall-Jensen ${ }^{36}$, A. Loginov ${ }^{177}$, C.W. Loh ${ }^{169}$, T. Lohse ${ }^{16}$, K. Lohwasser ${ }^{42}$, M. Lokajicek ${ }^{126}$, V.P. Lombardo ${ }^{5}$, B.A. Long ${ }^{22}$, J.D. Long ${ }^{88}$, R.E. Long ${ }^{71}$, L. Lopes ${ }^{125 a}$, D. Lopez Mateos ${ }^{57}$, B. Lopez Paredes ${ }^{140}$, I. Lopez Paz ${ }^{12}$, J. Lorenz ${ }^{99}$, N. Lorenzo Martinez ${ }^{60}$, M. Losada ${ }^{163}$, P. Loscutof ${ }^{15}$, X. Lou ${ }^{41}$, A. Lounis ${ }^{116}$, J. Love ${ }^{6}$, P.A. Love ${ }^{71}$, A.J. Lowe ${ }^{144, e}$, F. Lu ${ }^{33 a}$, H.J. Lubatti ${ }^{139}$, C. Luci ${ }^{133 a, 133 b}$, A. Lucotte ${ }^{55}$, F. Luehring ${ }^{60}$, W. Lukas ${ }^{61}$, L. Luminari ${ }^{133 \mathrm{a}}$, O. Lundberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, B. Lund-Jensen ${ }^{148}$, M. Lungwitz ${ }^{82}$, D. Lynn ${ }^{25}$, R. Lysak ${ }^{126}$, E. Lytken ${ }^{80}$, H. Ma ${ }^{25}$, L.L. Ma ${ }^{33 \mathrm{~d}}$, G. Maccarrone ${ }^{47}$, A. Macchiolo ${ }^{100}$, J. Machado Miguens ${ }^{125 a, 125 b}$, D. Macina ${ }^{30}$, D. Madaffari ${ }^{84}$, R. Madar ${ }^{48}$, H.J. Maddocks ${ }^{71}$, W.F. Mader ${ }^{44}$, A. Madsen ${ }^{167}$, M. Maeno ${ }^{8}$, T. Maeno ${ }^{25}$, E. Magradze ${ }^{54}$, K. Mahboubi ${ }^{48}$, J. Mahlstedt ${ }^{106}$, S. Mahmoud ${ }^{73}$, C. Maiani ${ }^{137}$, C. Maidantchik ${ }^{24 \mathrm{a}}$, A. Maio ${ }^{125 a}, 125 \mathrm{~b}, 125 \mathrm{~d}$, S. Majewski ${ }^{115}$, Y. Makida ${ }^{65}$, N. Makovec ${ }^{116}$, P. Mal ${ }^{137, x}$, B. Malaescu ${ }^{79}$, Pa. Malecki ${ }^{39}$, V.P. Maleev ${ }^{122}$, F. Malek ${ }^{55}$, U. Mallik ${ }^{62}$, D. Malon ${ }^{6}$, C. Malone ${ }^{144}$, S. Maltezos ${ }^{10}$, V.M. Malyshev ${ }^{108}$, S. Malyukov ${ }^{30}$, J. Mamuzic ${ }^{13 b}$, B. Mandelli ${ }^{30}$, L. Mandelli ${ }^{90 a}$, I. Mandićc ${ }^{74}$, R. Mandrysch ${ }^{62}$, J. Maneira ${ }^{125 a, 125 b}$, A. Manfredini ${ }^{100}$, L. Manhaes de Andrade Filho ${ }^{24 \mathrm{~b}}$, J.A. Manjarres Ramos ${ }^{160 \mathrm{~b}}$, A. Mann ${ }^{99}$, P.M. Manning ${ }^{138}$, A. Manousakis-Katsikakis ${ }^{9}$, B. Mansoulie ${ }^{137}$, R. Mantifel ${ }^{86}$, L. Mapelli ${ }^{30}$, L. March ${ }^{168}$, J.F. Marchand ${ }^{29}$, G. Marchiori ${ }^{79}$, M. Marcisovsky ${ }^{126}$, C.P. Marino ${ }^{170}$, M. Marjanovic ${ }^{13 \mathrm{a}}$, C.N. Marques ${ }^{125 \mathrm{a}}$, F. Marroquim ${ }^{24 \mathrm{a}}$, S.P. Marsden ${ }^{83}$, Z. Marshall ${ }^{15}$, L.F. Marti ${ }^{17}$, S. Marti-Garcia ${ }^{168}$, B. Martin ${ }^{30}$, B. Martin ${ }^{89}$, T.A. Martin ${ }^{171}$, V.J. Martin ${ }^{46}$, B. Martin dit Latour ${ }^{14}$, H. Martinez ${ }^{137}$, M. Martinez ${ }^{12, n}$, S. Martin-Haugh ${ }^{130}$, A.C. Martyniuk ${ }^{77}$, M. Marx ${ }^{139}$, F. Marzano ${ }^{133 \mathrm{a}}$, A. Marzin ${ }^{30}$, L. Masetti ${ }^{82}$, T. Mashimo ${ }^{156}$, R. Mashinistov ${ }^{95}$, J. Masik ${ }^{83}$, A.L. Maslennikov ${ }^{108}$, I. Massa ${ }^{20 a, 20 \mathrm{~b}}$, N. Massol ${ }^{5}$, P. Mastrandrea ${ }^{149}$, A. Mastroberardino ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, T. Masubuchi ${ }^{156}$, T. Matsushita ${ }^{66}$, P. Mättig ${ }^{176}$, J. Mattmann ${ }^{82}$, J. Maurer ${ }^{26 a}$, S.J. Maxfield ${ }^{73}$, D.A. Maximov ${ }^{108, s}$, R. Mazini ${ }^{152}$, L. Mazzaferro ${ }^{134 a, 134 \mathrm{~b}}$, G. Mc Goldrick ${ }^{159}$, S.P. Mc Kee ${ }^{88}$, A. McCarn ${ }^{88}$, R.L. McCarthy ${ }^{149}$, T.G. McCarthy ${ }^{29}$, N.A. McCubbin ${ }^{130}$, K.W. McFarlane ${ }^{56, *}$, J.A. Mcfayden ${ }^{77}$, G. Mchedlidze ${ }^{54}$, S.J. McMahon ${ }^{130}$, R.A. McPherson ${ }^{170, i}$, A. Meade ${ }^{85}$, J. Mechnich ${ }^{106}$, M. Medinnis ${ }^{42}$, S. Meehan ${ }^{31}$, S. Mehlhase ${ }^{36}$, A. Mehta ${ }^{73}$, K. Meier ${ }^{58 \mathrm{a}}$, C. Meineck ${ }^{99}$, B. Meirose ${ }^{80}$, C. Melachrinos ${ }^{31}$, B.R. Mellado Garcia ${ }^{146 \mathrm{c}}$, F. Meloni ${ }^{17}$, A. Mengarelli ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, S. Menke ${ }^{100}$, E. Meoni ${ }^{162}$, K.M. Mercurio ${ }^{57}$, S. Mergelmeyer ${ }^{21}$, N. Meric ${ }^{137}$, P. Mermod ${ }^{49}$, L. Merola ${ }^{103 a, 103 b}$, C. Meroni ${ }^{90 \mathrm{a}}$, F.S. Merritt ${ }^{31}$, H. Merritt ${ }^{110}$, A. Messina ${ }^{30, y}$, J. Metcalfe ${ }^{25}$, A.S. Mete ${ }^{164}$, C. Meyer ${ }^{82}$, C. Meyer ${ }^{31}$, J-P. Meyer ${ }^{137}$, J. Meyer ${ }^{30}$, R.P. Middleton ${ }^{130}$, S. Migas ${ }^{73}$, L. Mijović ${ }^{21}$, G. Mikenberg ${ }^{173}$, M. Mikestikova ${ }^{126}$, M. Mikuž ${ }^{74}$, D.W. Miller ${ }^{31}$, C. Mills ${ }^{46}$, A. Milov ${ }^{173}$, D.A. Milstead ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, D. Milstein ${ }^{173}$, A.A. Minaenko ${ }^{129}$, I.A. Minashvili ${ }^{64}$, A.I. Mincer ${ }^{109}$, B. Mindur ${ }^{38 \mathrm{a}}$, M. Mineev ${ }^{64}$, Y. Ming ${ }^{174}$, L.M. Mir ${ }^{12}$, G. Mirabelli ${ }^{133 \mathrm{a}}$, T. Mitani ${ }^{172}$, J. Mitrevski ${ }^{99}$, V.A. Mitsou ${ }^{168}$, S. Mitsui ${ }^{65}$, A. Miucci ${ }^{49}$, P.S. Miyagawa ${ }^{140}$, J.U. Mjörnmark ${ }^{80}$, T. Moa ${ }^{147 a, 147 b}$, K. Mochizuki ${ }^{84}$, V. Moeller ${ }^{28}$, S. Mohapatra ${ }^{35}$, W. Mohr ${ }^{48}$, S. Molander ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, R. Moles-Valls ${ }^{168}$, K. Mönig ${ }^{42}$, C. Monini ${ }^{55}$, J. Monk ${ }^{36}$,
E. Monnier ${ }^{84}$, J. Montejo Berlingen ${ }^{12}$, F. Monticelli ${ }^{70}$, S. Monzani ${ }^{133 a, 133 b}$, R.W. Moore ${ }^{3}$, A. Moraes ${ }^{53}$, N. Morange ${ }^{62}$, D. Moreno ${ }^{82}$, M. Moreno Llácer ${ }^{54}$, P. Morettini ${ }^{50 \mathrm{a}}$, M. Morgenstern ${ }^{44}$, M. Morii ${ }^{57}$, S. Moritz ${ }^{82}$, A.K. Morley ${ }^{148}$, G. Mornacchi ${ }^{30}$, J.D. Morris ${ }^{75}$, L. Morvaj ${ }^{102}$, H.G. Moser ${ }^{100}$, M. Mosidze ${ }^{51 \mathrm{~b}}$, J. Moss ${ }^{110}$, R. Mount ${ }^{144}$, E. Mountricha ${ }^{25}$, S.V. Mouraviev ${ }^{95, *}$, E.J.W. Moyse ${ }^{85}$, S. Muanza ${ }^{84}$, R.D. Mudd ${ }^{18}$, F. Mueller ${ }^{58 a}$, J. Mueller ${ }^{124}$, K. Mueller ${ }^{21}$, T. Mueller ${ }^{28}$, T. Mueller ${ }^{82}$, D. Muenstermann ${ }^{49}$, Y. Munwes ${ }^{154}$, J.A. Murillo Quijada ${ }^{18}$, W.J. Murray ${ }^{171,130}$, H. Musheghyan ${ }^{54}$, E. Musto ${ }^{153}$, A.G. Myagkov ${ }^{129, z}$, M. Myska ${ }^{127}$, O. Nackenhorst ${ }^{54}$, J. Nadal ${ }^{54}$, K. Nagai ${ }^{61}$, R. Nagai ${ }^{158}$, Y. Nagai ${ }^{84}$, K. Nagano ${ }^{65}$, A. Nagarkar ${ }^{110}$, Y. Nagasaka ${ }^{59}$, M. Nagel ${ }^{100}$, A.M. Nairz ${ }^{30}$, Y. Nakahama ${ }^{30}$, K. Nakamura ${ }^{65}$, T. Nakamura ${ }^{156}$, I. Nakano ${ }^{111}$,
H. Namasivayam ${ }^{41}$, G. Nanava ${ }^{21}$, R. Narayan ${ }^{58 b}$, T. Nattermann ${ }^{21}$, T. Naumann ${ }^{42}$, G. Navarro ${ }^{163}$, R. Nayyar ${ }^{7}$, H.A. Neal ${ }^{88}$, P.Yu. Nechaeva ${ }^{95}$, T.J. Neep ${ }^{83}$, A. Negri ${ }^{120 a, 120 b}$, G. Negri ${ }^{30}$, M. Negrini ${ }^{20 a}$, S. Nektarijevic ${ }^{49}$, A. Nelson ${ }^{164}$, T.K. Nelson ${ }^{144}$, S. Nemecek ${ }^{126}$, P. Nemethy ${ }^{109}$, A.A. Nepomuceno ${ }^{24 \mathrm{a}}$, M. Nessi $^{30, a a}$, M.S. Neubauer ${ }^{166}$, M. Neumann ${ }^{176}$, R.M. Neves ${ }^{109}$, P. Nevski ${ }^{25}$, P.R. Newman ${ }^{18}$, D.H. Nguyen ${ }^{6}$, R.B. Nickerson ${ }^{119}$, R. Nicolaidou ${ }^{137}$, B. Nicquevert ${ }^{30}$, J. Nielsen ${ }^{138}$, N. Nikiforou ${ }^{35}$, A. Nikiforov ${ }^{16}$, V. Nikolaenko ${ }^{129, z}$, I. Nikolic-Audit ${ }^{79}$, K. Nikolics ${ }^{49}$, K. Nikolopoulos ${ }^{18}$, P. Nilsson ${ }^{8}$, Y. Ninomiya ${ }^{156}$, A. Nisati ${ }^{133 \mathrm{a}}$, R. Nisius ${ }^{100}$, T. Nobe ${ }^{158}$, L. Nodulman ${ }^{6}$, M. Nomachi ${ }^{117}$, I. Nomidis ${ }^{155}$, S. Norberg ${ }^{112}$, M. Nordberg ${ }^{30}$, S. Nowak ${ }^{100}$, M. Nozaki ${ }^{65}$, L. Nozka ${ }^{114}$, K. Ntekas ${ }^{10}$, G. Nunes Hanninger ${ }^{87}$, T. Nunnemann ${ }^{99}$, E. Nurse ${ }^{77}$, F. Nuti ${ }^{87}$, B.J. O'Brien ${ }^{46}$, F. O'grady ${ }^{7}$, D.C. O'Neil ${ }^{143}$, V. O'Shea ${ }^{53}$, F.G. Oakham ${ }^{29, d}$, H. Oberlack ${ }^{100}$, T. Obermann ${ }^{21}$, J. Ocariz ${ }^{79}$, A. Ochi ${ }^{66}$, M.I. Ochoa ${ }^{77}$, S. Oda ${ }^{69}$, S. Odaka ${ }^{65}$, H. Ogren ${ }^{60}$, A. Oh ${ }^{83}$, S.H. Oh ${ }^{45}$, C.C. Ohm ${ }^{30}$, H. Ohman ${ }^{167}$, T. Ohshima ${ }^{102}$, W. Okamura ${ }^{117}$, H. Okawa ${ }^{25}$, Y. Okumura ${ }^{31}$, T. Okuyama ${ }^{156}$, A. Olariu ${ }^{26 a}$, A.G. Olchevski ${ }^{64}$, S.A. Olivares Pino ${ }^{46}$, D. Oliveira Damazio ${ }^{25}$, E. Oliver Garcia ${ }^{168}$, A. Olszewski ${ }^{39}$, J. Olszowska ${ }^{39}$, A. Onofre ${ }^{125 a, 125 e}$, P.U.E. Onyisi ${ }^{31, a b}$, C.J. Oram ${ }^{160 a}$, M.J. Oreglia ${ }^{31}$, Y. Oren ${ }^{154}$,
D. Orestano ${ }^{135 a, 135 b}$, N. Orlando ${ }^{72 a, 72 b}$, C. Oropeza Barrera ${ }^{53}$, R.S. Orr ${ }^{159}$, B. Osculati ${ }^{50 a, 50 b}$, R. Ospanov ${ }^{121}$, G. Otero y Garzon ${ }^{27}$, H. Otono ${ }^{69}$, M. Ouchrif ${ }^{136 d}$, E.A. Ouellette ${ }^{170}$, F. Ould-Saada ${ }^{118}$, A. Ouraou ${ }^{137}$, K.P. Oussoren ${ }^{106}$, Q. Ouyang ${ }^{33 \mathrm{a}}$, A. Ovcharova ${ }^{15}$, M. Owen ${ }^{83}$, V.E. Ozcan ${ }^{19 a}$, N. Ozturk ${ }^{8}$, K. Pachal ${ }^{119}$, A. Pacheco Pages ${ }^{12}$, C. Padilla Aranda ${ }^{12}$, M. Pagáčová ${ }^{48}$, S. Pagan Griso ${ }^{15}$, E. Paganis ${ }^{140}$, C. Pahl ${ }^{100}$, F. Paige ${ }^{25}$, P. Pais ${ }^{85}$, K. Pajchel ${ }^{118}$, G. Palacino ${ }^{160 \mathrm{~b}}$, S. Palestini ${ }^{30}$, M. Palka ${ }^{38 \mathrm{~b}}$, D. Pallin ${ }^{34}$, A. Palma ${ }^{125 a, 125 b}$, J.D. Palmer ${ }^{18}$, Y.B. Pan ${ }^{174}$, E. Panagiotopoulou ${ }^{10}$, J.G. Panduro Vazquez ${ }^{76}$, P. Pani ${ }^{106}$, N. Panikashvili ${ }^{88}$, S. Panitkin ${ }^{25}$, D. Pantea ${ }^{26 a}$, L. Paolozzi ${ }^{134 a, 134 b}$, Th.D. Papadopoulou ${ }^{10}$, K. Papageorgiou ${ }^{155, l}$, A. Paramonov ${ }^{6}$,
D. Paredes Hernandez ${ }^{34}$, M.A. Parker ${ }^{28}$, F. Parodi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J.A. Parsons ${ }^{35}$, U. Parzefall ${ }^{48}$, E. Pasqualucci ${ }^{133 \mathrm{a}}$, S. Passaggio ${ }^{50 \mathrm{a}}$, A. Passeri ${ }^{135 a}$, F. Pastore ${ }^{135 a, 135 b, *}$, Fr. Pastore ${ }^{76}$, G. Pásztor ${ }^{29}$, S. Pataraia ${ }^{176}$, N.D. Patel ${ }^{151}$, J.R. Pater ${ }^{83}$, S. Patricelli ${ }^{103 a, 103 b}$, T. Pauly ${ }^{30}$, J. Pearce ${ }^{170}$, M. Pedersen ${ }^{118}$, S. Pedraza Lopez ${ }^{168}$, R. Pedro ${ }^{125 a, 125 b}$, S.V. Peleganchuk ${ }^{108}$, D. Pelikan ${ }^{167}$, H. Peng ${ }^{33 \mathrm{~b}}$, B. Penning ${ }^{31}$, J. Penwell ${ }^{60}$, D.V. Perepelitsa ${ }^{25}$, E. Perez Codina ${ }^{160 a}$, M.T. Pérez García-Estañ ${ }^{168}$, V. Perez Reale ${ }^{35}$, L. Perini ${ }^{90 a, 90 \mathrm{~b}}$, H. Pernegger ${ }^{30}$, R. Perrino ${ }^{72 a}$, R. Peschke ${ }^{42}$, V.D. Peshekhonov ${ }^{64}$, K. Peters ${ }^{30}$, R.F.Y. Peters ${ }^{83}$, B.A. Petersen ${ }^{30}$, T.C. Petersen ${ }^{36}$, E. Petit ${ }^{42}$, A. Petridis ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, C. Petridou ${ }^{155}$, E. Petrolo ${ }^{133 \mathrm{a}}$, F. Petrucci ${ }^{135 \mathrm{a}, 135 \mathrm{~b}}$, M. Petteni ${ }^{143}$, N.E. Pettersson ${ }^{158}$, R. Pezoa ${ }^{32 \mathrm{~b}}$, P.W. Phillips ${ }^{130}$, G. Piacquadio ${ }^{144}$, E. Pianori ${ }^{171}$, A. Picazio ${ }^{49}$, E. Piccaro ${ }^{75}$, M. Piccinini ${ }^{20 a,}$, ${ }^{20 \mathrm{~b}}$, R. Piegaia ${ }^{27}$, D.T. Pignotti ${ }^{110}$, J.E. Pilcher ${ }^{31}$, A.D. Pilkington ${ }^{77}$, J. Pina ${ }^{125 a}, 125 \mathrm{~b}, 125 \mathrm{~d}$, M. Pinamonti ${ }^{165 a}, 165 \mathrm{c}, a c$, A. Pinder ${ }^{119}$, J.L. Pinfold ${ }^{3}$, A. Pingel ${ }^{36}$, B. Pinto ${ }^{125 \mathrm{a}}$, S. Pires ${ }^{79}$, M. Pitt ${ }^{173}$, C. Pizio ${ }^{90 a, 90 b}$, L. Plazak ${ }^{145 a}$, M.-A. Pleier ${ }^{25}$, V. Pleskot ${ }^{128}$, E. Plotnikova ${ }^{64}$, P. Plucinski ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, S. Poddar ${ }^{58 \mathrm{a}}$, F. Podlyski ${ }^{34}$, R. Poettgen ${ }^{82}$, L. Poggioli ${ }^{116}$, D. Pohl ${ }^{21}$, M. Pohl ${ }^{49}$, G. Polesello ${ }^{120 \mathrm{a}}$, A. Policicchio ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, R. Polifka ${ }^{159}$, A. Polini ${ }^{20 a}$, C.S. Pollard ${ }^{45}$, V. Polychronakos ${ }^{25}$, K. Pommès ${ }^{30}$, L. Pontecorvo ${ }^{133 a}$, B.G. Pope ${ }^{89}$, G.A. Popeneciu ${ }^{26 \mathrm{~b}}$, D.S. Popovic ${ }^{13 \mathrm{a}}$, A. Poppleton ${ }^{30}$, X. Portell Bueso ${ }^{12}$, G.E. Pospelov ${ }^{100}$, S. Pospisil ${ }^{127}$, K. Potamianos ${ }^{15}$, I.N. Potrap ${ }^{64}$, C.J. Potter ${ }^{150}$, C.T. Potter ${ }^{115}$, G. Poulard ${ }^{30}$, J. Poveda ${ }^{60}$, V. Pozdnyakov ${ }^{64}$, P. Pralavorio ${ }^{84}$, A. Pranko ${ }^{15}$, S. Prasad ${ }^{30}$, R. Pravahan ${ }^{8}$, S. Prell ${ }^{63}$, D. Price ${ }^{83}$, J. Price ${ }^{73}$, L.E. Price ${ }^{6}$, D. Prieur ${ }^{124}$, M. Primavera ${ }^{72 \mathrm{a}}$, M. Proissl ${ }^{46}$, K. Prokofiev ${ }^{47}$, F. Prokoshin ${ }^{32 \mathrm{~b}}$, E. Protopapadaki ${ }^{137}$, S. Protopopescu ${ }^{25}$, J. Proudfoot ${ }^{6}$, M. Przybycien ${ }^{38 a}$, H. Przysiezniak ${ }^{5}$, E. Ptacek ${ }^{115}$, E. Pueschel ${ }^{85}$, D. Puldon ${ }^{149}$, M. Purohit ${ }^{25, a d}$, P. Puzo ${ }^{116}$, J. Qian ${ }^{88}$, G. Qin ${ }^{53}$, Y. Qin ${ }^{83}$, A. Quadt ${ }^{54}$, D.R. Quarrie ${ }^{15}$, W.B. Quayle ${ }^{165 a, 165 b}$, M. Queitsch-Maitland ${ }^{83}$, D. Quilty ${ }^{53}$, A. Qureshi ${ }^{160 \mathrm{~b}}$, V. Radeka ${ }^{25}$, V. Radescu ${ }^{42}$, S.K. Radhakrishnan ${ }^{149}$, P. Radloff ${ }^{115}$, P. Rados ${ }^{87}$, F. Ragusa ${ }^{90 a, 90 b}$, G. Rahal ${ }^{179}$, S. Rajagopalan ${ }^{25}$, M. Rammensee ${ }^{30}$, A.S. Randle-Conde ${ }^{40}$, C. Rangel-Smith ${ }^{167}$, K. Rao ${ }^{164}$, F. Rauscher ${ }^{99}$, T.C. Rave 48, T. Ravenscroft ${ }^{53}$, M. Raymond ${ }^{30}$, A.L. Read ${ }^{118}$, N.P. Readioff ${ }^{73}$, D.M. Rebuzzi ${ }^{120 a, 120 b}$, A. Redelbach ${ }^{175}$, G. Redlinger ${ }^{25}$, R. Reece ${ }^{138}$, K. Reeves ${ }^{41}$, L. Rehnisch ${ }^{16}$, H. Reisin ${ }^{27}$, M. Relich ${ }^{164}$, C. Rembser ${ }^{30}$, H. Ren ${ }^{33 \mathrm{a}}$, Z.L. Ren^{152}, A. Renaud ${ }^{116}$, M. Rescigno ${ }^{133 a}$, S. Resconi ${ }^{90 a}$, O.L. Rezanova ${ }^{108, s}$, P. Reznicek ${ }^{128}$, R. Rezvani ${ }^{94}$, R. Richter ${ }^{100}$, M. Ridel ${ }^{79}$, P. Rieck ${ }^{16}$, J. Rieger ${ }^{54}$, M. Rijssenbeek ${ }^{149}$, A. Rimoldi ${ }^{120 a, 120 b}$, L. Rinaldi ${ }^{20 a}$, E. Ritsch ${ }^{61}$, I. Riu ${ }^{12}$, F. Rizatdinova ${ }^{113}$, E. Rizvi ${ }^{75}$, S.H. Robertson ${ }^{86, i}$, A. Robichaud-Veronneau ${ }^{86}$, D. Robinson ${ }^{28}$, J.E.M. Robinson ${ }^{83}$, A. Robson ${ }^{53}$, C. Roda ${ }^{123 a, 123 b}$, L. Rodrigues ${ }^{30}$, S. Roe ${ }^{30}$, O. Røhne ${ }^{118}$, S. Rolli ${ }^{162}$, A. Romaniouk ${ }^{97}$, M. Romano ${ }^{20 a, 20 b}$, G. Romeo ${ }^{27}$, E. Romero Adam ${ }^{168}$, N. Rompotis ${ }^{139}$, L. Roos 79, E. Ros ${ }^{168}$, S. Rosati ${ }^{133 a}$, K. Rosbach ${ }^{49}$, M. Rose ${ }^{76}$, P.L. Rosendah1 ${ }^{14}$, O. Rosenthal ${ }^{142}$, V. Rossetti ${ }^{147 a, 147 b}$, E. Rossi ${ }^{103 a, 103 b}$, L.P. Rossi ${ }^{50 \mathrm{a}}$, R. Rosten ${ }^{139}$, M. Rotaru ${ }^{26 \mathrm{a}}$, I. Roth ${ }^{173}$, J. Rothberg ${ }^{139}$, D. Rousseau ${ }^{116}$, C.R. Royon ${ }^{137}$, A. Rozanov ${ }^{84}$, Y. Rozen ${ }^{153}$, X. Ruan ${ }^{146 c}$, F. Rubbo ${ }^{12}$, I. Rubinskiy ${ }^{42}$, V.I. Rud ${ }^{98}$, C. Rudolph ${ }^{44}$, M.S. Rudolph ${ }^{159}$, F. Rühr ${ }^{48}$, A. Ruiz-Martinez ${ }^{30}$, Z. Rurikova ${ }^{48}$, N.A. Rusakovich ${ }^{64}$, A. Ruschke ${ }^{99}$, J.P. Rutherfoord ${ }^{7}$, N. Ruthmann ${ }^{48}$, Y.F. Ryabov ${ }^{122}$, M. Rybar ${ }^{128}$, G. Rybkin ${ }^{116}$, N.C. Ryder ${ }^{119}$, A.F. Saavedra ${ }^{151}$, S. Sacerdoti ${ }^{27}$, A. Saddique ${ }^{3}$, I. Sadeh ${ }^{154}$, H.F-W. Sadrozinski ${ }^{138}$, R. Sadykov ${ }^{64}$, F. Safai Tehrani ${ }^{133 a}$, H. Sakamoto ${ }^{156}$, Y. Sakurai ${ }^{172}$, G. Salamanna ${ }^{75}$, A. Salamon ${ }^{134 a}$, M. Saleem ${ }^{112}$, D. Salek ${ }^{106}$, P.H. Sales De Bruin ${ }^{139}$, D. Salihagic ${ }^{100}$, A. Salnikov ${ }^{144}$, J. Salt ${ }^{168}$, B.M. Salvachua Ferrando ${ }^{6}$, D. Salvatore ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, F. Salvatore ${ }^{150}$, A. Salvucci ${ }^{105}$, A. Salzburger ${ }^{30}$, D. Sampsonidis ${ }^{155}$, A. Sanchez ${ }^{103 a, 103 b}$, J. Sánchez ${ }^{168}$, V. Sanchez Martinez ${ }^{168}$, H. Sandaker ${ }^{14}$, R.L. Sandbach ${ }^{75}$, H.G. Sander ${ }^{82}$, M.P. Sanders ${ }^{99}$, M. Sandhoff ${ }^{176}$, T. Sandoval ${ }^{28}$, C. Sandoval ${ }^{163}$, R. Sandstroem ${ }^{100}$, D.P.C. Sankey ${ }^{130}$, A. Sansoni ${ }^{47}$, C. Santoni ${ }^{34}$, R. Santonico ${ }^{134 a, 134 b}$, H. Santos ${ }^{125 a}$, I. Santoyo Castillo ${ }^{150}$, K. Sapp ${ }^{124}$, A. Sapronov ${ }^{64}$, J.G. Saraiva ${ }^{125 a, 125 d}$, B. Sarrazin ${ }^{21}$, G. Sartisohn ${ }^{176}$, O. Sasaki ${ }^{65}$, Y. Sasaki ${ }^{156}$, G. Sauvage ${ }^{5, *}$, E. Sauvan ${ }^{5}$, P. Savard ${ }^{159, d}$, D.O. Savu ${ }^{30}$, C. Sawyer ${ }^{119}$, L. Sawyer ${ }^{78, m}$, D.H. Saxon ${ }^{53}$, J. Saxon ${ }^{121}$, C. Sbarra ${ }^{20 a}$, A. Sbrizzi ${ }^{3}$, T. Scanlon ${ }^{77}$, D.A. Scannicchio ${ }^{164}$, M. Scarcella ${ }^{151}$, J. Schaarschmidt ${ }^{173}$, P. Schacht ${ }^{100}$, D. Schaefer ${ }^{121}$, R. Schaefer ${ }^{42}$, S. Schaepe ${ }^{21}$, S. Schaetzel ${ }^{58 b}$, U. Schäfer ${ }^{82}$, A.C. Schaffer ${ }^{116}$, D. Schaile ${ }^{99}$, R.D. Schamberger ${ }^{149}$, V. Scharf ${ }^{58 \mathrm{a}}$, V.A. Schegelsky ${ }^{122}$, D. Scheirich ${ }^{128}$, M. Schernau ${ }^{164}$, M.I. Scherzer ${ }^{35}$, C. Schiavi ${ }^{50 \mathrm{a}, 50 \mathrm{~b}}$, J. Schieck ${ }^{99}$, C. Schillo ${ }^{48}$, M. Schioppa ${ }^{37 \mathrm{a}, 37 \mathrm{~b}}$, S. Schlenker ${ }^{30}$, E. Schmidt ${ }^{48}$, K. Schmieden ${ }^{30}$, C. Schmitt ${ }^{82}$, C. Schmitt ${ }^{99}$, S. Schmitt ${ }^{58 b}$, B. Schneider ${ }^{17}$, Y.J. Schnellbach ${ }^{73}$, U. Schnoor ${ }^{44}$,
L. Schoeffel ${ }^{137}$, A. Schoening ${ }^{58 b}$, B.D. Schoenrock ${ }^{89}$, A.L.S. Schorlemmer ${ }^{54}$, M. Schott ${ }^{82}$, D. Schouten ${ }^{160 \mathrm{a}}$, J. Schovancova ${ }^{25}$, S. Schramm ${ }^{159}$, M. Schreyer ${ }^{175}$, C. Schroeder ${ }^{82}$, N. Schuh ${ }^{82}$, M.J. Schultens ${ }^{21}$, H.-C. Schultz-Coulon ${ }^{58 a}$, H. Schulz ${ }^{16}$, M. Schumacher ${ }^{48}$, B.A. Schumm ${ }^{138}$, Ph. Schune ${ }^{137}$, C. Schwanenberger ${ }^{83}$, A. Schwartzman ${ }^{144}$, Ph. Schwegler ${ }^{100}$, Ph. Schwemling ${ }^{137}$, R. Schwienhorst ${ }^{89}$, J. Schwindling ${ }^{137}$, T. Schwindt ${ }^{21}$, M. Schwoerer ${ }^{5}$, F.G. Sciacca ${ }^{17}$, E. Scifo ${ }^{116}$, G. Sciolla ${ }^{23}$, W.G. Scott ${ }^{130}$, F. Scuri ${ }^{123 a, 123 b}$, F. Scutti ${ }^{21}$, J. Searcy ${ }^{88}$, G. Sedov ${ }^{42}$, E. Sedykh ${ }^{122}$, S.C. Seidel ${ }^{104}$, A. Seiden ${ }^{138}$, F. Seifert ${ }^{127}$, J.M. Seixas ${ }^{24 a}$, G. Sekhniaidze ${ }^{103 a}$, S.J. Sekula ${ }^{40}$, K.E. Selbach ${ }^{46}$, D.M. Seliverstov ${ }^{122, *}$, G. Sellers ${ }^{73}$, N. Semprini-Cesari ${ }^{20 a}$,20b, C. Serfon ${ }^{30}$, L. Serin ${ }^{116}$, L. Serkin ${ }^{54}$, T. Serre ${ }^{84}$, R. Seuster ${ }^{160 a}$, H. Severini ${ }^{112}$, T. Sfiligoj ${ }^{74}$, F. Sforza ${ }^{100}$, A. Sfyrla ${ }^{30}$, E. Shabalina ${ }^{54}$, M. Shamim ${ }^{115}$, L.Y. Shan ${ }^{33 a}$, R. Shang ${ }^{166}$, J.T. Shank ${ }^{22}$, Q.T. Shao ${ }^{87}$, M. Shapiro ${ }^{15}$, P.B. Shatalov ${ }^{96}$, K. Shaw ${ }^{165 a, 165 b}$, C.Y. Shehu ${ }^{150}$, P. Sherwood ${ }^{77}$, L. Shi ${ }^{152, a e}$, S. Shimizu ${ }^{66}$, C.O. Shimmin ${ }^{164}$, M. Shimojima ${ }^{101}$, M. Shiyakova ${ }^{64}$, A. Shmeleva ${ }^{95}$, M.J. Shochet ${ }^{31}$, D. Short ${ }^{119}$, S. Shrestha ${ }^{63}$, E. Shulga ${ }^{97}$, M.A. Shupe ${ }^{7}$, S. Shushkevich ${ }^{42}$, P. Sicho ${ }^{126}$, O. Sidiropoulou ${ }^{155}$, D. Sidorov ${ }^{113}$, A. Sidoti ${ }^{133 a}$, F. Siegert ${ }^{44}$, Dj. Sijacki ${ }^{13 a}$, J. Silva ${ }^{125 a, 125 d}$, Y. Silver ${ }^{154}$, D. Silverstein ${ }^{144}$, S.B. Silverstein ${ }^{147 a}$, V. Simak ${ }^{127}$, O. Simard ${ }^{5}$, Lj. Simic ${ }^{13 a}$, S. Simion ${ }^{116}$, E. Simioni ${ }^{82}$, B. Simmons ${ }^{77}$, R. Simoniello ${ }^{90 a, 90 b}$, M. Simonyan ${ }^{36}$, P. Sinervo ${ }^{159}$, N.B. Sinev ${ }^{115}$, V. Sipica ${ }^{142}$, G. Siragusa ${ }^{175}$, A. Sircar ${ }^{78}$, A.N. Sisakyan ${ }^{64, *}$, S.Yu. Sivoklokov ${ }^{98}$, J. Sjölin ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, T.B. Sjursen ${ }^{14}$, H.P. Skottowe ${ }^{57}$, K.Yu. Skovpen ${ }^{108}$, P. Skubic ${ }^{112}$, M. Slater ${ }^{18}$, T. Slavicek ${ }^{127}$, K. Sliwa ${ }^{162}$, V. Smakhtin ${ }^{173}$, B.H. Smart ${ }^{46}$, L. Smestad ${ }^{14}$, S.Yu. Smirnov ${ }^{97}$, Y. Smirnov ${ }^{97}$, L.N. Smirnova ${ }^{98, a f}$, O. Smirnova ${ }^{80}$, K.M. Smith ${ }^{53}$, M. Smizanska ${ }^{71}$, K. Smolek ${ }^{127}$, A.A. Snesarev ${ }^{95}$, G. Snidero ${ }^{75}$, S. Snyder ${ }^{25}$, R. Sobie ${ }^{170, i}$, F. Socher ${ }^{44}$, A. Soffer ${ }^{154}$, D.A. Soh ${ }^{152, a e}$, C.A. Solans ${ }^{30}$, M. Solar ${ }^{127}$, J. Solc ${ }^{127}$, E.Yu. Soldatov ${ }^{97}$, U. Soldevila ${ }^{168}$, E. Solfaroli Camillocci ${ }^{133 a, 133 b}$, A.A. Solodkov ${ }^{129}$, A. Soloshenko ${ }^{64}$, O.V. Solovyanov ${ }^{129}$, V. Solovyev ${ }^{122}$, P. Sommer ${ }^{48}$, H.Y. Song ${ }^{33 b}$, N. Soni ${ }^{1}$, A. Sood ${ }^{15}$, A. Sopczak ${ }^{127}$, B. Sopko ${ }^{127}$, V. Sopko ${ }^{127}$, V. Sorin ${ }^{12}$, M. Sosebee ${ }^{8}$, R. Soualah ${ }^{165 a, 165 c}$, P. Soueid ${ }^{94}$, A.M. Soukharev ${ }^{108}$, D. South ${ }^{42}$, S. Spagnolo ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, F. Spanò ${ }^{76}$, W.R. Spearman ${ }^{57}$, R. Spighi ${ }^{20 \mathrm{a}}$, G. Spigo 30, M. Spousta ${ }^{128}$, T. Spreitzer ${ }^{159}$, B. Spurlock ${ }^{8}$, R.D. St. Denis ${ }^{53, *}$, S. Staerz ${ }^{44}$, J. Stahlman ${ }^{121}$, R. Stamen ${ }^{58 \mathrm{a}}$, E. Stanecka ${ }^{39}$, R.W. Stanek ${ }^{6}$, C. Stanescu ${ }^{135 a}$, M. Stanescu-Bellu ${ }^{42}$, M.M. Stanitzki ${ }^{42}$, S. Stapnes ${ }^{118}$, E.A. Starchenko ${ }^{129}$, J. Stark ${ }^{55}$, P. Staroba ${ }^{126}$, P. Starovoitov ${ }^{42}$, R. Staszewski ${ }^{39}$, P. Stavina ${ }^{145 a, *}$, P. Steinberg ${ }^{25}$, B. Stelzer ${ }^{143}$, H.J. Stelzer ${ }^{30}$, O. Stelzer-Chilton ${ }^{160 \mathrm{a}}$, H. Stenzel ${ }^{52}$, S. Stern ${ }^{100}$, G.A. Stewart ${ }^{53}$, J.A. Stillings ${ }^{21}$, M.C. Stockton ${ }^{86}$, M. Stoebe ${ }^{86}$, G. Stoicea ${ }^{26 a}$, P. Stolte ${ }^{54}$, S. Stonjek ${ }^{100}$, A.R. Stradling ${ }^{8}$, A. Straessner ${ }^{44}$, M.E. Stramaglia ${ }^{17}$, J. Strandberg ${ }^{148}$, S. Strandberg ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, A. Strandlie ${ }^{118}$, E. Strauss ${ }^{144}$, M. Strauss ${ }^{112}$, P. Strizenec ${ }^{145 \mathrm{~b}}$, R. Ströhmer ${ }^{175}$, D.M. Strom ${ }^{115}$, R. Stroynowski ${ }^{40}$, S.A. Stucci ${ }^{17}$, B. Stugu ${ }^{14}$, N.A. Styles ${ }^{42}$, D. Su ${ }^{144}$, J. Su ${ }^{124}$, HS. Subramania ${ }^{3}$, R. Subramaniam ${ }^{78}$, A. Succurro ${ }^{12}$, Y. Sugaya ${ }^{117}$, C. Suhr ${ }^{107}$, M. Suk ${ }^{127}$, V.V. Sulin ${ }^{95}$, S. Sultansoy ${ }^{4 c}$, T. Sumida ${ }^{67}$, X. Sun ${ }^{33 a}$, J.E. Sundermann ${ }^{48}$, K. Suruliz ${ }^{140}$, G. Susinno ${ }^{37 a, 37 b}$, M.R. Sutton ${ }^{150}$, Y. Suzuki ${ }^{65}$, M. Svatos ${ }^{126}$, S. Swedish ${ }^{169}$, M. Swiatlowski ${ }^{144}$, I. Sykora ${ }^{145 \text { a }}$, T. Sykora ${ }^{128}$, D. Ta ${ }^{89}$, K. Tackmann ${ }^{42}$, J. Taenzer ${ }^{159}$, A. Taffard ${ }^{164}$, R. Tafirout ${ }^{160 \text { a }}$, N. Taiblum ${ }^{154}$, Y. Takahashi ${ }^{102}$, H. Takai ${ }^{25}$, R. Takashima ${ }^{68}$, H. Takeda ${ }^{66}$, T. Takeshita ${ }^{141}$, Y. Takubo ${ }^{65}$, M. Talby ${ }^{84}$, A.A. Talyshev ${ }^{108, s}$, J.Y.C. Tam ${ }^{175}$, K.G. Tan ${ }^{87}$, J. Tanaka ${ }^{156}$, R. Tanaka ${ }^{116}$, S. Tanaka ${ }^{132}$, S. Tanaka ${ }^{65}$, A.J. Tanasijczuk ${ }^{143}$, K. Tani ${ }^{66}$, N. Tannoury ${ }^{21}$, S. Tapprogge ${ }^{82}$, S. Tarem ${ }^{153}$, F. Tarrade ${ }^{29}$, G.F. Tartarelli ${ }^{90 \mathrm{a}}$, P. Tas ${ }^{128}$, M. Tasevsky ${ }^{126}$, T. Tashiro ${ }^{67}$, E. Tassi ${ }^{37 a, 37 b}$, A. Tavares Delgado ${ }^{125 a, 125 b}$, Y. Tayalati ${ }^{136 d}$, F.E. Taylor ${ }^{93}$, G.N. Taylor ${ }^{87}$, W. Taylor ${ }^{160 b}$, F.A. Teischinger ${ }^{30}$, M. Teixeira Dias Castanheira ${ }^{75}$, P. Teixeira-Dias ${ }^{76}$, K.K. Temming ${ }^{48}$, H. Ten Kate ${ }^{30}$, P.K. Teng ${ }^{152}$, J.J. Teoh ${ }^{117}$, S. Terada ${ }^{65}$, K. Terashi ${ }^{156}$, J. Terron ${ }^{81}$, S. Terzo ${ }^{100}$, M. Testa ${ }^{47}$, R.J. Teuscher ${ }^{159, i}$, J. Therhaag ${ }^{21}$, T. Theveneaux-Pelzer ${ }^{34}$, J.P. Thomas ${ }^{18}$, J. Thomas-Wilsker ${ }^{76}$, E.N. Thompson ${ }^{35}$, P.D. Thompson ${ }^{18}$, P.D. Thompson ${ }^{159}$, A.S. Thompson ${ }^{53}$, L.A. Thomsen ${ }^{36}$, E. Thomson ${ }^{121}$, M. Thomson ${ }^{28}$, W.M. Thong ${ }^{87}$, R.P. Thun ${ }^{88, *}$, F. Tian ${ }^{35}$, M.J. Tibbetts ${ }^{15}$, V.O. Tikhomirov ${ }^{95, a g}$, Yu.A. Tikhonov ${ }^{108, s}$, S. Timoshenko ${ }^{97}$, E. Tiouchichine ${ }^{84}$, P. Tipton ${ }^{177}$, S. Tisserant ${ }^{84}$, T. Todorov ${ }^{5}$, S. Todorova-Nova ${ }^{128}$, B. Toggerson ${ }^{7}$, J. Tojo ${ }^{69}$, S. Tokár ${ }^{145 \text { a }}$, K. Tokushuku ${ }^{65}$, K. Tollefson ${ }^{89}$, L. Tomlinson ${ }^{83}$, M. Tomoto ${ }^{102}$, L. Tompkins ${ }^{31}$, K. Toms ${ }^{104}$, N.D. Topilin ${ }^{64}$, E. Torrence ${ }^{115}$, H. Torres ${ }^{143}$, E. Torró Pastor ${ }^{168}$, J. Toth ${ }^{84, a h}$, F. Touchard ${ }^{84}$, D.R. Tovey ${ }^{140}$, H.L. Tran ${ }^{116}$, T. Trefzger ${ }^{175}$, L. Tremblet ${ }^{30}$, A. Tricoli ${ }^{30}$, I.M. Trigger ${ }^{160 a}$, S. Trincaz-Duvoid ${ }^{79}$, M.F. Tripiana ${ }^{70}$, N. Triplett ${ }^{25}$, W. Trischuk ${ }^{159}$, B. Trocmé ${ }^{55}$, C. Troncon ${ }^{90 a}$, M. Trottier-McDonald ${ }^{143}$, M. Trovatelli ${ }^{135 a, 135 b}$, P. True ${ }^{89}$, M. Trzebinski ${ }^{39}$, A. Trzupek ${ }^{39}$, C. Tsarouchas ${ }^{30}$, J.C-L. Tseng ${ }^{119}$, P.V. Tsiareshka ${ }^{91}$, D. Tsionou ${ }^{137}$, G. Tsipolitis ${ }^{10}$, N. Tsirintanis ${ }^{9}$, S. Tsiskaridze ${ }^{12}$, V. Tsiskaridze ${ }^{48}$, E.G. Tskhadadze ${ }^{51 \mathrm{a}}$, I.I. Tsukerman ${ }^{96}$, V. Tsulaia ${ }^{15}$, S. Tsunn ${ }^{65}$, D. Tsybychev ${ }^{149}$, A. Tudorache ${ }^{26 \mathrm{a}}$, V. Tudorache ${ }^{26 \mathrm{a}}$, A.N. Tuna ${ }^{121}$, S.A. Tupputi ${ }^{20 \mathrm{a}, 20 \mathrm{~b}}$, S. Turchikhin ${ }^{98, a f}$, D. Turecek ${ }^{127}$, I. Turk Cakir ${ }^{4 \mathrm{~d}}$, R. Turra ${ }^{90 a, 90 \mathrm{~b}}$, P.M. Tuts ${ }^{35}$, A. Tykhonov ${ }^{74}$, M. Tylmad ${ }^{147 \mathrm{a}, 147 \mathrm{~b}}$, M. Tyndel ${ }^{130}$, K. Uchida ${ }^{21}$, I. Ueda ${ }^{156}$, R. Ueno ${ }^{29}$, M. Ughetto ${ }^{84}$, M. Ugland ${ }^{14}$, M. Uhlenbrock ${ }^{21}$, F. Ukegawa ${ }^{161}$, G. Unal ${ }^{30}$, A. Undrus ${ }^{25}$, G. Unel ${ }^{164}$, F.C. Ungaro ${ }^{48}$, Y. Unno ${ }^{65}$, D. Urbaniec ${ }^{35}$, P. Urquijo ${ }^{87}$, G. Usai ${ }^{8}$, A. Usanova ${ }^{61}$, L. Vacavant ${ }^{84}$, V. Vacek ${ }^{127}$, B. Vachon ${ }^{86}$, N. Valencic ${ }^{106}$, S. Valentinetti ${ }^{20 a}, 20 \mathrm{~b}$, A. Valero ${ }^{168}$, L. Valery ${ }^{34}$, S. Valkar ${ }^{128}$, E. Valladolid Gallego ${ }^{168}$, S. Vallecorsa ${ }^{49}$, J.A. Valls Ferrer ${ }^{168}$, P.C. Van Der Deij1 ${ }^{106}$, R. van der Geer ${ }^{106}$, H. van der Graaf ${ }^{106}$, R. Van Der Leeuw ${ }^{106}$, D. van der Ster ${ }^{30}$, N. van Eldik ${ }^{30}$, P. van Gemmeren ${ }^{6}$, J. Van Nieuwkoop ${ }^{143}$, I. van Vulpen ${ }^{106}$, M.C. van Woerden ${ }^{30}$, M. Vanadia ${ }^{133 a, 133 b}$, W. Vandelli ${ }^{30}$, R. Vanguri ${ }^{121}$, A. Vaniachine ${ }^{6}$, P. Vankov ${ }^{42}$, F. Vannucci ${ }^{79}$, G. Vardanyan ${ }^{178}$, R. Vari ${ }^{133 a}$, E.W. Varnes ${ }^{7}$, T. Varol ${ }^{85}$, D. Varouchas ${ }^{79}$, A. Vartapetian ${ }^{8}$, K.E. Varvell ${ }^{151}$, F. Vazeille ${ }^{34}$, T. Vazquez Schroeder ${ }^{54}$, J. Veatch ${ }^{7}$, F. Veloso ${ }^{125 a, 125 c}$, S. Veneziano ${ }^{133 \mathrm{a}}$, A. Ventura ${ }^{72 \mathrm{a}, 72 \mathrm{~b}}$, D. Ventura ${ }^{85}$, M. Venturi ${ }^{170}$, N. Venturi ${ }^{159}$, A. Venturini ${ }^{23}$, V. Vercesi ${ }^{120 a}$, M. Verducci ${ }^{139}$, W. Verkerke ${ }^{106}$, J.C. Vermeulen ${ }^{106}$, A. Vest ${ }^{44}$, M.C. Vetterli ${ }^{143, d}$, O. Viazlo ${ }^{80}$, I. Vichou ${ }^{166}$, T. Vickey ${ }^{146 c, a i}$, O.E. Vickey Boeriu ${ }^{146 c}$, G.H.A. Viehhauser ${ }^{119}$, S. Viel ${ }^{169}$, R. Vigne ${ }^{30}$, M. Villa ${ }^{20 a, 20 b}$, M. Villaplana Perez ${ }^{90 a, 90 b}$, E. Vilucchi ${ }^{47}$, M.G. Vincter ${ }^{29}$, V.B. Vinogradov ${ }^{64}$, J. Virzi ${ }^{15}$, I. Vivarelli ${ }^{150}$, F. Vives Vaque ${ }^{3}$, S. Vlachos ${ }^{10}$, D. Vladoiu ${ }^{99}$, M. Vlasak ${ }^{127}$, A. Vogel ${ }^{21}$, M. Vogel ${ }^{32 a}$, P. Vokac ${ }^{127}$, G. Volpi ${ }^{123 a, 123 b}$, M. Volpi ${ }^{87}$, H. von der Schmitt ${ }^{100}$, H. von Radziewski ${ }^{48}$, E. von Toerne ${ }^{21}$, V. Vorobel ${ }^{128}$,
K. Vorobev ${ }^{97}$, M. Vos 168, R. Voss 30, J.H. Vossebeld ${ }^{73}$, N. Vranjes ${ }^{137}$, M. Vranjes Milosavljevic ${ }^{106}$, V. Vrba ${ }^{126}$, M. Vreeswijk ${ }^{106}$, T. Vu Anh ${ }^{48}$, R. Vuillermet ${ }^{30}$, I. Vukotic ${ }^{31}$, Z. Vykydal ${ }^{127}$, P. Wagner ${ }^{21}$, W. Wagner ${ }^{176}$, H. Wahlberg ${ }^{70}$, S. Wahrmund ${ }^{44}$, J. Wakabayashi ${ }^{102}$, J. Walder ${ }^{71}$, R. Walker ${ }^{99}$, W. Walkowiak ${ }^{142}$, R. Wall ${ }^{177}$, P. Waller ${ }^{73}$, B. Walsh ${ }^{177}$, C. Wang ${ }^{152, a j}$, C. Wang ${ }^{45}$, F. Wang ${ }^{174}$, H. Wang ${ }^{15}$, H. Wang ${ }^{40}$, J. Wang ${ }^{42}$, J. Wang ${ }^{33 a}$, K. Wang ${ }^{86}$, R. Wang ${ }^{104}$, S.M. Wang ${ }^{152}$, T. Wang ${ }^{21}$, X. Wang ${ }^{177}$, C. Wanotayaroj ${ }^{115}$, A. Warburton ${ }^{86}$, C.P. Ward ${ }^{28}$, D.R. Wardrope ${ }^{77}$, M. Warsinsky ${ }^{48}$, A. Washbrook ${ }^{46}$, C. Wasicki Cl^{42}, I. Watanabe ${ }^{66}$, P.M. Watkins ${ }^{18}$, A.T. Watson ${ }^{18}$, I.J. Watson ${ }^{151}$, M.F. Watson ${ }^{18}$, G. Watts ${ }^{139}$, S. Watts ${ }^{83}$, B.M. Waugh ${ }^{77}$, S. Webb ${ }^{83}$, M.S. Weber ${ }^{17}$, S.W. Weber ${ }^{175}$, J.S. Webster ${ }^{31}$, A.R. Weidberg ${ }^{119}$, P. Weigell ${ }^{100}$, B. Weinert ${ }^{60}$, J. Weingarten ${ }^{54}$, C. Weiser ${ }^{48}$, H. Weits ${ }^{106}$, P.S. Wells ${ }^{30}$, T. Wenaus ${ }^{25}$, D. Wendland ${ }^{16}$, Z. Weng ${ }^{152, a e}$, T. Wengler ${ }^{30}$, S. Wenig ${ }^{30}$, N. Wermes ${ }^{21}$, M. Werner ${ }^{48}$, P. Werner ${ }^{30}$, M. Wessels ${ }^{58 \mathrm{a}}$, J. Wetter ${ }^{162}$, K. Whalen ${ }^{29}$, A. White ${ }^{8}$, M.J. White ${ }^{1}$, R. White ${ }^{32 \mathrm{~b}}$, S. White ${ }^{123 a, 123 b}$, D. Whiteson ${ }^{164}$, D. Wicke ${ }^{176}$, F.J. Wickens ${ }^{130}$, W. Wiedenmann ${ }^{174}$, M. Wielers ${ }^{130}$, P. Wienemann ${ }^{21}$, C. Wiglesworth ${ }^{36}$, L.A.M. Wiik-Fuchs ${ }^{21}$, P.A. Wijeratne ${ }^{77}$, A. Wildauer ${ }^{100}$, M.A. Wildt ${ }^{42, a k}$, H.G. Wilkens ${ }^{30}$, J.Z. Will ${ }^{99}$, H.H. Williams ${ }^{121}$, S. Williams ${ }^{28}$, C. Willis ${ }^{89}$, S. Willocq ${ }^{85}$, A. Wilson ${ }^{88}$, J.A. Wilson ${ }^{18}$, I. Wingerter-Seez ${ }^{5}$, F. Winklmeier ${ }^{115}$, B.T. Winter ${ }^{21}$, M. Wittgen ${ }^{144}$, T. Wittig ${ }^{43}$, J. Wittkowski ${ }^{99}$, S.J. Wollstadt ${ }^{82}$, M.W. Wolter ${ }^{39}$, H. Wolters ${ }^{125 a, 125 c}$, B.K. Wosiek ${ }^{39}$, J. Wotschack ${ }^{30}$, M.J. Woudstra ${ }^{83}$, K.W. Wozniak ${ }^{39}$, M. Wright ${ }^{53}$, M. Wu ${ }^{55}$, S.L. Wu ${ }^{174}$, X. Wu ${ }^{49}$, Y. Wu ${ }^{88}$, E. Wulf ${ }^{35}$, T.R. Wyatt ${ }^{83}$, B.M. Wynne ${ }^{46}$, S. Xella ${ }^{36}$, M. Xiao ${ }^{137}$, D. Xu ${ }^{33 \mathrm{a}}$, L. Xu ${ }^{33 \mathrm{~b}, a l}$, B. Yabsley ${ }^{151}$, S. Yacoob ${ }^{146 \mathrm{~b}, a m}$, M. Yamada ${ }^{65}$, H. Yamaguchi ${ }^{156}$, Y. Yamaguchi ${ }^{156}$, A. Yamamoto ${ }^{65}$, K. Yamamoto ${ }^{63}$, S. Yamamoto ${ }^{156}$, T. Yamamura ${ }^{156}$, T. Yamanaka ${ }^{156}$, K. Yamauchi ${ }^{102}$, Y. Yamazaki ${ }^{66}$, Z. Yan ${ }^{22}$, H. Yang ${ }^{33 e}$, H. Yang ${ }^{174}$, U.K. Yang ${ }^{83}$, Y. Yang ${ }^{110}$, S. Yanush ${ }^{92}$, L. Yao ${ }^{33 a}$, W-M. Yao ${ }^{15}$, Y. Yasu ${ }^{65}$, E. Yatsenko ${ }^{42}$, K.H. Yau Wong ${ }^{21}$, J. Ye ${ }^{40}$, S. Ye ${ }^{25}$, A.L. Yen ${ }^{57}$, E. Yildirim ${ }^{42}$, M. Yilmaz ${ }^{4 b}$, R. Yoosoofmiya ${ }^{124}$, K. Yorita ${ }^{172}$, R. Yoshida ${ }^{6}$, K. Yoshihara ${ }^{156}$, C. Young ${ }^{144}$, C.J.S. Young ${ }^{30}$, S. Youssef ${ }^{22}$, D.R. Yu ${ }^{15}$, J. Yu ${ }^{8}$, J.M. Yu^{88}, J. Yu ${ }^{113}$, L. Yuan ${ }^{66}$, A. Yurkewicz ${ }^{107}$, B. Zabinski ${ }^{39}$, R. Zaidan ${ }^{62}$, A.M. Zaitsev ${ }^{129, z}$, A. Zaman ${ }^{149}$, S. Zambito ${ }^{23}$, L. Zanello ${ }^{133 a, 133 b}$, D. Zanzi ${ }^{100}$, C. Zeitnitz ${ }^{176}$, M. Zeman ${ }^{127}$, A. Zemla ${ }^{38 \mathrm{a}}$, K. Zengel ${ }^{23}$, O. Zenin ${ }^{129}$, T. Ženiš ${ }^{145 a}$, D. Zerwas ${ }^{116}$, G. Zevi della Porta ${ }^{57}$, D. Zhang ${ }^{88}$, F. Zhang ${ }^{174}$, H. Zhang ${ }^{89}$, J. Zhang ${ }^{6}$, L. Zhang ${ }^{152}$, X. Zhang ${ }^{33 \mathrm{~d}}$, Z. Zhang ${ }^{116}$, Z. Zhao ${ }^{33 b}$, A. Zhemchugov ${ }^{64}$, J. Zhong ${ }^{119}$, B. Zhou ${ }^{88}$, L. Zhou ${ }^{35}$, N. Zhou ${ }^{164}$, C.G. Zhu ${ }^{33 \mathrm{~d}}$, H. Zhu ${ }^{33 \mathrm{a}}$, J. Zhu ${ }^{88}$, Y. Zhu ${ }^{33 \mathrm{~b}}$, X. Zhuang ${ }^{33 \mathrm{a}}$, K. Zhukov ${ }^{95}$, A. Zibell ${ }^{175}$, D. Zieminska ${ }^{60}$, N.I. Zimine ${ }^{64}$, C. Zimmermann ${ }^{82}$, R. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{21}$, S. Zimmermann ${ }^{48}$, Z. Zinonos ${ }^{54}$, M. Ziolkowski ${ }^{142}$, G. Zobernig ${ }^{174}$, A. Zoccoli ${ }^{20 a, 20 b}$, M. zur Nedden ${ }^{16}$, G. Zurzolo ${ }^{103 a, 103 b}$, V. Zutshi ${ }^{107}$, L. Zwalinski ${ }^{30}$.
${ }^{1}$ Department of Physics, University of Adelaide, Adelaide, Australia
${ }^{2}$ Physics Department, SUNY Albany, Albany NY, United States of America
${ }^{3}$ Department of Physics, University of Alberta, Edmonton AB, Canada
$4{ }^{(a)}$ Department of Physics, Ankara University, Ankara; ${ }^{(b)}$ Department of Physics, Gazi University, Ankara; ${ }^{(c)}$ Division of
Physics, TOBB University of Economics and Technology, Ankara; ${ }^{(d)}$ Turkish Atomic Energy Authority, Ankara, Turkey
${ }^{5}$ LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
${ }^{6}$ High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
${ }^{7}$ Department of Physics, University of Arizona, Tucson AZ, United States of America
${ }^{8}$ Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
${ }^{9}$ Physics Department, University of Athens, Athens, Greece
${ }^{10}$ Physics Department, National Technical University of Athens, Zografou, Greece
${ }^{11}$ Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{12}$ Institut de Física d'Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain $13{ }^{(a)}$ Institute of Physics, University of Belgrade, Belgrade; ${ }^{(b)}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{14}$ Department for Physics and Technology, University of Bergen, Bergen, Norway
${ }^{15}$ Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
${ }^{16}$ Department of Physics, Humboldt University, Berlin, Germany
${ }^{17}$ Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
${ }^{18}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; ${ }^{(b)}$ Department of Physics, Dogus University, Istanbul; ${ }^{(c)}$ Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
$20{ }^{(a)}$ INFN Sezione di Bologna; ${ }^{(b)}$ Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
${ }^{21}$ Physikalisches Institut, University of Bonn, Bonn, Germany
${ }^{22}$ Department of Physics, Boston University, Boston MA, United States of America
${ }^{23}$ Department of Physics, Brandeis University, Waltham MA, United States of America
$24{ }^{(a)}$ Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; ${ }^{(b)}$ Federal University of Juiz de Fora (UFJF), Juiz de Fora; ${ }^{(c)}$ Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; ${ }^{(d)}$ Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
${ }^{25}$ Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; ${ }^{(b)}$ National Institute for Research and Development of

Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; ${ }^{(c)}$ University Politehnica Bucharest, Bucharest; ${ }^{(d)}$ West University in Timisoara, Timisoara, Romania
${ }^{27}$ Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
${ }^{28}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
${ }^{29}$ Department of Physics, Carleton University, Ottawa ON, Canada
${ }^{30}$ CERN, Geneva, Switzerland
${ }^{31}$ Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
$32(a)$ Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; ${ }^{(b)}$ Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
${ }^{33}{ }^{(a)}$ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; ${ }^{(b)}$ Department of Modern Physics, University of Science and Technology of China, Anhui; ${ }^{(c)}$ Department of Physics, Nanjing University, Jiangsu; ${ }^{(d)}$ School of Physics, Shandong University, Shandong; ${ }^{(e)}$ Physics Department, Shanghai Jiao Tong University, Shanghai, China
${ }^{34}$ Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
${ }^{35}$ Nevis Laboratory, Columbia University, Irvington NY, United States of America
${ }^{36}$ Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; ${ }^{(b)}$ Dipartimento di Fisica, Università della Calabria, Rende, Italy
38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; ${ }^{(b)}$ Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
${ }^{39}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
${ }^{40}$ Physics Department, Southern Methodist University, Dallas TX, United States of America
${ }^{41}$ Physics Department, University of Texas at Dallas, Richardson TX, United States of America
${ }^{42}$ DESY, Hamburg and Zeuthen, Germany
${ }^{43}$ Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
${ }^{44}$ Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
${ }^{45}$ Department of Physics, Duke University, Durham NC, United States of America
${ }^{46}$ SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{47}$ INFN Laboratori Nazionali di Frascati, Frascati, Italy
${ }^{48}$ Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
${ }^{49}$ Section de Physique, Université de Genève, Geneva, Switzerland
50 (a) INFN Sezione di Genova; ${ }^{(b)}$ Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; ${ }^{(b)}$ High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
${ }^{52}$ II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
${ }^{53}$ SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
${ }^{54}$ II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
${ }^{55}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
${ }^{56}$ Department of Physics, Hampton University, Hampton VA, United States of America
${ }^{57}$ Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(b)}$ Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg; ${ }^{(c)}$ ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
${ }^{59}$ Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
${ }^{60}$ Department of Physics, Indiana University, Bloomington IN, United States of America
${ }^{61}$ Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
${ }^{62}$ University of Iowa, Iowa City IA, United States of America
${ }^{63}$ Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
${ }^{64}$ Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
${ }^{65}$ KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
${ }^{66}$ Graduate School of Science, Kobe University, Kobe, Japan
${ }^{67}$ Faculty of Science, Kyoto University, Kyoto, Japan
${ }^{68}$ Kyoto University of Education, Kyoto, Japan
${ }^{69}$ Department of Physics, Kyushu University, Fukuoka, Japan
${ }^{70}$ Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
${ }^{71}$ Physics Department, Lancaster University, Lancaster, United Kingdom
72 (a) INFN Sezione di Lecce; ${ }^{\left({ }^{(b)}\right.}$ Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
${ }^{76}$ Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
${ }^{77}$ Department of Physics and Astronomy, University College London, London, United Kingdom
${ }^{78}$ Louisiana Tech University, Ruston LA, United States of America
${ }^{79}$ Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{80}$ Fysiska institutionen, Lunds universitet, Lund, Sweden
${ }^{81}$ Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
${ }^{82}$ Institut für Physik, Universität Mainz, Mainz, Germany
${ }^{83}$ School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
${ }^{84}$ CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{85}$ Department of Physics, University of Massachusetts, Amherst MA, United States of America
${ }^{86}$ Department of Physics, McGill University, Montreal QC, Canada
${ }^{87}$ School of Physics, University of Melbourne, Victoria, Australia
${ }^{88}$ Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{89}$ Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
$90{ }^{(a)}$ INFN Sezione di Milano; ${ }^{(b)}$ Dipartimento di Fisica, Università di Milano, Milano, Italy
${ }^{91}$ B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
${ }^{92}$ National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
${ }^{93}$ Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
${ }^{94}$ Group of Particle Physics, University of Montreal, Montreal QC, Canada
${ }^{95}$ P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
${ }^{96}$ Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{97}$ Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{98}$ D.V.Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
${ }^{99}$ Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
${ }^{100}$ Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
${ }^{101}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{102}$ Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
$103{ }^{(a)}$ INFN Sezione di Napoli; ${ }^{(b)}$ Dipartimento di Fisica, Università di Napoli, Napoli, Italy
${ }^{104}$ Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
${ }^{105}$ Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
${ }^{106}$ Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
${ }^{107}$ Department of Physics, Northern Illinois University, DeKalb IL, United States of America
${ }^{108}$ Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
${ }^{109}$ Department of Physics, New York University, New York NY, United States of America
${ }^{110}$ Ohio State University, Columbus OH, United States of America
${ }^{111}$ Faculty of Science, Okayama University, Okayama, Japan
${ }^{112}$ Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
${ }^{113}$ Department of Physics, Oklahoma State University, Stillwater OK, United States of America
${ }_{114}$ Palacký University, RCPTM, Olomouc, Czech Republic
${ }^{115}$ Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
${ }^{116}$ LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
${ }_{117}$ Graduate School of Science, Osaka University, Osaka, Japan
${ }^{118}$ Department of Physics, University of Oslo, Oslo, Norway
${ }_{119}$ Department of Physics, Oxford University, Oxford, United Kingdom
$120{ }^{(a)}$ INFN Sezione di Pavia; ${ }^{(b)}$ Dipartimento di Fisica, Università di Pavia, Pavia, Italy
${ }^{121}$ Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
${ }^{122}$ Petersburg Nuclear Physics Institute, Gatchina, Russia
$123{ }^{(a)}$ INFN Sezione di Pisa; ${ }^{(b)}$ Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
${ }^{124}$ Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
$125{ }^{(a)}$ Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa; ${ }^{(b)}$ Faculdade de Ciências, Universidade de Lisboa, Lisboa; ${ }^{(c)}$ Department of Physics, University of Coimbra, Coimbra; ${ }^{(d)}$ Centro de Física Nuclear da Universidade de Lisboa, Lisboa; ${ }^{(e)}$ Departamento de Fisica, Universidade do Minho, Braga; ${ }^{(f)}$ Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); ${ }^{(g)}$ Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
${ }^{126}$ Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
${ }^{127}$ Czech Technical University in Prague, Praha, Czech Republic
${ }^{128}$ Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
${ }^{129}$ State Research Center Institute for High Energy Physics, Protvino, Russia
${ }^{130}$ Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{131}$ Physics Department, University of Regina, Regina SK, Canada
${ }^{132}$ Ritsumeikan University, Kusatsu, Shiga, Japan
$133{ }^{(a)}$ INFN Sezione di Roma; ${ }^{(b)}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
$134{ }^{(a)}$ INFN Sezione di Roma Tor Vergata; ${ }^{(b)}$ Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
$135{ }^{(a)}$ INFN Sezione di Roma Tre; ${ }^{(b)}$ Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
${ }^{136}{ }^{(a)}$ Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca;
${ }^{(b)}$ Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; ${ }^{(c)}$ Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; ${ }^{(d)}$ Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; ${ }^{(e)}$ Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
${ }^{137}$ DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
${ }^{138}$ Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
${ }^{139}$ Department of Physics, University of Washington, Seattle WA, United States of America
${ }^{140}$ Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
${ }^{141}$ Department of Physics, Shinshu University, Nagano, Japan
${ }^{142}$ Fachbereich Physik, Universität Siegen, Siegen, Germany
${ }^{143}$ Department of Physics, Simon Fraser University, Burnaby BC, Canada
${ }^{144}$ SLAC National Accelerator Laboratory, Stanford CA, United States of America
$145{ }^{(a)}$ Faculty of Mathematics, Physics \& Informatics, Comenius University, Bratislava; ${ }^{(b)}$ Department of Subnuclear Physics,
Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
$146{ }^{(a)}$ Department of Physics, University of Cape Town, Cape Town; ${ }^{(b)}$ Department of Physics, University of Johannesburg, Johannesburg; ${ }^{(c)}$ School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; ${ }^{(b)}$ The Oskar Klein Centre, Stockholm, Sweden
${ }^{148}$ Physics Department, Royal Institute of Technology, Stockholm, Sweden
${ }^{149}$ Departments of Physics \& Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
${ }^{150}$ Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
${ }^{151}$ School of Physics, University of Sydney, Sydney, Australia
${ }^{152}$ Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{153}$ Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
${ }^{154}$ Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
${ }^{155}$ Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
${ }^{156}$ International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
${ }^{157}$ Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
${ }^{158}$ Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
${ }^{159}$ Department of Physics, University of Toronto, Toronto ON, Canada
$160{ }^{(a)}$ TRIUMF, Vancouver BC; ${ }^{(b)}$ Department of Physics and Astronomy, York University, Toronto ON, Canada
${ }^{161}$ Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
${ }^{162}$ Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
${ }^{163}$ Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
${ }^{164}$ Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
$165{ }^{(a)}$ INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ${ }^{(b)}$ ICTP, Trieste; ${ }^{\left({ }^{(c)} \text { Dipartimento di Chimica, Fisica e }\right.}$ Ambiente, Università di Udine, Udine, Italy
${ }^{166}$ Department of Physics, University of Illinois, Urbana IL, United States of America
${ }^{167}$ Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
${ }^{168}$ Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
${ }^{169}$ Department of Physics, University of British Columbia, Vancouver BC, Canada
${ }^{170}$ Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
${ }^{171}$ Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{172}$ Waseda University, Tokyo, Japan
${ }^{173}$ Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
${ }^{174}$ Department of Physics, University of Wisconsin, Madison WI, United States of America
${ }^{175}$ Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
${ }^{176}$ Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
${ }^{177}$ Department of Physics, Yale University, New Haven CT, United States of America
${ }_{178}$ Yerevan Physics Institute, Yerevan, Armenia
${ }^{179}$ Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
${ }^{a}$ Also at Department of Physics, King's College London, London, United Kingdom
${ }^{b}$ Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
${ }^{c}$ Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{d}$ Also at TRIUMF, Vancouver BC, Canada
${ }^{e}$ Also at Department of Physics, California State University, Fresno CA, United States of America
${ }^{f}$ Also at Tomsk State University, Tomsk, Russia
${ }^{g}$ Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
${ }^{h}$ Also at Università di Napoli Parthenope, Napoli, Italy
${ }^{i}$ Also at Institute of Particle Physics (IPP), Canada
${ }^{j}$ Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
${ }^{k}$ Also at Chinese University of Hong Kong, China
${ }^{l}$ Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
${ }^{m}$ Also at Louisiana Tech University, Ruston LA, United States of America
${ }^{n}$ Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
${ }^{o}$ Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
${ }^{p}$ Also at CERN, Geneva, Switzerland
${ }^{q}$ Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
${ }^{r}$ Also at Manhattan College, New York NY, United States of America
${ }^{s}$ Also at Novosibirsk State University, Novosibirsk, Russia
${ }^{t}$ Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{\text {u }}$ Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
${ }^{v}$ Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
${ }^{w}$ Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
${ }^{x}$ Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
${ }^{y}$ Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
${ }^{z}$ Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
${ }^{a a}$ Also at Section de Physique, Université de Genève, Geneva, Switzerland
${ }^{a b}$ Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
${ }^{a c}$ Also at International School for Advanced Studies (SISSA), Trieste, Italy
${ }^{a d}$ Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
${ }^{a e}$ Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
${ }^{a f}$ Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
${ }^{a g}$ Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia
${ }^{a h}$ Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
${ }^{a i}$ Also at Department of Physics, Oxford University, Oxford, United Kingdom
${ }^{a j}$ Also at Department of Physics, Nanjing University, Jiangsu, China
${ }^{a k}$ Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany
${ }^{a l}$ Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
${ }^{a m}$ Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa

* Deceased

[^0]: ${ }^{1}$ ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta=-\ln \tan (\theta / 2)$. The separation between final-state particles is defined as $\Delta R=\sqrt{(\Delta \eta)^{2}+(\Delta \phi)^{2}}$. The transverse momentum is denoted by p_{T}.

[^1]: ${ }^{2}$ Rapidity is defined as $y=(1 / 2) \ln \left[\left(E+p_{\mathrm{z}}\right) /\left(E-p_{\mathrm{z}}\right)\right]$.

