
Journal of Systems Architecture 55 (2009) 90–101
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/locate /sysarc
Power saving and fault-tolerance in real-time critical embedded systems

Rodrigo M. Santos a,*, Jorge Santos b, Javier D. Orozco a

a Dep. de Ing. Electrica y Computadoras Universidad Nacional del Sur/CONICET Av. Alem 1253, 8000 Bahia Blanca, Argentina
b Dep. de Ing. Electrica y Computadoras Universidad Nacional del Sur Av. Alem 1253, 8000 Bahia Blanca, Argentina

a r t i c l e i n f o
Article history:
Received 23 February 2006
Received in revised form 8 July 2008
Accepted 30 September 2008
Available online 8 October 2008

Keywords:
Real-time
Energy-aware
Fault-tolerance
Embedded systems
1383-7621/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.sysarc.2008.09.001

* Corresponding author. Tel.: +54 291 4595181; fax
E-mail addresses: ierms@criba.edu.ar (R.M. Sant

Santos), jorozco@uns.edu.ar (J.D. Orozco).
a b s t r a c t

In this paper, a method with the double purpose of reducing the consumption of energy and giving a
deterministic guarantee on the fault tolerance of real-time embedded systems operating under the Rate
Monotonic discipline is presented. A lower bound exists on the slack left free by tasks being executed at
their worst-case execution time. This deterministic slack can be redistributed and used for any of the two
purposes. The designer can set the trade-off point between them. In addition, more slack can be
reclaimed when tasks are executed in less than their worst-case time. Fault-tolerance is achieved by
using the slack to recompute the faulty task. Energy consumption is reduced by lowering the operating
frequency of the processor as much as possible while meeting all time-constraints. This leads to a mul-
tifrequency method; simulations are carried out to test it versus two single frequency methods (nominal
and reduced frequencies). This is done under different trade-off points and rates of faults’ occurrence. The
existence of an upper bound on the overhead caused by the transition time between frequencies in Rate
Monotonic scheduled real-time systems is formally proved. The method can also be applied to multicore
or multiprocessor systems.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Embedded computing is an established engineering discipline
with principles and knowledge at its core. An embedded system
is any computer that is a component in a larger system and relies
on its own microprocessor [1]. Embedded systems represent the
major market for microprocessors: in 2002 about 109 microproces-
sors (approximately half of the world production) found their way
into embedded systems.

Although embedded systems have been in use for decades, in
the last few years there has been a definite tendency to utilise
them in more real-time complex applications in which more total
computing power, fault-tolerance, reduced energy consumption
and precisely timed behaviors are desirable. According to Lee [2],
the time is ripe to build a 21st century embedded computer
science.

Saving energy is particularly important in embedded mobile
systems because, given the battery technology and the workload
of a processor, a way to obtain larger intervals between successive
battery’s charges is through lower energy consumption. In CMOS
technology, extensively used in today’s processors, the power
undergoes an approximate cubic reduction with the supply volt-
age. Because frequency and voltage are in an approximate linear
ll rights reserved.

: +54 291 4595154.
os), iesantos@criba.edu.ar (J.
relationship and the time necessary to execute a given task
increases linearly with diminishing frequencies, the energy neces-
sary to execute a given task diminishes quadratically with voltage
[3,4].

In the embedded systems considered in this paper, the set of
real-time tasks is close to the classic Liu and Layland model [5]:
a set of independent, preemptible, periodic real-time tasks, each
one characterized by an execution time, a period and a deadline.
However, bearing real-world applications in mind, tasks have a
worst case execution time and a minimal interarrival time instead
of a fixed execution time and a period. Since there is a determinis-
tic worst case, it is possible to calculate the time necessary for the
processing of all tasks in each hyperperiod, defined as the Least
Common Multiple, LCM, of all the periods. The remaining time,
called slack, can be advanced by a proper redistribution and used,
whatever the application, when deemed convenient. On top of
that, more slack, often called gain-time, can be reclaimed when
tasks are executed in less than their worst-case time or increase
their interarrival time. Both slacks, redistributed and reclaimed,
can be devoted to saving energy by executing tasks at lower
speeds. The method, a collaborative relationship between the oper-
ating system and the application [6] falls within the workload-dri-
ven policies as defined in [7].

In [8], the notions of k-schedulability and singularity are am-
ply discussed in the context of using the slack to schedule mixed
and reward-based systems under the Rate Monotonic discipline.
Later, the slack was used to provide deterministic guarantees on

mailto:ierms@criba.edu.ar
mailto:iesantos@criba.edu.ar
mailto:jorozco@uns.edu.ar
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 91
fault-tolerance without missing hard deadlines [9]. In this paper,
a method based on those notions is used to reduce energy con-
sumption by lowering the speed at which real-time tasks are
executed. However, as pointed out in [10], power aware embed-
ded systems working at reduced voltages are prone to soft-errors
(single-event upsets) which diminish their reliability. The cause
for that is that lowering the voltage reduces the amount of the
external perturbation required to upset the value stored at a cir-
cuit node. For example, in an accelerated soft-error testing
experiment on a 4-Mbit SDRAM memory, the authors found that
the number of errors increased from 57 to 658 (a 1154% incre-
ment), when the operational voltage was reduced from 5 V to
4 V (a 20% reduction). Therefore, a method that combines power
saving and fault-tolerance appears to be particularly useful in
critical embedded systems, especially bearing in mind that the
designer can choose the trade-off point between both
applications.

The rest of this paper is organised as follows: in Section 2, pre-
vious related work is reviewed. In Section 3, a short presentation of
the theoretical foundation of k-schedulability and its application to
the design of fault-tolerant systems is made; the contents of this
section are not new but are essential to the understanding of the
original contributions which follow. In Section 4, the method is ap-
plied to the scheduling of real-time systems executing at reduced
speeds to save energy; this may be combined with fault-tolerance
at different trade-off points; how to take into account the
switching time between frequencies in real world processors is
also analysed. In Section 5, the proposed method is evaluated by
simulations with randomly generated sets of real-time tasks; rela-
tive savings vs utilisation factors for different trade-off points and
rates of faults’ occurrence are determined. In Section 6, the method
is extended to multiprocessors and multicore systems and, finally,
in Section 7, conclusions are drawn.
2. Related work

The list of discussed papers is representative of the state of the
art. The problem of simultaneously saving energy and tolerating
faults has been treated in [11–13]. Unsai et al. [11] use a task set
model consisting of primary and secondary tasks executing in a
set of loosely coupled processors under the Application-Level
Fault-Tolerance scheme. Secondary tasks may be identical to the
primary tasks or they may be a scaled down version of them. They
introduce heuristics that attempt to finish executing primaries as
early as possible while delaying the execution of secondaries as
much as possible. This results in fewer secondaries having to run,
with a corresponding saving of energy. The method is not applica-
ble to the task model used in this paper, which is closer to the clas-
sic model presented in [5] and to more common real-world
applications.

In [13,12], fault-tolerance and power saving are achieved via
checkpointing and dynamic voltage scaling, respectively. In the
checkpointing method, the system saves its state in a secure de-
vice at definite instants and when a fault is detected the system
rolls back to the most recent checkpoint and resumes normal exe-
cution. In [13], a fixed priority discipline and equidistant check-
points are used, whereas in [12], a non-uniform spacing of
checkpoints (measured in CPU cycles) is introduced. In both cases,
prime factors affecting the efficiency of the method are the over-
head incurred in each checkpoint and the number of allowed
checkpoints. An example of a single task system with different
utilisation factors and different overheads, admitting one failure
per task execution, is given in [12]. For a low utilisation factor
and a very low overhead, 0.3% and 0.5%, respectively, the energy
saving is 64%; it diminishes to 0% for values of 0.6 and 5%, respec-
tively. Also, the placement of checkpoints measured in CPU cycles
may be not feasible from the point of view of the software
execution.

In [4], four energy saving methods are presented. The first one,
called Sys-Clock, is a single frequency one. First, the authors prove
that a processor will consume minimum energy if it runs at a con-
stant frequency and completes the execution of the workload ex-
actly at its deadline. As explained later in the present paper, the
method can be combined with fault-tolerance if, when calculating
the single frequency, the time necessary to recompute faulty tasks
is taken into account. The algorithm to calculate the frequency,
which is optimal in the sense that it minimizes energy consump-
tion, is described. The optimality, however, is based on the avail-
ability of a continuous spectrum of frequencies, something that
does not happen in real processors, in which only a reduced set
of operating frequencies is available. The processor must then
operate at the available frequency equal to or bigger than the fre-
quency obtained by the calculations. If no operating frequency is
available between the calculated and the nominal one, the proces-
sor operates without any energy saving. Two other methods use
multiple frequencies; the fourth one cannot be used in practical
applications because of the complexity of the required scheduling
calculations.

Regarding power saving alone, different Dynamic Voltage Scal-
ing algorithms, DVS, have been proposed for single processor sys-
tems operating under the Earliest Deadline First, EDF, and the
Rate Monotonic, RM, scheduling disciplines. Pillai et al. [3] redis-
tribute slack by using a single frequency to execute all tasks. If
gain-time appears, it is used to lower the operating frequency in
the interval between its appearance and the next deadline. The
process is repeated at each scheduling point and there is no deter-
ministic redistributed slack to be used in recuperating faulty tasks.

Qadi et al. [14] present a dynamic voltage scaling algorithm
supporting the canonical sporadic task model defined in [15]. The
method, however, is designed only for the EDF priority discipline
and it is not applicable to RM.

Scordino and Lipari [16] propose a power aware scheduling
using resource reservation techniques. The method, based on an
algorithm called GRUB [17], reclaims the time not used in previous
reservations to slow down the processor. It uses the EDF schedul-
ing policy.

Quan et al. [18] propose two static fixed priority algorithms for
scheduling real-time systems on variable voltage processors. The
first one finds the minimum constant speed that can be applied
throughout the execution of the whole tasks’ set, shutting down
the processor when it is idle. The second one produces a vari-
able–voltage schedule which always results in lower energy con-
sumption than the first algorithm. They assume continuous
voltage variations and do not take advantage of reclaimed slack.

In [19], the authors propose an optimization algorithm to find
for each task a speed that minimizes the energy consumption of
the system. They show that each task can execute at constant
speed in all its instances within the LCM. The optimization prob-
lem is proved to be non-linear and the computational complexity
of the method is O(n2logn). The scheduling policy used is EDF. In
the paper, the authors assume that frequency and voltage vary
continuously and no switching costs are calculated in terms of time
or energy. No fault recovery mechanism is considered for the tasks
in the system.

In [20], some dynamic scheduling techniques are proposed for
power aware real-time systems. The method includes three parts:
(a) an off-line static calculation to compute the optimal speed
assuming worst case execution times; (b) an on-line speed reduc-
tion, possible thanks to the reduction in actual execution times; (c)
an on-line, adaptive and speculative speed adjustment, to antici-
pate early completions. The third speed reduction is not determin-

92 R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101
istic and therefore it cannot be used if deterministic guarantees on
fault-tolerance must be given.

The problem of power saving in multiprocessor systems has
been addressed by Zhu et al. [21]. They propose a technique, called
Global Shared Slack Reclamation, in which the processors may
share the reclaimed slack arising from a shorter execution time
in one of them. The assignment of the set of tasks into the set of
processors is made dynamically, subject to stochastic reductions
in the execution times. Therefore, no deterministic guarantees
can be given for fault-tolerance.

In this paper, a method based on the notion of k-schedulability
is used to reduce energy consumption by lowering the speed at
which real-time tasks are executed while providing deterministic
guarantees on their fault-tolerance without missing hard dead-
lines. Some distinctive features of the method are that the designer
can choose the deterministic guarantees of fault-tolerance to be gi-
ven as well as fix the trade-off point between fault-tolerance and
energy saving. The method is also evaluated and compared with
other methods.

3. Rate monotonic schedulability

The RM discipline, a de facto standard at least in the USA [22], is
used to define tasks’ priorities. Several methods have been pro-
posed for testing the RM-schedulability of real-time systems
[5,23–25].

3.1. k-Schedulability

In [25], the Empty Slots Method is presented. Time is assumed
to be slotted and the duration of one slot is taken as the unit of
time. Slots are denoted t and numbered 1,2, . . . The expressions
at the beginning of slot t and instant t mean the same.

The model, close to the classic Liu and Layland [5], is usual in
real world applications. In it, real-time systems, SðnÞ, of n indepen-
dent preemptible periodic or pseudo-periodic tasks, must be
scheduled to meet all time constraints. A task, si, is said to be
released (or instantiated) when it is ready to be executed. SðnÞ
is completely specified as SðnÞ ¼ fðC1; T1;D1Þ; ðC2; T2;D2Þ; . . .

ðCn; Tn;DnÞg, where Ci; Ti, and Di, denote the worst case execution
time, the period or the minimum interarrival time, and the dead-
line of si relative to its release, respectively. In common applica-
tions, Ti is longer than or equal to Di. If Ti 6 Tiþ1, the system is
RM ordered. In [5], it is formally proved that the worst case of load
takes place when all the tasks request execution simultaneously.

Assuming that time is slotted and that the slot is the unit of
time simplifies the theoretical approach and the schedulability cal-
culations. To this effect, how long is a slot measured in s, the MKS
unit of time, can be chosen by the designer and depends on the
application. In [25], it is formally proved that SðnÞ is RM-schedula-
ble iff

8i 2 ð1; . . . nÞ

Ti P Di P least tjt ¼ Ci þ
Xi�1

h¼1

Ch
t

Th

� � ð1Þ

The intuitive meaning of expression (1) is clear: si will meet its
time-constraint if its deadline is equal to or bigger than the time
necessary to execute itself and all the tasks of higher priority,
assuming that each task is executed as soon as possible. The last
term on the right hand member of the expression above is called
the work-function, denoted Wi�1ðtÞ. It gives the number of slots
necessary to execute all the tasks instantiated up to slot t. If M de-
notes the number of slots contained in a LCM interval, the expres-
sion M �WnðMÞ gives the number of empty slots (slack) in M.
Obviously, once the set of real-time tasks is specified, the amount
of slack in the hyperperiod cannot be increased. The case of dead-
lines longer than periods is simply handled by transposing their
symbols ðDi P Ti P � � �Þ.

Note that when RM is used, it is not necessary to determine at
the beginning of every slot which task will be executed in it. The
assignment of tasks into the processor changes only when the exe-
cution of a task is finished or when a new task of higher priority
than the one being executed, is released. What is more, if a task
does not fully use its last slot, the beginning of the execution of
the next task (if already released) can be advanced. A task si

belonging to a system SðnÞ is said to be ki-schedulable if ki is the
largest integer satisfying

8i 2 ð1; . . . ; nÞ

Ti P Di P least tjt ¼ Ci þ ki þ
Xi�1

h¼1

Ch
t

Th

� � ð2Þ

The intuitive meaning of expression (2) is clear: in the interval be-
tween its instantiation and its deadline, si tolerates that ki slots be
used for purposes other than executing itself and giving way to
higher priority tasks. In the context of this paper, those purposes
are to use more time to execute the task, lowering the frequency
and saving energy, or to recalculate faulty tasks. Those ki slots
are, essentially, redistributed slack. If k ¼minfkig, the system is
said to be k-schedulable.

A singularity, s, is a slot in which all the tasks released in
1; ðs� 1Þ have been executed. Note that t ¼ s� 1 can be either an
empty slot or a slot in which a last pending task completes its exe-
cution. s is a singularity even if at t ¼ s tasks are released.

In [8], it is formally proved that k slots can be given any antic-
ipated use in the interval between each singularity and the next
one without jeopardizing the real-time system. Note that since in
the previous slot no task is pending execution, t ¼ 1, the start of
the system, is a singularity and k slots are already available for
any desired use. The implementation to keep tab of the available
slack is rather simple: at each singularity the operating system,
OS, loads a counter with the value of k (redistributed slack) and
decrements its content by 1 each time that a slot is used for pur-
poses other than the execution of the original real-time set. Slack
is available while the content is not zero. After reaching zero, the
counter must wait until the next singularity to be reloaded to the
value k.

The Empty Slots Method then provides the necessary and suffi-
cient condition for the system to be schedulable, that is to meet all
its time-constraints, assuming that each task is executed as soon as
possible. It also gives the amount of empty slots, or slack, in the
hyperperiod. The k-scheduling method goes further: it calculates
the amount of slack that can be early used for purposes other than
executing the original set of tasks at nominal frequency, while
keeping the system schedulable.
3.2. Fault-tolerance

The application of k-schedulability to the design of fault-toler-
ant systems has been presented in [9]. An updated summary
follows.

In this subsection, it is assumed that the k slots available after
each singularity are entirely devoted to recomputing faulted tasks.
The method falls within the class based on temporal redundancy
and, therefore, the amount of possible recomputing is limited by
the amount of redundant time available to do it. However, as will
be shown later, the designer can choose how to use it, for instance
providing deterministic guarantees of single or multiple recoveries
to the more critical tasks. The fault-detection method, beyond the
scope of this paper, is either explicit (through a pattern recognition

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 93
in which a signature is associated to a particular fault) or implicit
(by some indicator caused by the fault) [26].

Assuming the worst case, only one singularity takes place in the
interval ½1; Tn�, where Tn denotes the maximum period in the tasks’
set. Ri ¼ bk=dTn=Tiec represents the number of slots available to re-
cover si in each of its instantiations in the interval ½1; Tn�. If Ri P Ci,
the task may be recovered at least once in each instantiation. If
Ri < Ci, the recovery can be made in only

pi ¼ Tn=Tid e= Ci=Rid eb c

instantiations out of the dTn=Tie instantiations of the period, subject
to the condition RidTn=TieP Ci. The condition ensures that at least
one recovery can be made.

If qi denotes the number of instantiations in ½1; Tn� in which si

may fail once and be recomputed, the diophantic expression

Xn

1

Ci � qi 6 k ð3Þ

subject to the condition 0 6 qi 6min½pi; dTn=Tie�, indicates a least
upper bound on the combination of faults that the system can tol-
erate. Since ½1; Tn� is the most congested interval in the hyperperiod,
when Tn–M, the method guarantees at least the same fault-toler-
ance in the intervals ½ðjTn þ 1Þ; ðjþ 1ÞTn�, j ¼ 1;2; . . . ; up to
ðjþ 1ÞTn ¼ M.

Example. Let S(3) be the system specified in the first three
columns of Table 1. The last four columns contain the calculated
values of ki, Ri, pi and dTn=Tie, respectively.

Since k ¼ 5, the combination of faults that the system can toler-
ate is then given by q1 þ 2q2 þ 3q3 6 5. The relevant combinations
of the number of instantiations in which the different tasks can fail
once and be recomputed in [1,15] is given in Table 2.

Therefore, in the interval [1,15], s1 can be recuperated in its
three instantiations and s2 in one; s1 in two instantiations and s3

in one; and, finally, s2 and s3 in one instantiation each. The same
goes for the interval [16,30]. It must be noted that any of the above
alternatives constitutes a deterministic guarantee on the fault-tol-
erance of the system. As explained before, the implementation re-
quires only one counter in which the value k is loaded at each
singularity and is decremented by 1 each time a slack slot is used.

As described, the method has only one checkpoint, at the end of
the execution of each task. It can be easily converted to multiple
checkpoints simply by dividing a task into convenient subtasks,
each one tested at the end of its execution. In expression (3) partial,
instead of total, execution times should be used.

4. Energy saving

Contrary to what happens in other applications (e.g. laptop
computers), the disk and the screen are not normally used in
Table 1
System’s specification

i Ci Ti ¼ Di ki Ri pi dTn=Tie

1 1 6 5 1 3 3
2 2 10 6 2 2 2
3 3 15 5 5 1 1

Table 2
Diophantic expression coefficients

q1 q2 q3

3 1 0
2 0 1
0 1 1
embedded systems, specially in mobile ones. However, besides
its cache, the microprocessor must access its DRAM, which oper-
ates always at its nominal voltage but with timing waveforms
driven by the system clock [27]. The total (processor plus DRAM)
percent saving is therefore application-dependent: the relative
importance of savings in the processor decreases as the applica-
tion requires more accesses to DRAM. In what follows, only the
savings in the microprocessor are considered. This also excludes
possible savings in other consumptions, e.g. WLAN devices [28].
The method, however, can be incorporated into multiple re-
source managers cooperative schemes such as that described in
[29].

When the nominal voltage of the processor, Vn, is reduced to a
certain operating voltage, Vo, the energy consumed by a CMOS pro-
cessor is reduced approximately ðVo=VnÞ3 times; almost all energy
saving methods are based, therefore, on reducing the voltage at
which the system operates.

However, diminishing supply voltage results in increased cir-
cuit delay; therefore, the nominal frequency, fn, must be reduced
to an operating frequency fo, and, consequently, the execution time
is increased ðfn=foÞ times. Usually, the values of voltage and fre-
quency are almost linearly related. In the case of the Transmeta
Crusoe processor (Transmeta Tm 5400 specifications, cited in
[27]) the curve voltage vs frequency is slightly convex and can be
approximated by a straight line through the end points. The
approximation is pessimistic in the sense that the operating fre-
quency obtained for a given voltage in the approximation is actu-
ally higher than that obtained from the real curve; consequently,
it will produce less saving. It must be borne in mind that although
it is possible to reduce frequency without reducing voltage, the
converse is not true. Assuming, then, that voltage and frequency
are linearly related, energy consumption per executed task, re-
duced ðVo=VnÞ2 times, is also reduced ðfo=fnÞ2 times.

It helps to simplify calculations if the power of the processor at
nominal frequency is taken as the unit of power. Since the unit of
time is the slot, the unit of energy turns out to be the energy con-
sumed by the processor working at full power during one slot. It is
assumed that when there are empty slots (no tasks to be pro-
cessed) the processor is idle and works at 15% of the power con-
sumed at the lowest available frequency, a figure based on
measurements presented in [27]. Knowing the power in W and
the slot-time in s, it is a trivial matter to obtain the energy con-
sumed in MKS units (Ws).

Energy saving methods can be broadly classified in two classes:
single frequency and multiple frequencies methods. Although the
saving is dependent on the type of load to be processed and the
processor in which it is processed, some general characteristics
of both classes can be given. In the single frequency class, one fre-
quency, deemed to be optimal or suboptimal (in the sense of con-
suming less energy), is calculated for the system clock, and the
workload is always processed at that same frequency. In the multi-
ple frequencies class, the system clock switches between frequen-
cies according to certain criteria (e.g., always processing each task
at the same reduced frequency or reducing frequency when slack is
available); this class pays a penalty for the overhead introduced
when switching frequencies.

In [4], three practical energy saving methods are proposed. The
first one, Sys-Clock, is a single frequency method optimizing en-
ergy consumption; it is the best among all single frequency meth-
ods. The authors present comparative evaluations of Sys-Clock
against four multifrequency methods, two by Pillai and Shin (Static
Voltage Scheduling and Cycle Conserving), and two by Saewong
and Rajkumar (Priority Monotonic and Dynamic Priority Mono-
tonic). Comparisons are made by determining, in all cases, energy
consumption relative to consumption at nominal frequency (with
no saving at all). Since evaluations in this paper are performed

94 R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101
against Sys-Clock, the results can be transitively compared to those
obtained in [4].

In what follows, Sys-Clock is described in the context of an
available continuous spectrum of frequencies; this means that
the processor can operate at the calculated frequency, whichever
it is. Then, a multiple frequencies method, based on k-schedulabil-
ity and denoted kFE, is introduced, also in the context of a contin-
uous spectrum of frequencies. The discussion focuses on the
limitation imposed on both methods by the fact that in real world
processors, only a small number of operating frequencies are avail-
able. The cost of the frequency switching overhead is formally
proved and finally, theoretical findings are summarized and the
kFE-scheduling algorithm is explained, step by step. Throughout
the section, examples are given, of course not as proofs but to illus-
trate the theoretical conclusions.
4.1. Single frequency from a continuous spectrum

In order to process a given workload, a minimum constant
operating frequency for the whole system is calculated. In [4], it
is formally proved that the frequency calculated with the proposed
Sys-Clock algorithm is optimal among single frequency methods in
the sense that there is no other single frequency scheme that con-
sumes less energy and guarantees all the timing constraints.

In the algorithm, given a set of n tasks, n subsets can be
formed; each subset consists of a task and all the tasks that, be-
cause of having higher priority, may preempt it. Essentially, the
algorithm determines first the n constant clock frequencies that
minimize consumption to execute each subset. Each frequency
is determined by slowing down the execution of the subset as
much as possible without missing any deadline. The maximum
frequency of this set of task-oriented minimum frequencies is
then adopted as single frequency for the whole system. It must
be borne in mind that the exact implementation of the algorithm
will require that the calculated frequency is available at the pro-
cessor; in other words, a continuous spectrum of frequencies
should be available.

Although it is designed only to save energy, the method can be
combined with fault-tolerance by incrementing the workload by
the time necessary to recompute the faulty tasks guaranteed to
be recovered.

It may happen that Tn < M, that is, the maximum period is
smaller than the hyperperiod. In that case, the intervals of length
Tn following the first one will be less congested and idle times will
appear. The consumption of the processor in the idle state is as-
sumed to be 15% of the non-idle consumption at that frequency.

Example. In S(3) = {(1,6,6), (2,10,10), (3,15,15)}, the system of the
example in Section 3.2, s1 is assumed to be a very critical task and
must be recuperated even if it fails in all its instantiations. Because
of this, the system can be seen as composed of four tasks, the
original three plus the recomputations of s1.

The energy consumption in the hyperperiod, with the processor
operating at nominal frequency, can be calculated as the sum of the
workload plus 0.15 times the number of empty slots:

W4ð30Þ þ 0:15 � ð30�W4ð30ÞÞ ¼ 23:20

The minimum single frequency, calculated with the Sys-Clock static
algorithm, is 0:86̂. Bearing in mind that ðVo=VnÞ2 ¼ ðfo=fnÞ2, the en-
ergy consumption is

ðfo=fnÞ3½W4ð30Þ=ðfo=fnÞ þ 0:15ð30�W4ðMÞ=ðfo=fnÞÞ� ¼ 16:97

73.14% of that at nominal frequency with a relative saving of
26.86%. The processor is saturated in [1,15] but because the interval
[16,30] is less congested, 4.61 empty slots (idle processor time) ap-
pear at the end of the interval (Fig. 1a).

4.2. Multiple frequencies from a continuous spectrum: redistributed
and reclaimed slack

The use of several frequencies to save energy is always condi-
tioned to the fact that the voltage scaling overhead at every fre-
quency-switch is acceptable. For the sake of clarity and since the
examples of this and the next subsection are slated only to illus-
trate the different methods, switching-times between frequencies
will be neglected. How they influence real world applications is
analysed in Section 4.4 and taken into account when performing
comparative evaluations in Section 5.

In [4], the Priority-Monotonic Frequency Assignment (PM-clock)
algorithm is presented; it uses the Sys-Clock algorithm but it as-
signs one frequency for each task in such a way that a higher prior-
ity task will always be executed at a frequency higher than or equal
to that of a lower priority task. It can be improved by a dynamic ver-
sion (DPM-clock) that detects early completion times and makes
use of the additional slack to reduce frequencies. In [3], the authors
propose a single frequency method, Static Voltage Scaling, and a
multiple frequencies one, Cycle-Conserving Real-Time Dynamic
Voltage Scaling. The last one takes advantage of slack appearing
when tasks execute in less than their worst-case execution time.
In [4], these four multiple frequencies methods are comparatively
evaluated against Sys-Clock; the metric used in the evaluation is
the energy saved relative to nominal consumption.

In what follows, the multiple frequencies kFE-scheduling meth-
od (for k Fault-tolerant Energy saving), based on k-schedulability,
will be presented. The value of k obtained statically for each proces-
sor is a deterministic lower bound on the amount of slack to be
redistributed. It is a lower bound because there may be empty slots
not captured by the method, leading to a value of k smaller than the
total number of empty slots in the hyperperiod, ðM �WnðMÞÞ. If
both applications, energy saving and fault tolerance, are sought,
the slack to be used in providing a deterministic guarantee on the
fault-tolerance of the system, denoted kf , must therefore be set
using only part of k. After assigning kf to fault recovery,
ke ¼ k� kf can be devoted to extending the execution time of other
tasks. The operating frequency can therefore be lowered and volt-
age diminished accordingly; energy saving is then obtained. The de-
signer is free to choose the trade-off point between both uses.

Since t ¼ 1 is a singularity, the execution of the first task can
immediately be extended by ke slots without compromising the
timing requirements of the real-time system. In that case, the oper-
ative frequency would be

fo ¼ ðC1=ðC1 þ keÞÞ � fn ð4Þ

In general, if task si is executed after a singularity, it can be pro-
cessed at a frequency

fo ¼ ðCi=ðCi þ keÞÞ � fn ð5Þ

The only implementation’s requirement is that at each singularity
the OS loads a counter with the value of ke and decrements its con-
tent by 1 each time that a redistributed slack slot is used to dimin-
ish the frequency.

Example. Suppose that ke ¼ 2 and si, instantiated at a singularity,
has a Ci ¼ 2. Therefore si may execute at fo ¼ 0:5f n in four slots.
The first two slots (the singularity and the next) correspond to the
task’s own slots (assigned to it when scheduling the system) and
the counter is not decremented. The third and fourth slots are
redistributed slack; in the third, the content is decremented to 1
and in the fourth to 0. The counter will reload a value of 2 at the
next singularity.

Fig. 1. Example’s temporal evolutions.

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 95
Example. In S(3) = {(1,6,6), (2,10,10), (3,15,15)}, the system of the
previous example, the recuperation of s1, even if it fails in all its
instantiations, is guaranteed by taking kf ¼ 3 However, since
ke ¼ k� kf ¼ 2, the system cannot only recuperate tasks but also
save energy as shown in Fig. 1b; the energy consumption in this
case is 19.08, 82.24% of the consumption at full speed; the percent
saving relative to nominal frequency is ð1� ð19:08=23:20ÞÞ
100 = 17.76%. Note that the system takes advantage of singularities
occurring at t = 1 and 15. At t = 16, s3 starts executing at
fo ¼ ð3=5Þfn, but before using the redistributed slack it is pre-
empted by s1 that executes at fo ¼ ð1=3Þfn. In order to complete
its execution, s3 still needs 1.2 slots at nominal frequency; it uses
them starting at t = 27. When idle, the processor switches to
fo ¼ ð1=3Þfn and its consumption is 15% of the non-idle state at that
frequency. The saving in this case (17.76%) is smaller than the sav-
ing obtained using the continuous spectrum single frequency
method (26.86%).

Moreover, if some task takes less than its worst-case execution
time, WET, the difference between it and the actual one, AET can be
used to reduce the frequency in the processing of the following
tasks. The method consists, then, in a reclamation of the slack gen-
erated by the reduction in execution time, kr ¼WET � AET . The va-
lue of kr is stochastic and depends on the probability that, for each
task, AET < WET, holds.

The method is greedy in the sense that the available slack is de-
voted entirely to reduce the execution frequency of the task that
follows immediately. The implementation is similar to the previ-
ous ones: a third counter is loaded with kr , the value of the re-
claimed slack or gain time, when the donating task finishes its
execution; it is decremented by 1 with each reclaimed slack slot
used to save energy. As in the case of slack redistribution, the nom-
inal frequency can be reduced to

fo ¼ ðCi=ðCi þ krÞÞ � fn ð6Þ

It must be noted that singularities, when occurring, are easily de-
tected. Since ke is determined once for all, the calculation of fo after
each singularity imposes a light overhead. It could be argued that
better results would be obtained if the available slack were spread
throughout the tasks going to be executed up to the next singular-
ity. This requires, however, a dynamic assignment which would
have two shortcomings:

(a) The need to determine when the next singularity would take
place, as opposed to detecting it when occurring, would
impose a rather heavy overhead on the OS. On top of that,
since in the model used in this paper interarrival and execu-
tion times may vary, the calculation may be pessimistic.

(b) Spreading the slack too much may lead, in the case of dis-
crete frequencies, to waste it because the system may end
operating at fn. On the same line of reasoning, choosing a
task that optimizes the use of the available slack between
singularities would also impose a heavy overhead on
the OS.
4.3. Single and multiple frequencies from a discrete spectrum

In the previous analysis, the fact that in real microprocessors
the operating frequency cannot be varied continuously was not ta-
ken into account. In the case of the Intel PXA255, for example [30],
the available operating frequencies are 400, 300 and 200 MHz
(fn; 0:75f n; 0:5f n, or simply 1, 0.75 and 0.50 if normalized to the
nominal frequency). In both classes, single and multiple frequen-
cies, this produces more energy consumption than in the theoret-
ical continuous model because the real operating frequency must
be adjusted to the available frequency, often higher than the one
obtained by calculations. In [4], this energy loss is called energy
quantization error.

Since frequencies will not vary continuously, the expression of
the operating frequency to save energy in kFE-scheduling will then
be properly expressed as

fo ¼ ðCi=ðCi þ keÞÞfnd e ð7Þ

96 R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101
denoting the smaller frequency equal to or bigger than
ðCi=ðCi þ keÞÞfn available in the processor. Associated to each fre-
quency there will be an operating voltage from which the reduction
in the energy consumption may be calculated.

Something similar happens in Sys-Clock, in which the operating
frequency must be bigger than or equal to the optimal theoretical
one obtained by calculations. The method will be called Discrete
Sys-Clock, denoted DSC.

Example. The evolution of the system of the previous examples
using kFE-scheduling to save energy, when only the frequencies 1,
0.75 and 0.50 are available, is shown in Fig. 1c). Total consumption
is now 18.07, 77.89 % of that at nominal frequency with a saving of
22.11%. Note that at t ¼ 19, s3, which is executing at fo ¼ 0:75, is
preempted by s1. Since the three slots used up to then by s3 are its
own, redistributed slack is still not used. It can be devoted to
lowering the operational frequency of s1 and its recuperation after
failing. Since no other frequency is available between 0:8b6 and 1,
DSC cannot save energy because it must execute at nominal
frequency.

The performance of kFE-scheduling relative to DSC can be even
better. The reason behind this fact is that the single frequency is
calculated for the worst scenario in which all possible failures
guaranteed to be recuperated actually occur. However, the
assumption is pessimistic and if the failures do not take place,
the best that DSC can do in the slack appearing is to operate at
15% of the non-idle processor consumption. kFE-scheduling, in-
stead, makes a better use of the slack by lowering the frequency
at which some tasks are executed.

Example. Let us see what happens if, in the system of the previous
example, s1 fails in only one of its instantiations

(a) Nominal frequency: If s1 fails in only one instantiation, the
consumption at nominal frequency is 19.8, resulting from
18 slots fully used to execute the normal workload plus
one recovery and 12 empty slots consuming 15% of the nom-
inal energy.

(b) Single continuous frequency: Since s1 fails only once, the
workload is executed in 20.77 slots. The rest, 9.23 slots, is
idle and consumption is 15% of the non-idle processor con-
sumption at fo ¼ 0:8b6. Total consumption is 14.87, with a
saving of 24.89%.

(c) Single discrete frequency: Since 0:8b6 is between 0.75 and 1,
it must execute at nominal frequency and no saving is
obtained.

(d) kFE-scheduling: The consumption of the system is 11, 72
with a saving of 40.79%.

As can be seen, kFE-scheduling outperforms not only discrete but
also continuous single frequency.
4.4. Frequency switching overheads

Transit times between frequencies are far from being negligible
and must be taken into account as an overhead when choosing sin-
gle vs multiple frequencies. In certain processors, frequency
switching may take a relatively long time: the Compaq iPAQ, for in-
stance, needs 20 ms to synchronize SDRAM timing [4]; other pro-
cessors take much less: the Intel PXA255, for instance, has a
transit time of only 500 ls [30]; however, during that period, the
CPU clock stops completely until the new frequency is stabilized.
It must be noted that only frequencies synthesized from the main
crystal (3.6864 MHz) are considered. The processor has a sleeping
mode achieved by turning off the main crystal and turning on a
32.768 kHz crystal; this oscillator, however, can take up to 10 s
to stabilize. Because it takes so long, the sleeping mode cannot
be used in real-time applications and it will not be considered here.

Every time a frequency switching takes place, there is also a
context switching, taking a certain time. This involves the time re-
quired to maintain the context of the jobs involved as well as the
time spent by the scheduler to service the interruption that trig-
gers the switching. The problem of context switching is analysed
in ([31], Real-Time Systems, p. 165) in the frame of conventional
single frequency executions. It is shown there that in order to take
into account the context switching overhead in job-level fixed pri-
orities assignments, it suffices to add twice the context switching
time to the execution time of each task.

Although frequency switchings, as managed by the methods de-
scribed in this paper, always imply context switchings, the con-
verse is not true. Frequency switching overhead warrants then a
separate analysis. How this overhead (considerably larger than
context switching’s) is introduced in the schedulability calcula-
tions of the system, is formally proved in what follows.

An RM scheduled real-time system operating with a restricted
set of multiple frequencies is considered. Two things must be
borne in mind: (a) because there are only a few available frequen-
cies, a task may finish its execution without consuming all the
available slack. This happens because the available frequency is
higher than the theoretical one calculated from a continuous spec-
trum; a faster processing leads to an earlier finish, leaving some
slack unused. (b) a task executing at a reduced frequency may be
preempted by a higher priority task before consuming all the avail-
able slack; what remains can, in turn, be used by the preempting
task.

Example. si of Ci ¼ 2 is instantiated at an instant with ke ¼ 3. It
could execute at fo ¼ ðCi=ðCi þ keÞÞfn ¼ 0:4f n but that frequency is
not available. Instead it executes at fo ¼ 0:5f n, the smallest
available frequency bigger than or equal to 0:4f n. In doing so, it
consumes two slots of its own and two redistributed slack slots.
Therefore when it finishes its execution there is still one slack slot
ready to be used by another task (Fig. 2a)).

Example. If si of the previous example is preempted after execut-
ing three slots, two out of the three available slack slots, can be
used by the preempting task. It may happen, however, that three
slots are not enough to lower the frequency of the preempting task.
In that case, it will execute at nominal frequency and the slack will
be passed on to the following task, be it si or some higher priority
task preempting it (Fig. 2b and c).

Lemma 1. The maximum number of frequency changes that a system
may suffer between singularities is twice the number of tasks’ instan-
tiations in the interval minus 1.

Proof. Between singularities there will be a certain number of
slack slots available to reduce frequency. The first task instantiated
after the singularity may start execution at a frequency different
from that operating at the moment of its instantiation, requiring
one frequency switch. From then on, three alternatives may occur:
(a) The task finishes its execution at a slot preceding a singularity
and it is therefore followed by an empty slot or by the execution of
a task instantiated at the singularity. (b) The task finishes its exe-
cution and it is followed by a pending task of lower priority. (c)
The task is preempted by another task of higher priority. In the
three cases a frequency switching may take place. The alternatives
are repeated for the second, third, etc. tasks until the last one
before the next singularity. In the worst case there will be one
switch associated to the first task and two switches associated to
each of the following tasks. The total number of switches will
therefore be twice the number of instantiations minus 1. h

Fig. 2. Grey: slack slots. Ci ¼ 2, Ch ¼ 7, Cg ¼ 3, ke ¼ 3. Priority order hg,h, ii.

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 97
Theorem 1. The upper bound on the overhead caused by the change
in frequencies to be added to the execution time of each task, is twice
the transition time.

Proof. Immediate from the previous Lemma. h

It must be noticed that the bound is very pessimistic. It is based
on the assumption that at every instantiation the task will switch
frequencies. In general this will not be true. It would require not
only that every task but the last one leave a residual redistributed
slack for at least some of the following tasks to execute at a re-
duced frequency but also that the reduced frequency was different
for successive tasks. In the example of Fig. 1c), for instance, there
are six instantiations between the first two singularities (at t = 1
and t = 16) but only two frequency changes instead of 11. Between
the second and the third singularities (at t = 16 and t = 28) there
are four instantiations but only three frequency changes instead
of seven.

On top of that, if in spite of incrementing the execution time to
take care of frequency changes, the system is schedulable, a
reclaimable slack will be produced when the double switching
does not take place. As explained in Subsection 4.2, kFE-scheduling
takes advantage of this slack to reduce the frequency of the next
task to be executed.
4.5. The kFE-scheduling algorithm

The theoretical findings presented above about scheduling sets
of real-time tasks in embedded processors in which fault-tolerance
and energy saving are prime concerns, can be summarized as
follows:

(a) Sys-Clock is optimal among all single frequency methods to
save energy. Its use can be extended to tolerate faults. The
minimum possible frequency is calculated and the system
operates always at that frequency. Since it has been evalu-
ated against other methods, it is a good transitive compari-
son base.

(b) The multifrequency kFE-scheduling method is based on the
early capture of slack and the possibilities of using it to
recompute faulty tasks or to save energy by working at a
reduced operating frequency chosen from a set of available
frequencies. k is a deterministic lower bound on the amount
of available slack.

(c) If failures do not take place or tasks are executed in less than
their worst case execution time, additional slack appears.
The single frequency method will have a linear energy sav-
ing because the processor is idle and operates at a fraction
of the nominal power. The kFE-method, instead, may have
a quadratic saving by using the slack to operate at reduced
frequencies. The overhead incurred when changing frequen-
cies, however, must be taken into account.

The kFE-algorithm, step by step, is then

(1) In the RM-schedulability calculations, increment the execu-
tion time of each task by twice the transition time between
frequencies.

(2) If the system is still schedulable, determine the system’s
value of k.

(3) According to the sought guarantees, determine the value of
kf and consequently of ke, devoted to fault-tolerance and
energy saving, respectively.

(4) Let the system operate at nominal frequency and reduce it
by using the ke slots available after each singularity or the
kr slots available after each execution in which AET < WET.

5. Comparative evaluations

The kFE-scheduling method here proposed to save energy while
providing a deterministic guarantee on a given fault-tolerance
combination was evaluated by means of simulations performed
on random generated sets of tasks. Each set was processed under
three methods: (a) nominal frequency leading to full consumption
with no savings except those coming from an idle processor con-
suming 15% of the energy consumed when fully loaded. (b) Dis-
crete Sys-Clock, DSC, operating at a single frequency from a
discrete spectrum, bigger than or equal to the optimal theoretical
one. (c) kFE-scheduling. The metric used to compare cases (b)

98 R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101
and (c) against (a) was, as in the previous examples, the percent of
energy saving relative to consumption at nominal frequency, that
is ð1� Eo=EnÞ100, where Eo and En denote the energy consumed
to process the same load at the operating and at the nominal fre-
quency, respectively.

Simulations were also used in [4] to compare DSC to other
methods, all multifrequency (Pillai and Shin’s Static Voltage Sched-
uling and Cycle Conserving; Saewong and Rajkumar’s PM-Clock
and DPM-Clock); the results obtained here may be, therefore, tran-
sitively compared to those presented in that paper. Other methods
are ruled out for different reasons, e.g., no combination with fault-
tolerance is possible or no fixed priority schemes are used.

The touchstone of the results presented is the repeatability of
the experiments leading to them. In what follows a detailed spec-
ification of how the random sets were generated and how the sim-
ulations were carried out is presented.

5.1. Setting the simulations

In order to perform the simulations, sets composed of 10 tasks
were generated with uniformly distributed periods in the sample
space [100,110,120, . . . ,1100] and utilisation factors in the range
[0.20,0.21, . . . ,0.89]. For nine tasks, selected at random, execution
times were assigned to produce a task utilisation factor randomly
selected for each task in the interval [0.06,0.12] of the set’s utilisa-
tion factor. The execution time of the tenth task was adjusted to
produce the set’s final desired value. For each value of the utilisa-
tion factor, an average of more than 600 sets were run. The saving
was calculated as the average of the sets’ savings.

Systems were run for about ten thousand slots; this means that
the task with the longest period, Tn, is executed at least nine times,
usually more. Given the number of tasks and the sample space of
the periods, the LCM may be in the order of 109. However, since
[1,Tn] is the most congested interval, the method guarantees at
least the same fault-tolerance in successive intervals of length Tn

up to the end of the hyperperiod. Therefore, in order to obtain good
comparative evaluations, ten thousand slots are a satisfactory
interval, long enough to produce an ample variety of faults, redis-
tribution of slack, etc. As a matter of fact, experiments carried out
over the hyperperiod show no significant differences with those re-
stricted to 10000 slots.

As usual in reliability theory, faults were generated using an
exponential distribution [32]. The underlying assumptions are that
faults are independent and that they occur at a constant rate. Two
rates were selected: a low one (one fault every 30000 slots) and a
high one (one fault every 130 slots). This is practically equivalent
to having systems with no faults at all or with faults saturating
the guaranteed recovery capacity of the system.

Savings were determined and plotted vs utilisation factors, UF,
using both methods, kFE and DSC, and two parameters: (a) the
two rates of occurrence of faults (nil and saturating). (b) three
trade-off points corresponding to three values of kf (0.25, 0.50
and 0.75 of k). Six subfigures are therefore generated.

Switching times in multifrequency methods are an overhead
that must be taken into account to make a fair comparison against
single frequency methods. For every frequency switching in kFE, a
slot was added during which the processor did not make any com-
putation but consumed energy at the higher of the two
frequencies.

5.2. Results obtained

Results are presented in Fig. 3. In all cases, relative savings are
plotted against the original utilisation factor of the system, prior
to its actual increment derived from the re-execution of faulty
tasks.
Subfigures in the left and right columns present results for the
low and the high rates of faults’ occurrence, respectively. Subfig-
ures in the three rows present relative savings for the three values
of kf . Although savings in the case of kFE always diminish contin-
uously, in (a) and (b) three plateaus can be seen for DSC. As the
trade-off point is shifted towards more fault-recovery and less sav-
ing, only two plateaus appear in (c) and (d). Finally, in (e) and (f)
only one plateau can be seen.

5.3. Results explained

The first thing to note is that for every possible combination of
fault occurrence and trade-off points, relative savings diminish as
utilisation factors increase. This could be expected: in the region
of low utilisation factors there is abundant slack available to re-
duce frequencies and, consequently, relative savings are bigger.
As the utilisation factor increases, less slack is available and rela-
tive energy savings diminish. As the utilisation factor tends to 1,
slack tends to zero and both saving methods converge towards
no saving at all.

Because kFE can use any of the available frequencies when al-
lowed to do so, it degrades gracefully following a continuous, al-
most linear, diminution. DSC, instead, presents plateaus, and the
reason is that as the utilisation factor increases, less slack is avail-
able for both the reduced and the nominal single frequencies, and
both savings are smaller. However, because the slack is reduced
proportionately for both, the ratio Eo=En has very small variations
and therefore the relative saving is approximately constant, gener-
ating a plateau. From a certain utilisation factor up, the system
must jump to the next higher available frequency, diminishing
the relative savings and generating a lower plateau.

Let us now see how the trade-off point influences savings. In or-
der to make comparisons under the same rate of faults’ occurrence,
graphs to be considered are those belonging to the same column. In
the left column (low rate), it can be seen that for a low kf (subfigure
a)) there is abundant slack and DSC can execute at 0:5f n for low
utilisation factors and at 0:75f n for middle ones, respectively. From
a certain utilisation factor (circa 0.65) up, the processor is con-
strained to operate at nominal frequency and the relative energy
saving is nil.

As kf increases, the trade-off point is shifted towards more fault
recovery capacity and, consequently, there is less slack available to
save energy. Because of that, DSC cannot operate at 0:5f n and the
first plateau disappears at (c). For high values of kf , the plateau cor-
responding to 0:75f n also disappears and only an approximately
continuous variation takes place, as shown in (e).

The region of kf ¼ 0:25 and very low utilisation factors is the
only one in which DSC shows a better performance than kFE. This
is because DSC can operate continuously at fo ¼ 0:5f n, whereas kFE
can do it only during the ke slots following a singularity. Except for
that small region, kFE always outperforms DSC. The reason behind
this, is that kFE profits from the fact that it can switch between the
three available frequencies and, although reducing the operating
frequency only for short intervals, it causes an overall reduction
in energy consumption. The same conclusions are obtained by ana-
lysing the right column (subfigures (b), (d) and (f)), although in this
case, high rate of faults’ occurrence, DSC also produces better sav-
ings in a narrow region of mid utilisation factors for kf ¼ 0:50k.

Let us now examine how variations in the occurrence of faults
influence savings. In order to make comparisons with the same
trade-off points, graphs to be considered now are those belonging
to the same row. Relative savings in the case of DSC are approxi-
mately equal for both rates of faults’ occurrence. This is because
the operating frequency must be calculated with allowances for
recomputing faulty tasks. If faults take place, the corresponding
slots are used for recomputing. If faults do not occur, those slots

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

%
 E

ne
rg

y
Sa

vi
ng

Utilization Factor

Fig. 3. Relative savings vs utilisation factors. Results: (a), (c) and (e), low faults’ rate. (b), (d) and (f) high faults’ rate.

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 99
go empty and the consumption is 15% of that at the operating fre-
quency. Exactly the same thing happens in the system operating at
single nominal frequency; the consumption ratio and therefore rel-
ative savings remain approximately equal. In the kFE case, on the
other hand, for a low rate of faults, empty slots (originally sched-
uled to recover faults that actually do not take place) and therefore
singularities appear; the system switches to the lowest frequency
and consumption is only 15% of consumption at that frequency.
The consumption ratio is lower and the relative saving higher then
in the high rate case. Larger kf ’s accentuate this effect as can be
seen when comparing kFE savings in (c) vs (d), and (e) vs (f).

In the kFE case, further reductions can be obtained if tasks exe-
cute in less than their worst-case time and generate a stochastic
slack that can be reclaimed for that purpose. DSC takes advantage
of this gain-time only by operating an idle processor at 15% of the
power corresponding to the selected frequency. If the operating
single frequency is not the minimum available, the multiple fre-
quencies method, which, although only for short intervals, has
the possibility of switching to the minimum one, will yield, in gen-
eral, a better saving.

Comparative evaluations of DSC against four multiple frequen-
cies methods (Pillai and Shin’s Static Voltage Scheduling and Cycle
Conserving; Saewong and Rajkumar’s PM-Clock and DPM-Clock)
were reported in [4]. Simulations with synthetic sets were per-
formed for different UFs (0.2, 0.4, 0.6 and 0.7), different number
of available frequencies (2 and 10) and two ratios of Best Case Exe-
cution Time/Worst Case Execution Time (0.5 and 1). In general,
savings decrease as utilisation factors increase; savings are larger
when more discrete frequencies are available. With two frequen-
cies, DSC shows a plateau between UFs of 0.2 and 0.6, and then

100 R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101
an abrupt fall for UF = 0.7. All this is consistent with the results pre-
viously presented. Among the five methods tested, DSC and Cycle
are the more efficient with very little differences between them.
Since in the comparative evaluations presented above, kFE gener-
ally outperforms DSC, the result can be transitively extended to
the other four methods.
6. Multicore processors and multiprocessor systems

The problem addressed in this section is how to apply the kFE-
scheduling method to systems composed of several processors, be
them on a chip (multicore) or on different chips (multiprocessor).
This kind of systems are the answer to the limitation, imposed
by current transistor technology, to the increase in computer
power of single processors. An important byproduct is the fact that
energy consumption increases by a multiplicative factor as the
speed of a single processor is increased, but only by an additive fac-
tor if more processors are added to obtain the same computing
power [33].

The first problem to solve when using multicore or multiproces-
sor systems is the assignment problem, defined as how to map a
set of real-time tasks into a set of processors in such a way that
no deadline is missed. Assignment methods can be broadly classi-
fied in two classes: global and partitioned. In the first class, e.g.
[21], different instantiations of the same task may be executed
on different processors; what is more, migrations of tasks only par-
tially executed are permitted and, as a consequence, an instantia-
tion preempted on a particular processor may resume execution
on a different one [34]. Global methods are therefore essentially
dynamic and stochastic, a decisive shortcoming from the point of
view of fault-tolerance because no deterministic guarantees can
be given.

In the partitioned class, tasks are assigned off-line, once for all,
and all their instantiations are executed on the same processor.
kFE-scheduling can then be applied to each processor, obtaining
deterministic bounds on fault-tolerance and energy saving, the ba-
sic problem addressed in this paper.

When the system is power aware and/or fault tolerant, the
assignment must tend to produce load-balanced processors, avoid-
ing light loads in some of them and near saturation in others. This
is because in near saturated processors little slack is available for
redistribution and, consequently, the chances to save energy and/
or to recover faulty tasks are diminished. With balanced loads, in-
stead, the combined effect of fault-tolerance and energy saving is
enhanced. Once tasks have been assigned, it will be assumed that
the operating system may apply a dynamic power-coordination
technology able to slow down the processors separately [35]. A
set of n tasks mapped into a set of m processors generate mn pos-
sible assignments. The assignment problem is NP-hard and in the
past has been addressed by many methods belonging to the parti-
tioned class, e.g. Heuristics [36–38], Simulated Annealing [39], Ge-
netic Algorithms [40] and Fuzzy Algebras [41].

After obtaining a proper partition of tasks, the kFE-scheduling
method can be applied to each of the processors, with the addi-
tional advantage that the trade-off point between power saving
and fault tolerance is not necessarily the same for all processors.
In the case of units engaged in the processing of more critical tasks,
the use of the available slack may be shifted towards recalculating
faulty tasks. If the tasks to be processed are not critical, the weight
may be shifted towards energy saving.

Having all the above in mind, it can be said that the kFE-sched-
uling method can be applied to multicore or multiprocessor sys-
tems. In order to provide deterministic guarantees, a previous
partition of the set of tasks, mapping them into the set of proces-
sors, must be carried out. The assignment must try to obtain
load-balanced processors to enhance the possibilities of fault-tol-
erance and power saving. The problem is then reduced to apply
the kFE-scheduling method to each processor, with the additional
advantage that the trade-off point may be different for different
processors.

7. Conclusions

The kFE-scheduling method, with the double purpose of sav-
ing energy and providing fault-tolerance, has been proposed. It
is specially useful in embedded systems in which energy supply
is critical. The method is based on the use of deterministic redis-
tributed slack, part of which is slated to provide fault-tolerance
guarantees; the rest can be used to reduce the nominal frequency
by taking advantage of slack slots available after singularities,
slots in which all tasks released up to the previous slot have been
executed. This leads to the use of multiple frequencies. The trade-
off point between both applications, fault tolerance and energy
saving, can be set by the designer. As could be expected, the en-
ergy savings and the possibilities of recovering faulty tasks are
greater for low processor utilisation factors, with larger amounts
of slack.

Further frequency reductions can be obtained if: (a) not all
faults guaranteed to be recovered actually take place, and (b) tasks
execute in less than their worst case time and generate a stochastic
slack that can be reclaimed for that purpose. Single frequency
methods take advantage of those slacks only by operating an idle
processor at 15% of full power at that frequency, a linear reduction;
this saving will generally be smaller than that obtained by using
the slack to diminish the operating frequency, a quadratic reduc-
tion, as kFE does.

An upper bound on the overhead imposed on the execution
time of each task by switching frequencies is formally proved for
RM scheduled real-time systems and taken into account when cal-
culating the schedulability of the system.

Comparative evaluations between kFE and Discrete Sys-Clock
were performed for different trade-off points and rates of failures.
kFE generally outperforms DSC, which, in turn, has been reported
to show better performance than other multifrequency methods.
The results presented in this paper can then be transitively ex-
tended. In addition, the method can be used with advantage in
multiprocessor or multicore systems if a load-balancing off-line
mapping of the set of tasks into the set of processors is previously
carried out.
References

[1] W. Wolf, What is embedded computing?, IEEE Computer 35 (1) (2002) 136–
137

[2] E. Lee, Absolutely positively on time: what would it take?, IEEE Computer 38
(7) (2005) 85–87

[3] P. Pillai, K.G. Shin, Real-time dynamic voltage scaling for low-power embedded
operating systems, in: Proc. 18th Symposium on Operating Systems Principles,
2001, pp. 89–102.

[4] S. Saewong, R. Rajkumar, Practical voltage scaling for fixed priority RT systems,
in: Proc. Ninth IEEE Real Time and Embedded Technology and Applications
Symposium, 2003, pp. 106–115.

[5] G.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in hard
real time environment, ACM 20 (1973) 46–61.

[6] J. Flinn, M. Satianarayanan, Energy aware adaptation for mobile applications,
Operating Systems Reviews 34 (5) (1999) 48–63.

[7] S. Fabritus, V. Grigore, T. Maung, V. Loukusa, T. Mikkonen, Towards energy
aware system design. <http://www.nokia.com/link?cid=EDITORIAL_1687>,
Nokia, 2003.

[8] R.M. Santos, J. Urriza, J. Santos, J. Orozco, New methods for redistributing slack
time in real-time systems: applications and comparative evaluations, Journal
of Systems and Software 69 (1–2) (2004) 115–128.

[9] R.M. Santos, J. Santos, J. Orozco, A least upper bound on the fault tolerance of
real-time systems, Journal of Systems and Software 78 (1) (2005) 47–55.

[10] V. Narayanan, Y. Xie, Reliability concerns in embedded systems designs, IEEE
Computer 39 (1) (2006) 118–120.

http://www.nokia.com/link?cid=EDITORIAL_1687

R.M. Santos et al. / Journal of Systems Architecture 55 (2009) 90–101 101
[11] O. Unsai, I. Koren, C. Krishna, Towards energy-aware software based fault-
tolerance in real-time systems, in: Proc. ISLPED’02, Monterrey, California,
2002, pp. 124–129.

[12] R. Melhem, D. Mosse, E.M. Elnozahy, The interplay of power management and
fault recovery in real-time systems, IEEE Transactions on Computers 53 (2)
(2004) 217–231.

[13] Y. Zhang, K. Chakrabarty, V. Swanminathan, Energy-aware fault tolerance in
fixed-priority real-time embedded systems, in: Proc. IEEE International
Conference on CAD, 2003, pp. 209–214.

[14] A. Qadi, S. Goddard, A dynamic voltage scaling algorithm for sporadic tasks, in:
Proc. 24th International Real-Time Systems Symposium, 2003, pp. 52–62.

[15] A. Mok, Fundamental design problems of distributed systems for the hard real-
time environment, Ph.D. thesis, MIT, MIT/LCS/TR-297, 1983.

[16] C. Scordino, G. Lipari, Using resource reservation techniques for power-aware
scheduling, in: Proc. Fourth ACM International Conference on Embedded
Software, 2004, pp. 16–24.

[17] G. Lipari, S. Baruah, Greedy reclamation of unused bandwidth in constant
bandwidth servers, in: Proc. 12th Euromicro Conference on Real-Time
Systems, 2000, pp. 193–200.

[18] G. Quan, X.S. Hu, Energy efficient fixed-priority scheduling for real-time
systems on variable voltage processors, in: Proc. of IEEE/ACM Design
Automation Conference, 2001, pp. 828–833.

[19] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Determining optimal
processor speeds for periodical real-time tasks with different power
characteristics, in: Proc. 13th Euromicro Conference on Real-Time Systems,
2001, pp. 225–232.

[20] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Dynamic and aggressive
scheduling techniques for power-aware real-time systems, in: Proc. IEEE Real-
Time Systems Symposium, 2001, pp. 95–101.

[21] D. Zhu, R. Melhem, B. Childers, Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems, in:
Proc. IEEE Real Time Systems Symposium, 2001, pp. 84–94.

[22] R. Obenza, Rate monotonic analysis for real-time systems, IEEE Computer 26
(3) (1993) 73–74.

[23] M. Joseph, P. Pandya, Finding response times in a real-time system, The
Computer Journal 29 (5) (1986) 390–398.

[24] J. Lehoczky, L. Sha, Y. Ding, The rate monotonic scheduling algorithm: exact
characterization and average case behavior, in: Proc. of the IEEE Real-Time
Systems Symposium, 1989, pp. 163–171.

[25] J. Santos, J. Orozco, Rate monotonic scheduling in hard real-time systems,
Information Processing Letters 48 (1993) 39–45.

[26] R. Maxion, K. Tan, Anomaly detection in embedded systems, IEEE Transactions
on Computers 51 (2) (2002) 108–120.

[27] J. Pouwelse, P. Langendoen, H. Sips, Dynamic voltages scaling on a low-power
microprocessor, in: Proc. Seventh Conf. on Mobile and Computing and
Networking MOBICOM01, 2001, pp. 251–259.

[28] A. Acqaviva, T. Simunic, V. Deolalikar, S. Roy, Server controlled power
management for wireless portable devices, Hewlett–Packard Company
Document (2003).

[29] C. Poellabauer, K. Schwan, Energy-aware traffic shaping for wireless real-time
application, in: Proc. 10th Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2004, pp. 48–55.

[30] INTEL, Intel PXA255 Applications Processors Developer’s Manual (2005).
[31] J.W. Liu, Real-Time Systems, Prentice Hall, 2000.
[32] N. Balakrishnan, A.P. Basu (Eds.), Exponential Distribution: Theory, Methods

and Applications, Gordon and Breach Science Publishers, 1995.
[33] J.H. Anderson, S.K. Baruah, Energy-aware implementation of hard-real-time

systems upon multiprocessor platforms, in: Proc. ISCA 16th International
Conference on Parallel and Distributed Computing Systems, 2003, pp. 430–
435.

[34] B. Andersson, S. Baruah, J. Jonsson, Static-priority scheduling in
multiprocessors, in: Proc. IEEE Real Time Systems Symposium, 2001, pp.
193–202.

[35] D. Geer, Chip makers turn to multicore processors, IEEE Computer 38 (5)
(2005) 11–13.

[36] S. Cheng, J. Stankovic, K. Ramamritham, Scheduling groups of tasks in
distributed hard real-time systems* Coins-87-121, University of
Massachusetts, Amherst, 1987.
[37] J. Xu, Multiprocessor scheduling of processes with release times, deadlines,
precedence and exclusion relations, IEEE Transactions on Software
Engineering 19 (2) (1993) 139–154.

[38] W. Zhao, K. Ramamritham, J. Stankovic, Preemptive scheduling under time and
resource constraints, IEEE Transactions on Computers C-36 (8) (1987) 949–
960.

[39] K. Tindell, A. Burns, A. Wellings, Allocating hard real-time tasks: an NP-hard
problem made easy, Real-Time Systems (4) (1992) 145–165.

[40] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor, 1975.

[41] J. Orozco, R. Cayssials, J. Santos, E. Ferro, Design of a learning fuzzy production
system to solve an NP-hard real-time assignment problem, in: Proc. Eighth
Euromicro Workshop on Real-Time Systems, 1996, pp. 146–150.

Rodrigo Santos received his Engineering degree in 1997
from Universidad Nacional del Sur and got his Ph.D.,
degree in Engineering in 2001. He has become a
Researcher for The National Research Council in
Argentina in 2005 and in the same year became Assis-
tant Professor at the Department of Electrical Engi-
neering and Computers at Universidad Nacional del Sur.
His research interests are mainly related to real-time
systems: QoS, Multimedia, Operating Systems and
Communications. He has published his research’s
results in international indexed Journals and proceed-
ings of Conferences. He is a member of several Technical

Committees for conferences in the area of real-time systems and also a reviewer for
several journals. He is the President for the Latin American Center of Studies in
Informatics and a member of the Working Group 6.9 of IFIP. He is also an IEEE

member.

Jorge Santos is Consulting Professor at the Department
of Electrical Engineering and Computers, Universidad
Nacional del Sur, Argentina, where he teaches courses
on Real-Time Systems and on Professional Communi-
cation. He has published more than 70 papers on mul-
tivalued logics and their electronic implementation,
theory of automata, systems reconfigurations, local area
networks, and real-time systems. He has been head of
the department and principal researcher of the National
Council of Scientific and Technical Research. He is Cor-
responding Member of the Argentine Academy of
Engineering.
Javier Orozco is Professor at the Electrical and Com-
puter Engineering Department, Universidad Nacional
del Sur and researcher of the National Council of Sci-
entific and Technical Research Argentina. From 2001, he
is the head of the department. His main interest area is
in Real-Time Systems theory and applications in oper-
ating systems, architectures for embedded systems and
communications. He has an active participation in sev-
eral Scientific and Technical Committees and govern-
mental boards for science and engineering promotion.
He has published on local area networks, digital archi-
tectures and real-time systems theory and applications.

	Power-Saving Power saving and Fault-Tolerance fault-tolerance in Real-Time Critical Embedded Systemsreal-time critical embedded systems
	Introduction
	Related Workwork
	Rate monotonic schedulability
	k-schedulabilityk-Schedulability
	Fault-tolerance

	Energy Savingsaving
	Single frequency from a continuous spectrum
	Multiple frequencies from a continuous spectrum: redistributed and reclaimed slack
	Single and multiple frequencies from a discrete spectrum
	Frequency switching overheads
	The kFE-scheduling algorithm

	Comparative evaluations
	Setting the Simulationssimulations
	Results obtained
	Results Explainedexplained

	Multicore Processors processors and Multiprocessor Systemsmultiprocessor systems
	Conclusions
	References

