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In this paper, modelling and parameter identification of an inertia wheel pendulum benchmark
is considered. This is an underactuated mechanical system useful for teaching and research.
Attention is focused on deriving a simple but accurate model capable of reproducing large
amplitude oscillations. Due to the particular design of the prototype, the friction forces on the
actuated joint are noticeable. A simple friction model including dead-zone effects and viscous
terms is proposed, and a compensation method for the dead zone is derived. The accuracy of
the compensation strategy and the predictive quality of the derived model are analysed by
comparing numerical simulations with experimental data.
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1. Introduction

The techniques for designing controllers for real world applications require appropriate
mathematical models to guarantee some desired closed-loop performance. Therefore,
modelling and parameter identification methods become important issues for a
successful practical implementation of the control strategy. Existing methods range
from black-box modelling, when a precise relation between meaningful parameters and
measured variables is unknown, to those developed after a careful analysis of the
behaviour of the system based, for example, on physical principles. When knowledge of
the physical properties of the system is not enough to construct a physically
parametrized model, both techniques can be combined leading to a semiphysical or
‘grey-box’ model [1].
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For mechanical systems, a classical method to derive the equations of motion is the
Euler –Lagrange approach (see [2] for a detailed description). As is well known, this
approach requires the computation of kinetic and potential energies and knowledge of
the forces acting on the system. The latter can be relatively difficult to model and, in
general, depend on constructive aspects. For instance, in mechanical systems involving
parts in contact with relative motion the presence of friction forces is inevitable [3] and,
if neglected when deriving the model, they can deteriorate the performance of control
strategies leading to undesirable effects such as stick-slip motion or limit cycling [4 – 6],
positioning or tracking errors, among others. These phenomena are more noticeable at
very low velocities, and friction compensation is mandatory when dealing with high
precision positioning or tracking tasks. Towards this end, elaborated friction models
and friction compensation techniques have been developed in the last few years (see for
example [7, 8]).
In this paper, modelling and parameter identification of an actual under-actuated

mechanical system is presented. The system, known as the inertia wheel pendulum,
consists of a conventional pendulum with a rotating disk at the end; the pendulum can
rotate freely while the disk is driven by a dc motor. The prototype uses a small,
inexpensive dc motor coupled to the disk by a rubber belt that amplifies the applied
torque, but also increases considerably the friction at the bearings. The motor – disk
subsystem is subject to a simple but accurate friction compensation scheme, simplifying
the mathematical description and yielding an almost ‘ideal model’. Attention is focused
on obtaining a model valid for the analysis of large amplitude oscillations. Since they
can be associated with a relatively high disk velocity, the performance of the
compensator is not analysed at low velocities. To evaluate the accuracy of the identified
model, large amplitude oscillations are generated using a state feedback controller, and
simulations are compared with experimental data. The studied system constitutes an
interesting benchmark for introducing undergraduate students to control methodol-
ogies and the problems arising in their practical implementation, and also for testing
more advanced control strategies such as non-linear stabilizing controllers [9 – 14] or
amplitude control of oscillations [15].

Figure 1. The inertia wheel pendulum.
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2. Equations of motion

The equations of motion of the inertia wheel pendulum (see figure 1) are obtained using
the Euler –Lagrange formalism considering as generalized coordinates the angular
position of the pendulum (q1) and the angular position of the disk (q2) relative to the
arm, and computing

d

dt

@

@ _q
L q; _qð Þ

� �
� @

@q
L q; _qð Þ ¼ t; ð1Þ

where q=[q1 q2]
T are generalized coordinates of the system, L=T 7 V is the

Lagrangian, T is the kinetic energy, V is the potential energy and t=[t1 t2]
T is the

vector of generalized forces acting on the system.
The kinetic energy of the system is

T ¼ 1

2
I1 þm1c

2 þm2l
2

� �
_q21þ

1

2
I2 _q1þ _q2ð Þ2;

and the potential energy is

V ¼ m1cþm2lð Þg 1� cos q1ð Þ;

where m1 and I1 are the mass and the moment of inertia of the pendulum, m2 and I2 are
the mass and the moment of inertia of the disk, l and c are the distances from the pivot
point to the disk shaft and to the centre of mass of the arm, respectively, and g is the
acceleration due to gravity. Then, the Lagrangian is

L ¼ 1

2
Î1 _q21þ

1

2
I2 _q1þ _q2ð Þ2� m1cþm2lð Þg 1� cos q1ð Þ; ð2Þ

where Î1 :¼ I1 þm1c
2 þm2l

2.
A classical model of the torque developed by the dc motor is

tm ¼
kT
R

Vi �
kTkF
R

om;

where kT is the torque constant, R is the rotor coil resistance, Vi is the control voltage,
kF is the back-emf constant, and om is the angular velocity of the motor shaft. The
electric time constant of the motor has been neglected since generally it is much smaller
than the mechanical time constant. Due to the coupling by the rubber belt, the torque
applied to the disk joint is td=Ntm and the angular velocity of the disk is
_q2 ¼ 1=Nom, where N is the ratio between the diameter of the inertia disk and the
diameter of the motor pulley, known as the reduction ratio. Therefore, the torque
applied to the disk is

td ¼
NkT
R

Vi �
N2kTkF

R
_q2 : ð3Þ

The equations of motion are obtained computing (1) with (2), giving
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Î1þI2
� �

€q1þI2 €q2þ m1cþm2lð Þgsin q1 ¼ �tf1; ð4aÞ

I2 €q1þI2 €q2 ¼ td � tf2; ð4bÞ

where tf1 and tf2 are the friction torques at the joints of the pendulum and the disk,
respectively. The friction model adopted for tf1 and tf2 is analysed next.

3. Friction torques

Due to the mechanical design of the system the most significative friction effects on
each joint are of different natures; therefore both joints are analysed separately. As
stated before, attention is focused on deriving the simplest model capable of
reproducing oscillations of large amplitude; this dispenses with applying elaborated
friction models such as [7] or [8], for example, as the performance of the model at low
velocities is not the main topic of study.

3.1 Friction at the Pendulum Joint

Friction forces acting on the pendulum joint comprise viscous friction and rolling
friction,

tf1 ¼ tv1 þ tr1;

respectively. When performing large amplitude oscillations, static and Coulomb
friction at this joint can be neglected and they are not included in the model.

Viscous friction. The term tn1 takes into account the resistance offered by the air to the
pendulum movement and the effect of lubrication at the bearing. Its magnitude is
directly proportional to the angular velocity of the pendulum, and it is modelled as

tv1 ¼ sv1 _q1;

where sn1 is a positive real parameter.

Rolling friction. This type of friction occurs at the bearing of the pendulum due to the
elastic deformation of the shaft caused by the pendulum load. The friction torque is

tr1 ¼ mrFr;

where mr is the friction coefficient, F is the normal contact force and r is the radius of
the pendulum shaft. In general, the coefficient mr is not constant [3], and may depend on
velocity, among other factors. As will be shown later, a linear dependency with the
shaft speed ðmr ¼ sr _q1; sr > 0Þ leads to a fairly approximate model. Providing that
r� l and r � c, the normal contact force results in

F ¼ m1 þm2ð Þg cos q1j j þ m1cþm2lð Þ _q21;
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where the first term represents the effect of gravity, and the second term accounts for
the effect of centrifugal force. Then, the rolling friction torque results

tr1 ¼ sa1 cos q1j j _q1þsb1 _q31;

where sa1 :¼ sr m1 þm2ð Þg r and sb1 :¼ sr m1cþm2lð Þr.

3.2 Friction at the Disk Joint

Friction forces at the bearings of the motor and disk are greatly increased by the stress
imposed by the rubber belt coupling. The main phenomenon at this joint is a dead zone
relating the disk velocity with the control input Vi. This non-linear characteristic
severely modifies the proposed linear model (3) and can be modelled as a friction
torque depending on the control voltage. The friction torque at the disk joint reads

tf2 ¼ tdz þ sv2 _q2;

where tdz accounts for the dead-zone effect, and sn2 is a positive parameter representing
the coefficient of an additional viscous friction term. Although a Coulomb friction term
tcf ¼ sc2 sgn _q2; sc2 > 0, may also be included, it will be shown later that the dynamical
behaviour of the motor – disk subsystem can be predicted with acceptable accuracy
considering only dead-zone and viscous friction terms.

The dead zone between the disk velocity and the control input Vi is modelled as

tdz ¼
NkT
R

f Við Þ; ð5Þ

with

f Við Þ ¼
Vþdz; Vi > Vþdz;
Vi �V�dz < Vi < Vþdz;
�V�dz; Vi < �V�dz;:

8<
:

where Vþdz and V�dz are positive parameters. A simpler model can be obtained letting
Vþdz ¼ V�dz, but the former is preferred since the dc motor may present non-symmetrical
behaviour depending on the sign of the applied voltage due to the shift of the brushes
to reduce the armature reaction effect. A more general model may also use different
values for coefficient NkT/R depending on the sign of Vi.

4. State space model and parameter identification

The state space model of the inertia wheel pendulum is obtained from the equations of
motion (4) taking as state variables the angular position and velocity of the pendulum
(q1 and q3, respectively) and the angular position and velocity of the disk (q2 and q4,
respectively) and defining the non-dimensional control input n=Vi/b, where b is a
positive parameter that accounts for the gain of the motor driver, among other
practical issues. The four-dimensional state space model is then
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_q1 ¼ q3;

_q2 ¼ q4;

_q3 ¼ �p1 sin q1 � ~sa1 cos q1j jq3 � ~sv1 q3 � ~sb1 q33 þ p2q4 þ ~tdz�p3v;
_q4 ¼ p1 sin q1 þ ~sa1 cos q1j jq3 þ ~sv1 q3 þ ~sb1 q33 � p2 1þ rð Þq4 � 1þ rð Þ~tdz
þ p3 1þ rð Þv;

ð6Þ

where the dead-zone component is redefined as ~tdz ¼ tdz= Î1 and the parameters are

p1 :¼ m1cþm2lð Þg
Î1

; p2 :¼ N2kTkF

Î1 R
þ sv2

Î1
; p3 :¼ bNkT

Î1 R
; r :¼ Î1

I2
;

~sa1 :¼ sa1
Î1
; ~sb1 :¼ sb1

Î1
; ~sv1 :¼ sv1

Î1
:

As mentioned before, to simplify the model it is convenient to compensate the
discontinuous friction component ~tdz using a feedforward controller. Toward this end,
the proposed input is

v ¼ uþ 1

p3
~tc uð Þ; ð7Þ

where u is the ideal input and ~tc uð Þ is the dead-zone compensation term given by

~tc uð Þ ¼
p3vþ ; u > 0;
0; u ¼ 0;
�p3v� ; u < 0;

8<
: ð8Þ

where vþ ¼ Vþdz=b and v� ¼ V�dz=b.
Therefore, the state space model of the feedforward compensated system results in

_q1 ¼ q3;

_q2 ¼ q4;

_q3 ¼ �p1 sin q1 � ~sa1 cos q1j jq3 � ~sv1 q3 � ~sb1 q33 þ p2q4 � p3u;

_q4 ¼ p1 sin q1 þ ~sa1 cos q1j jq3 þ ~sv1 q3 þ ~sb1 q33 � p2 1þ rð Þq4 þ p3 1þ rð Þu:

ð9Þ

The actual value of the model parameters can be obtained by an off-line least square
identification procedure. The equations concerning _q3 and _q4 can be written exhibiting
linear parameter dependency as

F tð Þy ¼ f tð Þ;

where

f tð Þ ¼ _q3 _q4½ �T; ð10Þ

and
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F tð Þ ¼ � sin q1 � cos q1j jq3 �q3 �q33 q4 �u 0 0
sin q1 cos q1j jq3 q3 q33 0 0 �q4 u

� �
; ð11Þ

depend on measurable signals, and y is the vector of unknown parameters given by

y ¼ p1 ~sa1 ~sv1 ~sb1 p2 p3 p2 1þ rð Þ p3 1þ rð Þ½ �T : ð12Þ

These parameters are obtained using the usual least square formula

y ¼
XS
k¼1

FT kTsð Þ F kTsð ÞT
 !�1XS

k¼1
FT kTsð Þ f kTsð Þ; ð13Þ

where Ts is the sample time (sufficiently small) and S is the number of samples of
input – output data.

5. Experimental results

In the experimental set-up, angular positions of the pendulum and disk are measured
with optical encoders with a resolution of 318.31 counts/rad (2000 counts/rev).
Angular velocities and accelerations are obtained via an off-line numerical differentia-
tion [16] of the position measures with a sample time of Ts=5 ms.

5.1 Identification and Compensation of Friction at the Disk Joint

Since friction phenomenon at the disk bearing is relatively independent of the
pendulum movement, the identification is performed with the pendulum fixed at the
rest position (q1= q3=0). Therefore, a reduced model for the motor – disk subsystem
is

_q4 ¼ 1þ rð Þ �p2q4 þ p3v� ~tdzð Þ: ð14Þ

To compensate the dead-zone friction term ~tdz using the feedforward controller (7)
with (8), the parameters v+ and v- must be identified. These parameters are obtained
from the static input – output relationship between the uncompensated control input v
and the steady-state velocity of the disk q4. Figure 2(a) shows the experimental curve
obtained by setting appropriate control input values, and recording the steady state
velocity of the disk. The effect of the non-linear phenomenon can be interpreted as a
large dead zone but this relation differs from that supposed in the dead-zone model (5)
because of the discontinuity arising when the disk starts its motion. Nevertheless, an
approximate value for v+ and v- can be obtained. A linear approximation of the
straight part of the curve in figure 2(a) and a linear extrapolation suggest that a fairly
good approximation of the dead-zone parameters is v+ ^ v7^ 31. The compensation
strategy (7) with (8) leads to the feedforward controller

v ¼ uþ vdz sgn u;
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with vdz=31. The experimental results obtained with this compensation scheme are
shown in figure 2(b). Although the dead zone is not completely cancelled, a linear static
relation between u and q4 can be fitted with an error of 25 rad/s at u=15 units. Using
this feedforward compensation, the motor – disk model can be approximated by a
linear model between input u and output q4 with reasonable accuracy for juj4 20. This
range may be extended when the disk is in the dynamical regime.
To identify the parameters p2(1 + r) and p3(1 + r) of the dynamical model (14), it is

assumed that an exact compensation for the dead-zone effect has been achieved. Then,
the motor – disk subsystem can be modelled by

_q4 ¼ �p2 1þ rð Þq4 þ p3 1þ rð Þu:

Since the pendulum is fixed at rest, the original identification setup given by (10) – (12)
is reduced to

Figure 2. Dead-zone of the motor – disk subsystem. Static relationship between the angular velocity of the
disk and the control input. (a) Response without compensation; (b) feedforward corrected response.
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fa ¼ _q4; Fa ¼ �q4 u½ �; ya ¼ p2 1þ rð Þ p3 1þ rð Þ½ �T :

The identification is performed by applying a ‘chirp’ input signal u=60 sin [o(t) t],
o(t)=3.2 + 1/75t (the natural frequency of the pendulum is approximately 5 rad/s)
and 0� t� 300 (S=66 104 samples). The identified parameters are p2(1 + r)=2.930
and p3(1 + r)=7.759.

The quality of the model is evaluated comparing the experimental data and
numerical simulations for sinusoidal input signals of different amplitudes. The
frequency of the input signal is fixed at 5 rad/s (near to the natural frequency of
oscillation of the pendulum) and the amplitude is set to 60 units (figure 3a), 40 units
(figure 3b) and 20 units (figure 4a). The simulated disk velocity has a sinusoidal shape
while the actual speed profile is a ‘distorted’ version of that, and the approximation is
worst as the amplitude of the input decreases (see the corresponding errors e in figures
3a, 3b and 4a). Among other hypotheses, this behaviour can be related to a non-linear
elastic characteristic of the rubber belt that couples the motor shaft with the disk.

Simplified analysis of the flexible coupling effect. The non-linear behaviour of the belt
can be modelled assuming the position of the motor shaft as an additional generalized
coordinate, and including a non-linear flexible joint. Then, the equation of motion (4b)
translates to

I2 €q1þI2 €q2þb2 _q2þC q2 �
qm
N

� �
¼ 0;

Jm €qmþbm _qm�
1

N
C q2 �

qm
N

� �
¼ tm;

ð15Þ

whereC(�) is a non-linear function representing the elastic behaviour of the rubber belt,
qm is the angular position of the motor shaft, Jm is the inertia of the motor, b2 and bm
are viscous friction coefficients at the disk and motor joint, respectively, and tm is the
motor torque (including the dead-zone feedforward compensation) given by

tm ¼
kT
R

V� kTkF
R

_qm :

Neglecting the inertia of the motor Jm, letting €q1 ¼ 0 (the pendulum is fixed at rest
position) and replacing V= bu, equations (15) reduce to

I2 €q2þb2 _q2þC q2 �
qm
N

� �
¼ 0;

g _qm�
1

N
C q2 �

qm
N

� �
¼ kTb

R
u;

where g :¼ N2kTkF=R
� �

þ bm.
The hypothesis of the non-linear behaviour of the rubber belt is validated by

numerical simulations. The non-linear function C(�) is approximated by the simple
hysteresis function of figure 5 with fixed parameters k and d, although they probably
depend on the velocity of the motor and disk joints. Since the angular position of the
motor shaft of the experimental system is not measured, the parameters of this model
cannot be obtained by the proposed identification procedure. For a small amplitude
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input u=20 sin (5t), a fairly good approximation is obtained with parameter values k/
I2=60 s – 2, d=2, N=13.5 (measured), b2/I2=10 s – 1, k/g=780 s – 1 and kTb/
(Rg)=26 s – 1, as revealed by the simulation results shown in figure 4(b). The
identification error is reduced, and a closer matching with experimental data is
obtained (compare with figure 4a).

Analysis of the Coulomb friction phenomenon. When including a Coulomb friction term,
the model of the feedforward compensated motor – disk subsystem is given by

_q4 ¼ 1þ rð Þ �p2q4 þ p3u� ~sc2 sgn q4ð Þ;

where ~sc2 :¼ sc2= Î1. For estimating parameter ~sc2 1þ rð Þ, as well as p2(1 + r) and
p3(1+ r), the identification setup given by (10) – (12) results in

Figure 3. Numerical simulations and experimental data of the disk velocity, and the corresponding error
using the dead-zone feedforward controller. The input signal is: (a) u=60 sin (5t), (b) u=40 sin (5t). (- -)

Numerical simulation; (—) experimental data.
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fb ¼ _q4; Fb ¼ �q4 v �sgn q4½ �; yb ¼ p2 1þ rð Þ p3 1þ rð Þ ~sc2 1þ rð Þ½ �T :

The identification is performed applying the input signal u=60 sin [o(t) t],
o(t)=3.2+1/75t, 0� t� 300. The identified parameters are p2(1+ r)=2.190,
p3(1+ r)=7.794 and ~sc2 1þ rð Þ ¼ 40. Notice that the parameter p3(1+ r) is very
close to the value obtained previously [p3(1 + r)=7.759], but p2(1 + r) has a rather
lower value due to the neglected Coulomb friction term in the first model.

The accuracy of the identified model is analysed as before, by comparing
experimental data with numerical simulations for sinusoidal inputs u=A sin (5t) of
different amplitudes. For amplitudes A=60 and A=40 (figure 6(a) and (b),
respectively) the results are very similar to those obtained neglecting the Coulomb
friction term (compare with figure 3(a) and (b), respectively). For A=20 (figure 7) the

Figure 4. Numerical simulation and experimental data of the disk velocity, and the corresponding error using
the dead-zone feedforward controller. Input signal u=20 sin (5t). (a) Rigid coupling between the motor and

the disk, (b) flexible coupling. (- -) Numerical simulation; (—) experimental data.
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approximation error is larger than that obtained without including Coulomb friction
(compare with figure 4a). This fact validates the conjecture that Coulomb friction can
be neglected from the model without degrading its predictive quality.

5.2 Identification of the Complete Model

The identification set-up for the dead-zone precompensated model is given by (13) with
(10) – (12). By applying an input signal u=60 sin [o(t) t], o(t)=3 + 1/100t, 0�t�300,
the vector of parameters results in

y ¼ 26:7594 �2:7905 0:7620 0:0578 0:0054 0:0284 2:6060 7:1394½ �T : ð16Þ

The accuracy of the model prediction with the identified parameters is poor, as is
revealed by performing a comparison between simulations and real data. Nevertheless,
parameters p2(1 + r)= y7=2.5194 and p3(1 + r)= y8=7.2813 are relatively close to
the values obtained before for the motor – disk subsystem.
To validate the parameters associated with the free pendulum (y1 – y4) an experiment

setting free the pendulum at q1= – 1.422 rad is carried out. The model of the free
pendulum (u=0) is given by

_q3 ¼ �p1 sin q1 � ~sa1 cos q1j jq3 � ~sv1 q3 � ~sb1 q33;

and the reduced identification set-up is

fc ¼ _q3; Fc ¼ � sin q1 � cos q1j jq3 �q3 �q33
	 


; yc ¼ p1 ~sa1 ~sv1 ~sb1½ �T :

This results in p1=26.095, ~sa1 ¼ 0:003, ~sv1 ¼ 0:01 and ~sb1 ¼ 0:00047. The simulation
results obtained with the identified model are in a close agreement with the
experimental data as shown in figure 8. This figure also reveals the low friction
characteristic at the pendulum joint.
Notice that the four parameters (p1, ~sa1, ~sv1 and ~sb1) are significantly far from the

ones obtained with the complete system [y1 – y4 in (16)]. This result suggests that we

Figure 5. Hysteresis function used to model the non-linear behaviour of the rubber belt.
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modify the identification set-up by reshaping f, F and y. The new set-up is obtained by
eliminating parameters p1, ~sa1, ~sb1 and ~sv1 from y resulting in

yd ¼ p2 p3 p2 1þ rð Þ p3 1þ rð Þ½ �T;

and considering

Fd ¼ q4 �u 0 0
0 0 �q4 u

� �
; fd ¼ _q3þx _q4�x½ �T;

where x ¼ p1sin q1 þ ~sa1 cos q1j j þ ~sv1 q3 þ ~sb1 q33 is computed from experimental data
and using parameter values identified with the free pendulum. By applying the input

Figure 6. Numerical simulations and experimental data of the disk velocity, and the corresponding error,
including Coulomb friction effects. The input signal is: (a) u=60 sin (5t), (b) u=40 sin (5t). (- -) Numerical

simulation; (—) experimental data.
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signal u=60 sin [o(t)t], o(t)=3 + 1/100t, 0 � t � 300, the redefined identification
procedure gives

yd ¼ 0:0106 0:0286 2:6111 7:1395½ �T :

The proposed structure for identification leads to a couple of possible values for the
parameter r, since it may be obtained as r1 ¼ yd3=y

d
1 � 1 ¼ 246:33 or

r2 ¼ yd4=y
d
2 � 1 ¼ 249:63. Nevertheless, both values are very close, validating these

Figure 7. Numerical simulation and experimental data of the disk velocity, and the corresponding error,
including Coulomb friction effects. The input signal is u=20 sin (5t). (- -) Numerical simulation; (—)

experimental data.

Figure 8. Numerical simulation and experimental data of the angular position of the pendulum, and the
corresponding error, obtained setting free the pendulum at q1 = 7 1.442 rad. (- -) Numerical simulation; (—)

experimental data.
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results. Hence, r is approximated by the averaged value r ¼ r1 þ r2ð Þ=2 ¼ 247:24. The
full set of identified parameters is summarized in table 1.

Simulation results and experimental data of the complete system (9) are compared in
figure 9(a). The simulated model is very close to the experimental data. The increment
of the approximation error at high frequencies can be attributed to the long duration of
the experiment and it is significantly reduced by restarting the simulation with the
actual initial conditions, as shown in figure 9(b) for a restart time t=200 s.

5.3 Validation of the Identified Model

In order to evaluate the model when the system performs oscillations of large
amplitude a state feedback control law based on anticontrol of Hopf bifurcations is
applied. As described in [15] it is possible to control the amplitude of the oscillation by
means of the state feedback controller given by

u ¼ k1q3 þ k2q
3
3:

This kind of amplitude control is useful for validation purposes because the desired
amplitude of oscillation is obtained by properly choosing control gains k1 and k2 based
on a bifurcation analysis and numerical continuation methods. Notice that the
pendulum position is not directly used in the feedback law, and therefore a close
response between the model and the actual system truly reveals the quality of the
model.

For k1= 7 10 and k2=0.1 the actual system performs an oscillation of amplitude
q1max & 2.58 rad. Figure 10 shows the experimental data and the numerical simulation
with parameter values given in table 1, revealing a very close matching.

6. Conclusions

Modelling and parameter identification of an inertia wheel pendulum benchmark has
been addressed in this paper. Attention has been focused on deriving a simple but
accurate model capable of reproducing large amplitude oscillations. It has been shown
that the motor – disk subsystem presents a large dead zone which is modelled as an
input voltage dependent friction torque. A viscous friction term is also included but
Coulomb friction at this joint can be neglected without a noticeable degradation of the

Table 1. Parameter values.

Parameter Values

p1 26.0950
p2 0.0106
p3 0.0286
r 247.24
~sa1 0.0030
~sb1 0.0005
~sv1 0.01
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prediction quality of the identified model. A simple compensation scheme for the dead-
zone effect has been proposed and a comparison between experimental data and
numerical simulations for sinusoidal inputs of different amplitudes reveal an acceptable
behaviour of the proposed model for the motor – disk subsystem. For low amplitude
inputs the actual disk velocity presents a distorted sinusoidal shape and the error of the
model approximation is increased. This phenomenon has been attributed to the non-
linear elastic behaviour of the rubber belt coupling, and has been validated by
simulations. The model of the dead-zone feedforward compensated system has been
identified and the performance of the derived model has been analysed when the system
develops large amplitude oscillations. A comparison between simulations and
experimental data reveals very good accuracy of the identified model.

Figure 9. (a) Experimental data and error of the simulated model obtained with the chirp input signal u=60
sin [o(t) t], o(t)=3 + 1/100t , 0�t�300. (b) Numerical simulation and experimental data, and error of the
simulated model obtained by restarting the simulation and updating the initial conditions at t=200 s of the

original experience; (- -) Numerical simulation, (—) experimental data.
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