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Abstract

We study the efficiency of parallel tempering Monte Carlo technique for calculating
true ground states of the Edwards-Anderson spin glass model. Bimodal and Gaus-
sian bond distributions were considered in two and three-dimensional lattices. By
a systematic analysis we find a simple formula to estimate the values of the pa-
rameters needed in the algorithm to find the GS with a fixed average probability.
We also study the performance of the algorithm for single samples, quantifying the
difference between samples where the GS is hard, or easy, to find. The GS energies
we obtain are in good agreement with the values found in the literature. Our re-
sults show that the performance of the parallel tempering technique is comparable
to more powerful heuristics developed to find the ground state of Ising spin glass
systems.

Key words: Spin-glass and other random models, Numerical simulation studies

1 Introduction

The study of spin glasses is an active and controversial area of statistical
physics. In particular, the properties of these systems at zero temperature
have been intensively studied in the last years. The problem of finding ground
states (GSs) is a very difficult subject because of the quenched disorder and
frustration that are present in most realistic spin glass models. In fact, it has
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even been shown that finding the GS of a spin glass in a three-dimensional lat-
tice is an NP-complete problem [1], which means that this challenge is at least
as difficult as the hardest problems of practical interest. As a consequence,
many different algorithms [2,3,4,5,6,7,8] have been proposed to solve it, and
to assess the efficiency of these algorithms is thus very important. Genetic

algorithms [2] are considered as the most powerful heuristics to reach the GS
of spin glass systems [9,10]. After introduction of the triadic crossover by Pál
[3,4], different improvements have been made to combine genetic algorithms
with, for example, cluster-exact approximation [5,6] and renormalization [7].
Nevertheless, algorithms based in Monte Carlo (MC) methods, such as simu-

lated annealing (SA) [11], multicanonical ensemble [12] and parallel tempering

(PT) [13,14], have also been used to find GSs of spin glasses. Just as genetic
algorithms, they are simple to be implemented. However, MC methods are
usually considered less efficient than genetic algorithms, because it is often as-
sumed that the presence of a temperature parameter in the algorithm entails
a breaking of the ergodicity that can lead to difficulties in the searching of
GSs of disordered systems.

Recently, PT has been used to find the GS (see, for instance Refs. [15,16,17,18,19]),
and it has been shown [15] to be more efficient than other MC based algo-
rithms. However, the issue of the efficiency of the PT algorithm has been very
briefly discussed in the literature. In this work, we tackle this point in a more
systematic way by analyzing how this efficiency depends on the different input
parameters of the PT. The system to which the algorithm is applied is the
Edwards-Anderson (EA) spin glass model [20] in two-dimensional (2D) and
three-dimensional (3D) lattices, with both bimodal and Gaussian distributions
of bonds. The results show that the performance of the PT technique is com-
parable to more powerful heuristics developed to find the GS of disordered and
frustrated systems. Furthermore, we show that the efficiency depends of cer-
tain combinations of the parameters. In particular, we find a heuristic formula
that gives the minimum time (in unit of time of PT algorithm, see below) that
is necessary to find the GS with a fixed probability and for a given lattice size.

The paper is structured as follows. In Sec. 2 we present the EA model and three
different implementations of the PT algorithm. In Sec. 3, we determine the
values of the algorithm parameters that are needed to find the GS, with a fixed
average probability, for 2D and 3D EA models with bimodal and Gaussian
bond distributions, for small lattice sizes. Using this, we obtain the GS energy
for larger sizes and the thermodynamic limit of this quantity. In Sec. 4, we
study the efficiency of the PT algorithm to find the GS of single samples.
Conclusions are drawn in Sec. 5.
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2 Model and Algorithm

We consider the Edwards-Anderson spin glass model [20], which consists of a
set of N Ising spins σi = ±1 placed in a square or cubic lattice of linear dimen-
sion L, with periodic boundary conditions in all directions. Its Hamiltonian
is

H =
∑

(i,j)

Jijσiσj , (1)

where (i, j) indicates a sum over nearest neighbors. The coupling constants or
bonds, Jij’s, are independent random variables drawn from a given distribution
with mean zero and variance one. In this paper we concentrate on the EA
model with two distributions: the bimodal (EAB), and the Gaussian (EAG).
In the EAB model, the bonds take only two values Jij = ±1, with equal
probability. For relatively large system sizes, and due to the fact that the
bonds are independent variables, only configurations with half of the bonds of
each sign are statistically significant. To preserve this feature for small sizes,
we explicitly enforce the constraint

∑

(i,j)

Jij =











0 for even number of bonds

±1 for odd number of bonds.
(2)

For systems with an odd number of bonds, we enforce the constraint
∑

(i,j) Jij =
1 for the half of the samples and

∑

(i,j) Jij = −1 for the other half. In the EAG
model, the bonds are drawn from a Gaussian distribution. One important dif-
ference between these two models is that whereas for the EAG the GS of the
system is unique (up to a global symmetry), the EAB has a highly degenerate
GS.

In order to implement a PT algorithm [14] one needs to make m replicas of
the system (ensemble) to be analyzed, each of which is characterized by a
temperature parameter Ti (T1 ≥ Ti ≥ Tm). The basic idea of this algorithm
is to simulate independently a Hamiltonian dynamics (standard MC) for each
replica, and to swap periodically the configurations of two randomly chosen
temperatures. The purpose of this swap is to try to avoid that replicas at low
temperatures get stuck in local minima. Thus the highest temperature, T1, is
set in the high-temperature phase where relaxation time is expected to be very
short and there exists only one minimum in the free energy space. The lowest
temperature, Tm, is set in the low-temperature phase. Within this interval we
choose equally spaced temperatures, i.e. Ti − Ti+1 = (T1 − Tm) /(m− 1).
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As mentioned above, PT is based on two procedures that are performed al-
ternately. In the first one, a standard MC method is used to independently
simulate the dynamics of each replica: in each elementary step, the update
of a randomly selected spin of the ensemble is attempted with a probability
given by the Metropolis rule [21]. In the second procedure, a trial exchange of
two configurations Xi and Xi′ (corresponding to the i-th and i′-th replicas) is
attempted, and accepted with probability [14]

W (Xi, βi|Xi′ , βi′) =











1 for ∆ ≤ 0

exp(−∆) for ∆ > 0,
(3)

where ∆ = (βi′ − βi) [H(Xi)−H(Xi′)] and βi = 1/Ti (we have taken the
Boltzmann’s constant equal to one without loss of generality). As in Ref. [14],
we restrict the replica exchange to the case i′ = i + 1. The unit of time in
this process or PT step (PTS) consists of a fixed number of elementary steps
of standard MC, followed by other fixed number of trials of replica exchange.
The initial configuration of each replica is usually random but, as discussed
below, other choices can endow the algorithm with some interesting features.
The running time of our code, tsec (in seconds), can be approximated by

tsec = α m n N t, (4)

where t is the number of PTSs, n is the number of independent runs and α is
a constant.

Depending on the way we combine the number of elementary steps of standard
MC and the number of replica exchanges, we define three different variants of
the PT algorithm. The one that we call A algorithm consists of two stages. The
first is simply a SA routine implemented as follows. Starting from a random
initial condition, tA/2 MC steps (MCSs) of standard MC are applied to replica
1 (each MCS consists of N elementary steps of standard MC). Next, the same
is done successively for each replica, but taking the last configuration of replica
i as the initial condition of replica i+1. The final configurations obtained are
used to initialize a PT algorithm. In the second stage, we define that a PTS
consists of m × N cycles, each cycle being one elementary step of standard
MC plus one replica exchange. After tA/2 PTSs, the algorithm stops and its
output is the configuration with the smallest energy among all configurations
visited by all replicas in the simulation process.

In the second variant, that we call B, the m replicas are initialized with a
random configuration and the PTS consists of m × N elementary steps of
standard MC and only one replica exchange. This definition is usually chosen
to reach equilibrium. After tB PTSs the algorithm stops and the configuration
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with lowest energy is stored.

Finally, a third variant, called C, consists only of the second stage of variant
A, but with the initial configurations randomly chosen. After tC PTSs (where
the PTS is defined as in A algorithm), the configuration with minimum energy
is stored.

To compare the performance of the three variants proposed, we run each one
of them on the same Ns = 103 samples of the 2D EAB model (only one run
for sample). We choose the values of parameters tA, tB and tC in such a way as
to ensure that the running time of the three variants is the same. In our case,
we have used tA = 2t, tB = 2.3t and tC = 1.5t (this choice depends on the
particular implementation of each algorithm). In order to check whether the
final configuration found by each algorithm is really a GS, we compare with
the output of an exact branch-and-cut algorithm run on the same samples
[22,23]. The quantity we choose to compare the efficiency of the variants A, B
and C, is the mean probability of finding the GS, P0, which we estimate as

P0 =
1

Ns

Ns
∑

j=1

P0,j , (5)

where

P0,j =
nj

n
, (6)

is an estimation of the probability of reaching the GS for the j-th sample,
P0,j . In the last equation, nj is the number of times that GS is found for the
j-th sample in n independent runs. Note that in this example we use n = 1.
Therefore for each sample P0,j = 0 or 1. As it is shown in the appendix A,
the error associated to P0 becomes small if many samples are considered and
only one run is carried out in each one of them (it is not necessary to consider
many runs for sample, i.e. n >> 1).

The result of this comparison is shown in Fig. 1 for different values of L and
m (see appendix A for a detailed calculation of the error bars). It can be seen
that the performance of the three variants is very similar for all values of t.
However, a exhaustive analysis shows that for P0 > 0.5, the performance of B
and C algorithms is a little better than the one corresponding to A and this
behavior is reinforced upon increasing the lattice size [see Fig. 1 (a)]. On the
other hand, by comparing the curves for L = 20 in Figs. 1 (a) and (b), we
observe that ifm is increased, the probability P0 for A and B is the same, while
for C it is a little larger. These examples show that the PT algorithm has a
complex dependence with m. The above comparison has been performed also
for the other studied cases (2D EAG, 3D EAB and 3D EAG models) and the
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Fig. 1. P0 as function of ln(t) for the 2D EABmodel, calculated with three variants of
the PT algorithm. In all cases, the set of temperatures used varies between T1 = 1.6
and Tm = 0.1. (a) L = 12 and L = 20 with m = 10, and (b) L = 20 with m = 20.

results are very similar to those shown in Fig. 1. The most important feature
is that in the large P0 regime, the performance of A is always worse than the
other two, which means that its performance could be used as a lower bound
for the B and C cases. For this reason, in the following we only analyze the
performance of A. In addition, we show below that variant A presents very
interesting scaling properties. To avoid confusions, we keep tA = 2t in the rest
of this paper.

3 Results

In this section we study the A algorithm for the EAB and EAG models in 2D
and 3D. The first issue we address is whether it is better to use a large t and one
run for each sample, or several runs but with a smaller t. The quantity to be
studied for this purpose isQ0(n), which is the sample average of the probability
that a GS is found in at least one of the n independent runs in the j-th sample,
Q0,j(n). Figure 2 (a) shows the estimate of this quantity, Q0(n), as a function
of ln(t) for n = 1, 2, 3 and 4. We use Ns = 103 samples of L = 12 and m = 10.
As expected, the performance improves with increasing n. However, when
time is rescaled to ln(t n) in order to compare the performances at the same
running time [see Eq. (4)], independently of the number of runs, the curves
approximately collapse [see Fig. 2 (b)]. The example shows that increasing the
number of PTSs, has approximately the same effect as performing independent
runs. This is due to the fact that, if an appropriate set of parameters are
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Fig. 2. Q0(n) for the 2D EAB model with L = 12, m = 10 and different values of n
as indicated. (a) Q0(n) vs ln(t), and (b) Q0(n) vs ln(t n).

chosen, the fractions of phase space explored by the PT algorithm are similar
in both cases. As this is a recurrent feature in all tested problems, in the rest
of this article we take n = 1.

In the following, we first determine the range of temperatures which is globally
optimal. Although for each particular problem (EAB or EAG in either 2D or
3D) is possible to determine a different optimal set, for simplicity we choose to
fix the range of temperatures. Then, we focus on the number of replicas and
the time t. Finally, the analysis for small size allows us to predict the optimal
values of these parameters for larger lattice sizes.

3.1 2D EA models

We begin by discussing the criteria for selecting a suitable range of temperature
for each studied system. As mentioned above, it is important that the highest
temperature T1 is set in the high-temperature phase: T1 > Tc, where Tc is the
critical temperature. Although for the 2D EA models Tc = 0, below T ≈ 1.3
the dynamics becomes slow [24] and the system has very long relaxation times.
Then, it is reasonable to expect that the optimal T1 should be T1 > 1.3. On
the other hand, as the algorithm is designed to reach the GS, the lowest
temperature Tm should be very low (but not zero because the Metropolis rule
is not efficient in that case).

As in the previous section, we run the algorithm with several different tem-
perature ranges, on Ns = 103 different samples per size (in the following, this
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Fig. 3. P0 as function of ln(t) for the 2D EAB model with m = 10 and for sizes
L = 12 and L = 20. The curves correspond to different ranges of temperatures as
indicated.

number of samples is used for all 2D calculations). P0 for the EAB model is
shown in Fig. 3. We find that, if we fix the lowest temperature at Tm = 0.1, for
the case L = 12 the highest temperature should not be lower than T1 = 1.3.
On the other hand, if we choose the highest temperature at T1 = 1.6, the
lowest temperature should not be higher than Tm = 0.7. In addition, as seen
for L = 20, both ranges T1 = 1.6 to Tm = 0.1 and T1 = 1.6 to Tm = 0.7,
give similar results. The conclusion is that the performance of the algorithm
depends only weakly on the range of temperatures chosen under the condi-
tion that, a) the largest temperature is outside the region of slow dynamics
(T1 > 1.3), and b) the lowest temperature is not too high (say, Tm < 0.7).
This conclusion is also valid for the EAG model. As the bounds mentioned
are only approximate, to be sure to meet that condition, in the remaining of
this subsection we use T1 = 1.6 and Tm = 0.1 for all the simulations.

We now discuss the dependence of probability P0 on parameters L, m and
t. Figure 4 (a) shows the curves of probability for different lattice sizes and
number of replicas. As was to be expected, for fixed values of t, P0 increases
with m. Thus, given that the running time is proportional to t m [see Eq. (4)],
is reasonable to draw the curves as functions of

r ≡ ln(t m), (7)

as in Fig. 4 (b). As before, when we carry out independent runs, the curves
for different m and fixed L collapse to the same curve. This behavior shows
that P0 is a function of r for fixed size [25].
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Fig. 4. P0 as function of (a) ln(t) and (b) r for the 2D EAB model. Squares, circles
and triangles are results for, respectively: L = 8 with m = 5, 10 and 20; L = 12
with m = 5, 15 and 30; L = 16 with m = 10, 25 and 50; L = 20 with m = 10, 35
and 70; L = 24 with m = 20, 40 and 80 (the values of m are given from right to
left).
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Fig. 5. (a) r0 vs L1/2 for the 2D EAB model. (b) Data collapsing for all curves in
Fig. 4 (b). The full line is the function defined in Eq. (10) with q = 2.

The collapse observed previously can be used to find a formula, that allows
us to estimate the number of PTSs that are necessary to reach the GS with a
average probability P0. The simplest function that we have found to provide
a good fit for the data has five parameters. In the following paragraphs we
show, using heuristic arguments, how such a formula is obtained.
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We now turn to the L dependence of the curves shown in Fig. 4 (b), with the
hope that they too can be collapsed onto a single curve. First, note that the
inflection point is located approximately at P0 = 0.5. Figure 5 (a) shows that
r0, the value of r at P0 = 0.5, can be approximated by a linear function of
L1/2 (a poor fit is obtained if a linear function of L is used). By fitting these
points with the function

r0 = bLc − a, (8)

we obtain b = 3.35(7) and a = 5.86(28) (c is fixed to c = 1/2, but it is left as
a variable in the equation because its value is different in 3D). We rescale the
abscissa axis of Fig. 4 (b), using the variable

x = [r − (bLc − a)]/Ld. (9)

The denominator has been introduced to compensate for the fact that the
slope at r0 changes slightly with L. Figure 5 (b) shows that, for d = 0.2, this
rescaling indeed collapses all the curves of figure 4 (a) onto a single curve.

Furthermore, we find that all data points of Fig. 5 (b) can be fitted by the
function

f(x) =
exp(qx)

1 + exp(qx)
, (10)

where q = 2 [see figure 5 (b)]. By combining Eqs. (9) and (10), we can obtain
a simple expression to predict the number of PTSs necessary to reach the GS
with a given value of P0,

t =
1

m

(

P0

1− P0

)

Ld

q

exp(bLc − a). (11)

Even though the rescaling proposed is not rigorous and the function Eq. (10)
is chosen arbitrarily, the expression Eq. (11) will allow us to estimate the value
of t for each lattice size L and for a given average probability P0 with great
accuracy (see Subsec. 3.3). Notice that an exponential dependence on size has
also already been reported in Ref. [17], for the time that a PT algorithm needs
to find the GS of a 1D spin glass model with power law interactions, in the case
where the power law parameter is σ ≈ 2.5, which can be considered effectively
as a short range interaction.

We stress that the purpose of Eq. (11) is not to provide an accurate model
of the PT algorithm, but only to give a simple estimate of the number of
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Fig. 6. P0 as function of (a) ln(t) and (b) r for the 2D EAG model. Squares, circles
and triangles are results for, respectively: L = 8 with m = 5, 10 and 20; L = 12
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Fig. 7. (a) r0 vs L1/2 for the 2D EAG model. (b) Data collapsing for all curves in
Fig. 6 (b). The full line is the function defined in Eq. (10) with q = 2.

PTSs needed to achieve a certain average probability of finding a GS. In fact,
the actual P0 obtained using this estimate can vary strongly from sample to
sample (see Sec. 4).

Now, we repeat the previous analysis for the EAG model. Figures 6 (a) and
(b) show the probability P0 for different lattice sizes and number of replicas
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as functions of ln(t) and r, respectively. Even though the collapse in this case
is not as good as for the EAB model, it is still very good in the region of high
P0 (P0 & 0.9). Figure 7 (a) shows r0 as function of L1/2. As before, we fit these
points with Eq. (8) and we obtain b = 4.61(14) and a = 6.34(46) (c = 1/2).
A second collapsing of the data is shown in Fig. 7 (b), again for d = 0.2. This
collapse is well fitted by the function in Eq. (10) with q = 2 [see figure 7 (b)].

One difference with the EAB case is that the value of the parameter b is
larger, which implies that, for example, for L = 20, m = 10 and P0 ≈ 0.99, the
required number of PTSs for the EAG model is two orders of magnitude larger
than for the EAB model. This is also a common feature of other heuristics
as genetic algorithm, where GSs are harder to obtain for Gaussian than for
bimodal bond distributions. The reason is that the GS of the EAG model is
unique, while it is degenerate for the EAB model, making it easier to find
because any one of them is sufficient [26]. In fact, the ground-state entropy
per spin for the EAB model with L = 20 is approximately S = 0.0818 [27],
what implies that the number of GSs is ∼ 1.6× 1014.

3.2 3D EA models

In the previous analysis for 2D lattices we have checked the GS energies ob-
tained by PT, comparing them with the exact ones calculated with branch-
and-cut algorithm [22]. But finding the GS of a 3D system is a much more
difficult task, and exact algorithms available to us can only be used for small
lattices (up to L = 6). Therefore, a different strategy must be used to ensure
that the configurations found by our algorithm really correspond to true GSs.
The method we have used is as follows. First, we run the algorithm for a cer-
tain time t, for each sample of a given set. Then, the algorithm is run anew
but now duplicating the time t. This is repeated many times, and thus a series
of configurations, with their energies, are stored. We stop this process when,
for each sample, in two successive runs the same minimum energy is obtained.
Note that the process continues in all samples, while at least the minimum
energy for one sample changes in two successive runs. Comparing the series of
energies, we can separate them into ”easy” and ”hard” samples (the GS energy
of an easy sample is obtained in a few steps of the previous process, while for
a hard sample many more steps are necessary). In this stage, we assume that
the true GS has been found for all easy samples. On the other hand, for hard
samples the previous process is continued and it is assumed that the true GS
has been found when in three successive runs the same energy is obtained. We
used these energies to calculate the probability P0 for all 3D samples studied
in this subsection. Note that the number of PTSs used for reaching the GS is
not necessarily optimal, i.e. it is not impossible that the GS can be found in
shorter times.
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Fig. 8. Energy levels found with the PT algorithm for the 3D EAB model with
L = 6, m = 20 and times t = 1, 10, 102 and 103. Histograms for (a)-(d) Ns = 103

different samples (1 run per sample), (e)-(h) 103 runs of an easy sample (#1) and
(i)-(l) 103 runs of a hard sample (#2).

In Fig. 8 we can see the difference between the histogram (number of samples)
of the energy levels obtained with the PT algorithm for many samples, and
the ones obtained by performing many independent runs of the algorithm on,
an easy and a hard sample. Figures 8 (a)-(d) show the histograms for Ns = 103

samples of the 3D EAB model with L = 6, m = 20 and four different numbers
of PTSs: t = 1, 10, 102 and 103 (one run for each sample). As it can be
observed, for short times such as t = 1 and t = 10, the histogram is broad and
the maximum is not located in the ground level. For long t, the shape of the
histogram changes and a peak arises at the ground level. In fact, as t = 103 is
used, the GS energy is found in 979 samples (the remaining 21 are located in
the first excited level).

A similar behavior is observed for the easy sample (#1), Fig. 8 (e)-(h). In this
case, instead of many samples, one sample and n = 103 independent run are
used. For t = 103, the PT algorithm always finds a true GS. On the other
hand, as it is shown in Fig. 8 (i)-(l), a different behavior is observed for the
hard sample (#2). For all t, the peak is not located at the ground level. Thus,
for t = 103 the true GS is found in only 273 of the runs. This example shows
that the properties of hard samples are not reflected in the global behavior
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Fig. 10. (a) r0 vs L for the 3D EAB model. (b) Data collapsing for all curves in
Fig. 9 (b). The full line is the function defined in Eq. (10) with q = 6.5.

[Figs. 8 (a)-(d)] and justifies our previous protocol to obtain true GS.

In order to study the influence of the temperature range on the performance
of our algorithm, it is important to bear in mind that for 3D Tc > 0. For
practical purposes, we can consider that Tc ≈ 1.12 for the EAB model and
Tc ≈ 0.95 for the EAG model [28]. After a similar analysis to the one carried
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Eq. (10) with q = 2.

out above for 2D models, we conclude that T1 = 1.6 and Tm = 0.1 are the
adequate limits for the 3D case and they will be used throughout the section.

Now, we run the PT algorithm for the EAB model with L = 4, 6, 8 (Ns = 103

for each size) and L = 10 (Ns = 102). In all cases, we set n = 1. Figures 9
(a) and (b) show the mean probability P0 vs ln(t) and r, respectively. The
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Fig. 13. Comparison between the PT and SA algorithms for the 3D EAB model
with L = 8. Figures show the probability P0 as function of (a) ln(t) and (b) r.

collapse obtained is very good, as for the 2D EAB model. As shown in Fig. 10
(a), r0 is now a linear function of L with b = 1.36(4) and a = 1.57(33). If
the data are rescaled using Eq. (9), a good collapse is obtained, as shown in
Fig. 10 (b) for c = 1 and d = 1 (in the linear fit and data collapsing were only
considered lattice sizes L = 6, 8 and 10). As before, Eq. (11) gives a very nice
fit of all these data points, but now with q = 6.5.

Unfortunately, when the same analysis is carried out for the EAG model the
results are not so good. Figures 11 (a) and (b) show that the collapse of the
curves as function of r is not as good as for the bimodal case (even in the high
P0 region). Here, the parameters used were Ns = 103 samples for each size
L = 4, 5, 6, 7 and 8. Figure 12 (a) shows the dependence of r0 with L. Using
the same fitting function, we obtain b = 1.67(7) and a = 0.66(43) (only lattice
sizes with L > 4 were considered). The collapse of the data obtained with
these values is not very good, we have preferred to fit the data for only one
value of m (m = 20). Figure 12 (a) shows the dependence of r∗0 (r

∗

0 is the value
of r at P0 = 0.5 and m = 20) on L, where the fit for L > 4 gives b = 1.55(3)
and a = −0.05(20). Data collapsing in Fig. 12 (b) has been obtained with
c = 1 and d = 0.2. The function Eq. (11) with q = 2 gives a good fit for
m = 20, and a reasonable good fit for all the other points. If small lattice
sizes are discarded (L = 4 and 5), we obtain a good collapse for b = 1.50(2),
a = −0.43(11), c = 1, d = 1 and q = 10, (these parameters are similar to the
corresponding ones in the 3D bimodal case).

Finally, to show the importance of the replica exchange procedure, we compare
the performances of the PT and the SA algorithms. In Figs. 13 (a) and (b), we
show results for the 3D EAB model with L = 8. To carry out an appropriate
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Table 1
Parameters of Eqs. (4) and (11) for the different studied models.

Model a b c d q α

2D EAB 5.86 3.35 0.5 0.2 2.0 1.1× 10−7

2D EAG 6.34 4.61 0.5 0.2 2.0 2.1× 10−7

3D EAB 1.57 1.36 1.0 1.0 6.5 1.4× 10−7

3D EAG −0.05 1.55 1.0 0.2 2.0 2.7× 10−7

comparison, we implement the SA as the first stage of our PT algorithm A,
but now we define tSA as the number of MCSs used in each temperature. By
choosing tSA = 4t, we ensure that both algorithms have the same running time.
It is evident that the PT algorithm is superior and only for short t the SA
method is more efficient. Moreover, for this same system we have compared
the performance of both algorithms for the same samples directly, and we
have calculated the corresponding Pearson coefficient ρ [43], to understand
the correlation between them. For each one of a set of Ns = 100 samples and
different values of t, we have performed n = 100 runs of each algorithm to
obtain P0,j. We obtain that the Pearson coefficient of P0j is very close to 1 up
to t ≈ 1000, and then it starts to slowly decrease. This means that for small
values of t the correlation between the algorithms is almost perfect, whereas
when t is further increased there are some samples which are much ”harder”
for the SA.

3.3 Ground state energy

We performed the calculation of the GS energy per spin for large 2D and 3D
lattices. In all cases, we chose m = 20 and as before, n = 1, T1 = 1.6 and
Tm = 0.1. To predict the number of PTSs needed to obtain a given probability
P0, we used Eq. (11) with the parameters given in Table 1. All calculations
were carried out using a computer cluster of 40 PCs each with a 3.0 GHz Dual
Intel(R) Xeon(TM) processor [29]. The running time tsec can be estimated
with Eq. (4) and the value of α given in Table 1.

Figures 14 (a) and (b) show the lattice size dependence of the average of the
GS energy per spin, uL, for each studied model. The values of uL, along with
the parameters used in the simulation, namely the number of samples and
the number of PTSs [calculated with Eq. (11)], are summarized in Tables in
appendix B. With these quantities, the GS is found with a mean probability
P0 (which is also shown in Tables of appendix B). For 2D lattices, we have
checked that Eq. (11) remains valid (approximately within 1%) up to L = 30
for the EAB and L = 26 for the EAG models, by running the branch-and-
cut algorithm [22,23] on the same set of samples show in Tables B.1 and B.2.
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Fig. 14. GS energy per spin for the EAB and EAG models in (a) 2D and (b) 3D.
The dashed lines correspond to fits with Eq. (12).

Although we cannot do the same for the 3D systems, note that for each lattice
size the values we have obtained for the GS energy in 3D, Tables B.3 and B.4,
agree very well with the ones reported previously in the literature for the EAB
[4,6,30] and EAG [26,31] models.

To obtain the thermodynamic limit and to understand the finite size behavior
of the GS energy, we have fitted our data in 2D and 3D with three different
functional forms:

h1 = u∞ + gL−e, (12)

h2 = u∞ + gL−D (13)

and

h3 = u∞[1− L−e], (14)

where u∞ is the GS energy in the thermodynamic limit, D is the lattice dimen-
sion and g and e are two parameters. The functional form of Eq. (13) which
only has two free parameters, has a correction term depending of the number
of spins. This is reasonable for 3D models where, as Tc > 0, there is no scaling
theory for the energy of the GS. For 2D models, however, the leading finite size
term is predicted to be L−(D−θ) [32], where θ is the stiffness exponent which
characterizes the scaling of the domain walls energy. Therefore, Eq. (13) is
equivalent to assuming θ = 0, and in 2D it should give a good fit for the EAB
model but not for the EAG model (see below). The other functional form with
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Table 2
Best fit parameters for the three scaling functions tested [Eqs. (12), (13) and (14)].
Q is a measure of the goodness of fit.

Model Function u∞ g e Q Range of L

2D EAB h1 −1.4009(3) 1.6(1) 2.13(4) 0.15 5− 30

h2 −1.4013(2) 1.23(2) 0.20 7− 30

h3 −1.4011(2) 2.07(1) 0.22 7− 30

2D EAG h1 −1.3149(5) 1.3(2) 2.28(9) 0.10 4− 26

h2 −1.3156(4) 0.78(3) 0.32 6− 26

h3 −1.3149(3) 2.30(1) 0.17 4− 26

3D EAB h1 −1.7867(2) 2.89(6) 2.93(2) 0.29 3− 14

h2 −1.7866(2) 3.21(4) 0.14 5− 14

h3 −1.7875(2) 2.64(1) 0.62 6− 14

3D EAG h1 −1.7000(3) 2.01(8) 2.94(4) 0.80 3− 11

h2 −1.6997(2) 2.14(1) 0.67 3− 11

h3 −1.7004(2) 2.82(1) 0.84 4− 11

two free parameters, Eq. (14), has been chosen because it gives a ‘reasonable’
limit of Eq. (12) for L = 1: uL = 0 at L = 1 [32].

The parameters giving the best fits for the three functional forms, and the
corresponding goodness-of-fit parameter Q [33] are given in Table 2. A value
Q > 0.1 is usually considered as indication of good quality of the fit. As
is usually the case, scaling functions do not include all possible finite size
corrections, and therefore better fits are obtained when data for very small
sizes are left out. On the other hand, leaving out too many points can result in
large error bars for the best fit parameters. The results we show were obtained
by fitting the data over the largest range that gives a goodness-of-fit of Q &

0.1. This is important because large error bars in the fitting parameters could
mask the differences between the functional forms proposed.

For the 2D EAB model we obtain good fits for h1 in the range 5−30, whereas
a smaller number points is needed to obtain a comparable Q for h1 and h2.
The thermodynamic limit obtained with the three functions agree within error
bars, but they are slightly different to the most accurate value reported, u∞ =
−1.40193(2) [34]. If the fit is performed over a larger interval, namely for 3−30,
the value obtained u∞ = −1.4019(8) agrees with the one given by Palmer and
Adler, but the goodness of fit is very bad.

For the exponent of the correction term, the situation is less clear. Fixing the
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exponent to 2 (i.e. choosing h2) gives a very good fit to the data, whereas using
this exponent as a fitting parameter gives a fit almost as good, but for larger
values: e = 2.13(4) for h1 and 2.07(1) for h3. Exponents closer to 2 can be
obtained by fitting over a larger range [e = 2.02(5) for h1 in the range 3− 30,
and e = 2.01(1) for h3 in the range 4 − 30] but with a vanishing goodness of
fit.

If only one value has to be chosen, it should be e = 2.13(4) because it has been
obtained by fitting over the largest range. This value, however, is a bit larger
than expected. As mentioned above, scaling theory predicts that this exponent
should be equal to D − θ. By measuring the domain wall energy, Hartmann
and Young have obtained that θ = 0 [35]. The larger value we obtain might
be due to an additional correction term whose exponent is very similar to the
one predicted by scaling theory. In this case the sum of such terms would look
like a single correction term with an ‘effective’ θ, as it has been suggested in
Ref. [32].

For the 2D EAG model, our results for h1 and h3 are in good agreement with
the scaling theory prediction, using θ = −0.287(4) [36]. For these functional
forms the thermodynamic limits of the GS energy also agree very well with the
most accurate report, u∞ = −1.31479(2) [32]. On the other hand, the result
obtained with h2 is consistent with this: a good fit is achieved only for smaller
range of L given u∞ = −1.3156(4), which does not agree, within error bars,
with the value reported by Campbell et al. [32].

For 3D models the number of sample sizes available is so small that it is
usually not easy to decide which functional form gives a better fit of the data.
In this case one is forced to choose, among fits of similar quality, those that
span the largest range. It must be stressed, however, that this choice hinges
usually on only a couple of points, and therefore it is not improbable that
simulations for larger sizes could tip the scale in favor of the other functional
forms. For example, for the 3D EAB model one should choose the functional
form h1. The energy and exponent obtained (see Table 2) agree very well with
the values found in Ref. [4], u∞ = −1.7863(4) and e = 2.965(11), and are very
close to reported in Ref. [6], u∞ = −1.7876(3) and e = 2.84(5). On the other
hand, it has been suggested [37] that, even though Tc > 0, for 3D the finite
size dependence of the GS energy could follow the same scaling law as for 2D.
However, the exponent given by h1 is not consistent with this prediction and
with the fact that the value of the stiffness reported is θ = 0.19(2) [38], unless
there are additional scaling corrections that give rise to an effective θ.

For the 3D EAG model we find that the fits given by h1 and h2 are equivalent,
and thus the possibility that the exponent be exactly 3 cannot be ruled out.
Nevertheless, it is interesting to see that the exponent obtained with h1 is
very similar to the one obtained with this same function for the bimodal case.
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For the 3D EAG model, however, the stiffness exponent has been found to
be θ = 0.24(1) [39], making it less likely that the scaling hypothesis can be
applied to this model. In addition, the energy values obtained agree very well
with the value reported by Pál, u∞ = −1.7003(8) [26].

We have tried to fit our data with functional forms that depend exponentially
on the sample size. The qualities of the fits are in general very poor both in
2D and 3D, so that they can be ruled out as candidates for scaling functions
for the data, as has been previously reported [4,6].

Finally, for the bimodal cases we have also performed simulations over sys-
tems where the bonds are not chosen so as to enforce Eq. (2), i.e. their sign
is instead chosen independently and with equal probabilities. For each size we
have performed simulations over the same number of samples as in the ‘con-
strained’ case. For L ≥ 5 in 2D and L ≥ 3 in 3D, the GS energies we obtain
are not statistically different to those shown in Tables B.1 and B.3, and the
parameters giving the best fits are in good agreement with the values reported
in Table 2. However, the goodness of fit is certainly not as good, which is prob-
ably due to the ‘noise’ introduced by the fluctuations in the number of bonds
of each sign [40].

4 Probabilistics of failures

In the previous section we have found a simple expression, Eq. (11), that is
useful to estimate the approximate number of PTSs that the PT algorithm
needs to find a GS with a given mean probability P0. The accuracy of this
equation is enough to calculate the average of the GS energy per spin as the
previous section, for all practical purposes. However, Eq. (11) cannot be used
to predict the probability of reaching the GS for a single sample. As we have
previously observed for 3D systems, there exist hard (easy) samples for which,
for a given t, the GS is found with a probability smaller (bigger) that P0. This
could in turn distort the sample average, if the hard samples were numerous
enough, or if the variable to be calculated is strongly correlated with the
hardness of the sample.

The best way to address these issues would be to build a histogram of the
minimal t needed to reach the GS of a large number of samples, for a fixed
probability. Unfortunately, this would demand a huge computational effort as
for each sample a huge number of runs would be needed to determine the
histogram. For this reason, in the following we use an indirect method ap-
plied recently by Weigel [41] to study the performance of a genetic embedding
matching algorithm. We applied it to the analysis of the 3D EAB model, for
L = 6.
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the 3D EAB model with L = 6, and the average over 103 samples. The lines are
linear best fits.

For each one of the 103 samples we have calculated the failure probability
Pf,j = 1−P0,j for different values of t (a number of up to n = 104 independent
runs for sample were carried out). The parameters used were the same as in the
previous section: m = 20, T1 = 1.6 and Tm = 0.1). Figure 15 shows the failure
probabilities for two different samples, the same that in the previous section
were called easy and hard. It can be seen that for small number of PTSs the
data for each sample are well approximated by an exponential function

Pf,j(t) = Kt
j . (15)

The constant Kj quantifies the hardness of each sample. Notice that this
relation implies that the algorithm is quite efficient, in the sense that a run
of a given number of steps has the same probability of finding a GS as two
independent runs with half the number of PTSs. As is to be expected, Fig. 15
shows that this does not hold for the sample average of the failure probability,
Pf . On the other hand, for single samples we have found that, after a certain
amount sample-dependent time, the probability of failure decays more slowly.
This is an indication that in some sense, the algorithm loses efficiency for a

given set of parameters. As the inset of Fig. 15 shows, increasing only the
highest temperature T1 allows the algorithm to operate efficiently for larger t.
Notice that, as explained before, another way to stay in the efficient regime is
simply to split the desired number of PTSs into several independent runs.

Figure 16(a) shows D(Pf,j), the distribution of Pf,j for three different values of
t. These times are small so as to be sure to be in the regime where the Eq. (15)
is valid. Notice that the distributions are rather different: they have peaks for
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Fig. 16. (a) Histograms for the failure probability at three different t. The full lines
in are only guides to the eye. (b) Distribution of minimum required number of PTSs
needed to achieve a given failure probability P ∗

f = 0.05. The dotted lines are best
fits of a Fréchet distribution.

high and small probabilities for t = 10 and t = 100, but for an intermediate
time, t = 40, the distribution is rather wide.

Using any one of these distributions and Eq. (15), it is possible to obtain
G(tmin), the distribution of the minimum required number of PTSs, tmin,
needed to achieve a given failure probability P ∗

f . In fact, from the estimate
Pf,j(t) at fixed t for a given sample, Eq. (15) implies

tmin = t
lnP ∗

f

lnPf,j(t)
. (16)

Figure 16(b) shows for P ∗

f = 0.05, the function G(tmin) for times t = 10, 40 and
100. Notice that the distributions obtained are very similar, which confirms
that the algorithm was indeed in the efficient regime.

As in Ref. [41], we found a very wide distribution G(tmin) with a fat tail.
Extremal value theory predicts that the distribution G(tmin) should be given
by a function of the form [42]

Gξ,µ,σ(x) =
1

σ

(

1 + ξ
x− µ

σ

)

−1−1/ξ

exp

[

−
(

1 + ξ
x− µ

σ

)

−1/ξ
]

, (17)

where σ, µ and ξ are three parameters. Figure 16(b) shows that this function
fits our data very well (i.e. with a high quality-of-fit Q). For times t = 10, 40
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and 100 we obtain, respectively: σ = 89(3), µ = 115(2) and ξ = 0.78(5) with
Q = 0.28; σ = 87(4), µ = 121(2) and ξ = 0.69(6) with Q = 0.53; σ = 96(5),
µ = 129(3) and ξ = 0.71(9) with Q = 0.27. The values of the ξ indicate that
this is a distribution of the Fréchet type (ξ > 0) with a divergent variance
(ξ > 1/2) [42]. This means that the number of hard samples is not negligible.
Nevertheless, we find no sign of correlation between the exact GS energy of a
given sample, H0,j, and the failure probability that their GS is found for the
PT algorithm. For example, Fig. 17 shows these quantities for 103 samples
of the 3D EAB model with L = 6. The average GS energy of this set is
H0 = −382.6(2), but it is H0 = −382.7(3) or H0 = −382.6(3) if, respectively,
samples with Pf,j < 1/2 or Pf,j > 1/2 are chosen to calculate the mean value.
As we can seen, the three average GS energy values agree within statistical
bounds. In addition, the Pearson correlation coefficient ρ [43] between H0,j and
Pf,j is ρ = 0.037(32), and between H0,j and Kj (the hardness of each sample)
is ρ = 0.036(34). Although a coefficient ρ ≈ 0 does not assure independence,
it is evident from Fig. 17 that this is the most probable scenario. We conclude
that although the G(tmin) is a Fréchet distribution with a divergent variance,
the calculation of the average GS energy will not be affected for this reason,
because the hardness of each sample (under the PT algorithm) is independent
of their own GS energy.
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5 Conclusions

In this work we have used a PT algorithm to find the GS energy of the EA
model with both bimodal and Gaussian bond distributions. In general, this
heuristic can be easily implemented to solve a very general class of problems:
systems with any boundary conditions, with arbitrary forms of interactions,
with or without external field, with any dimensionality, etc. This is the most
important feature of the PT algorithm. We have checked that, for large lattice
sizes, the A variant of our algorithm is always a lower bound of the performance
of variants B and C in the high P0 regime (P0 > 0.9). For practical purposes,
Eq. (11) with the parameters given in Table 1 can be used to calculate the
number of PTSs for the three variants (with tA = 2t, tB = 2.3t and tC = 1.5t).
For a given t, the error in the probability P0 predicted by Eq. (11) is not larger
than 1%.

The performance of PT is comparable to the performance of more powerful
heuristics, developed exclusively to find the GS of Ising spin glass systems.
In 2D, this algorithm allows us to study systems with lattice sizes up to
approximately L = 30 and L = 26 for, respectively, EAB and EAG models
with fully periodic boundary conditions. Although larger sizes can be analyzed
by using matching algorithms [9], this can only be done for planar lattices (i.e.
lattices with at least one free boundary condition). But, for such lattices, it has
been found that very large system sizes must be used to have a reliable estimate
of the thermodynamic limit of the GS energy (and other quantities), which
somewhat undermines the advantages of having a faster algorithm. For lattices
with fully periodic conditions, on the other hand, it has been shown that
the energy converges to the thermodynamic limit for relatively small system
sizes. For these systems, the branch-and-cut algorithm [22] is the fastest exact
algorithm to calculate GSs of the EA model. Unfortunately its implementation
is rather difficult. As far as we know, the most efficient implementation of this
heuristic is available on the server at the University of Cologne [23]. On the
other hand, recently it has been shown that a patchwork dynamics can be
used to calculate correct GSs of samples with large lattices sizes [44]. This
technique seems to be very promising to study even 3D spin glasses. Lastly,
we note that a new MC algorithm (a high-efficient PT algorithm) could be
used as an efficient heuristic to calculate GSs, because this technique allows
to equilibrate 2D systems of size L = 102 down to temperature T = 0.1 [45].

Contrary to the 2D case, finding the GS of a spin glass in a 3D lattice is a very
difficult task, which has even been shown to be NP- complete [1]. Although
an exact branch-and-cut algorithm has been developed for the EAG model,
it can only find GSs of samples up to L = 12 with free boundary conditions
[46,47]. Thus, 3D systems with fully periodic boundary conditions constitute
the most important application of heuristic algorithms. Among these, genetic
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search methods are usually considered as the most powerful techniques to
find the GS of spin glass systems. Nevertheless, in this work we have shown
that, for the same task, a simple PT algorithm performs as well as the genetic
methods reported in the literature (i.e. similar systems sizes can be analyzed
with the same computational effort). For example, for the 3D EAB model it
has been reported that a genetic algorithm needs on average 392 minutes on
a computer with a 134MHz R4600 processor [4], or 540 minutes on a com-
puter with a 80MHz PPC601 processor [6], to perform a run in samples of
L = 14. In Ref. [6], 102 samples of this size were calculated and 40 indepen-
dent runs for each sample were carried out. On average, in only 13.8 of these
runs the lowest energy was obtained [6]. Thus, we deduce that the GS was
found with P0 ≈ 13.8/40 = 0.345. For this same probability, our algorithm re-
quires approximately 60 minutes on a computer with a 3.0 GHz Dual Intel(R)
Xeon(TM) processor. Although a direct comparison between these results is
inappropriate (because these works were carried out more than ten years ago),
probably the performances of both heuristics are comparable.

On the other hand, we consider the Ref. [26] where samples of size up to
L = 10 for the 3D EAG model were calculated with P0 ≈ 0.9, by using a
genetic algorithm with local optimization. With the PT algorithm, we have
obtained similar results for L = 10, and for L = 11 we have found the GS
with P0 ≈ 0.8. On the other hand, for the same model recently a genetic
renormalization algorithm has been introduced, which is able to solve lattices
up to L = 12 [10,7]. Unfortunately, we have not been able to compare our
results with those obtained by using this fast algorithm, because in Ref. [7]
the energies for each lattice size have not been reported.

Also, we have used the PT algorithm to study the finite size behavior of the
GS energy. While our results for 2D EAG model are in good agreement with
the scaling theory prediction [32], we have not been able to prove this for
the 2D EAB model (presumably due to an additional correction term with
exponent 2). In 3D we obtain similar exponents for EAB and EAG models,
which are not equal to D−θ as it has been suggested in Ref. [37]. Nevertheless,
it is possible that this conjecture can be tested if larger lattices sizes can be
calculated. In addition, the thermodynamic limit of the GS energy obtained in
all cases (2D and 3D models) agree very well with values reported previously
in the literature.

Finally, the efficiency of the PT technique to find the GS of single samples
has been studied for the 3D EAB model. Using a indirect method, we have
shown that the minimum required number of PTSs needed to achieve a given
failure probability, follows a Fréchet distribution with a divergent variance.
In principle, this could distort the sample average of GS properties, if there
was a correlation between the hardness of the sample and the quantity to
be measured. For the GS energy, however, we have found no sign of such
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correlations.
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[22] C. De Simone, M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, G. Rinaldi, J. Stat.
Phys. 80 (1995) 487; J. Stat. Phys. 84 (1996) 1363.

[23] We have used the spin-glass ground-state server of the
University of Cologne where a branch-and-cut algorithm is available online,
http://www.informatik.uni-koeln.de/ls juenger/index.html

[24] K. Binder, A. P. Young, Rev. Mod. Phys. 58, (1986) 801.

[25] Nevertheless, for the B algorithm this property does not hold.

[26] K. F. Pál, Physica A 233 (1996) 60.
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A Appendix A: Error bars

The mean probability of reaching the GS is

P0 ≡ 〈P0,j〉, (A.1)

where 〈....〉 represent a sample average. In order to estimate P0, we use Eqs. (5)
and (6),

P0 =
1

Ns

Ns
∑

j=1

nj

n
. (A.2)

In the last equation we have estimate the probability of reaching the GS for
the j-th sample, P0,j, with P0,j = nj/n, where nj is the number of times that
GS is found for the j-th sample in n independent runs. In the following, we
estimate the error associated to P0.

We begin by considering the mean number of times that GS is reached for the
j-th sample in n independent runs,

nj =
n
∑

nj=0

nj

(

n

nj

)

P
nj

0,j(1− P0,j)
n−nj = nP0,j . (A.3)

In addition, the variance is

V (nj) = (nj − nj)2 = nP0,j(1− P0,j). (A.4)
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Now, the error associated to P0 can be estimated by calculating the variance
of Eq. (A.2),

V (P0) = E
[

(P0 − E[P0])
2
]

, (A.5)

where the expected value of any quantity x is obtained as E[x] = 〈x〉. The
Eq. (A.5) can be rewritten as

V (P0)=E
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Nsn
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∑
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∑
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P0,j −
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∑
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=
1

(Nsn)2

Ns
∑

j=1

E
[

(nj − nP0,j)
2
]

+
1

(Ns)2

Ns
∑

j=1

E
[

(P0,j − P0)
2
]

+

+
1

(Ns)2n

∑

j>k

E [nj − nP0,j ]E [P0,k − P0] . (A.6)

As the last term disappears, we obtain

V (P0)=
1

(Nsn)2

Ns
∑

j=1

〈nP0,j (1−P0,j)〉+
〈(P0,j − P0)

2〉

Ns

=
〈P0,j (1−P0,j)〉

Nsn
+

〈P2
0,j〉 − 〈P0,j〉

2

Ns

=
〈P0,j〉 − 〈P2

0,j〉

Nsn
+

〈P2
0,j〉 − 〈P0,j〉

2

Ns
. (A.7)

Then, the error associated to P0 is

√

V (P0) =

√

√

√

√

〈P0,j〉 − 〈P2
0,j〉

Nsn
+

〈P2
0,j〉 − 〈P0,j〉2

Ns

. (A.8)

Note that it is not necessary to consider many runs for sample: the error
becomes small if many samples are considered and only one run is carried out
in each one of them. Considering that n = 1 and P0 ≈ 〈P0,j〉, we approach
the error of P0 by

√

V (P0) ≈

√

P0(1− P0)

Ns

. (A.9)
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Table B.1
Simulation parameters and GS energy per spin for the 2D EAB model.

L uL Ns t P0

2 −0.8467(4) 2× 106 30 > 0.999

3 −1.2530(2) 2× 106 102 > 0.999

4 −1.3114(2) 106 3× 102 > 0.999

5 −1.3497(2) 5× 105 103 > 0.999

6 −1.3661(2) 2.5× 105 3× 103 > 0.999

7 −1.3764(2) 105 7× 103 > 0.999

8 −1.3820(3) 5× 104 1.6× 104 > 0.999

9 −1.3854(5) 104 104 > 0.999

10 −1.3893(5) 104 104 > 0.999

12 −1.3932(4) 104 104 > 0.999

14 −1.3955(3) 104 104 > 0.999

16 −1.3973(3) 104 2× 104 0.996

18 −1.3974(3) 6× 103 4.5× 104 0.996

20 −1.3985(4) 3× 103 105 0.996

22 −1.3981(5) 2× 103 2.5× 105 0.996

24 −1.3994(6) 103 5.5× 105 0.996

26 −1.3992(12) 2× 102 1.2× 106 0.996

28 −1.4001(15) 102 2.5× 106 0.996

30 −1.3993(17) 102 5× 106 0.996

B Appendix B: Tables

Parameters used in the simulation and GS energy per spin for each lattice
size.

31



Table B.2
Simulation parameters and GS energy per spin for the 2D EAG model.

L uL Ns t P0

2 −1.0322(3) 2× 106 30 > 0.999

3 −1.2074(2) 2× 106 102 > 0.999

4 −1.2603(2) 106 3× 102 > 0.999

5 −1.2826(3) 5× 105 103 > 0.999

6 −1.2936(3) 2.5× 105 3× 103 > 0.999

7 −1.3000(3) 105 7× 103 > 0.999

8 −1.3027(4) 5× 104 104 > 0.999

9 −1.3070(8) 104 104 > 0.999

10 −1.3072(7) 104 104 0.998

12 −1.3103(6) 104 4× 104 0.998

14 −1.3119(7) 5× 103 1.5× 105 0.998

16 −1.3119(8) 3× 103 5.3× 105 0.998

18 −1.3154(13) 103 1.7× 106 0.998

20 −1.3127(12) 103 2× 106 0.99

22 −1.3144(22) 2× 102 2.7× 106 0.97

24 −1.3130(23) 2× 102 7.3× 106 0.97

26 −1.3146(26) 102 8.3× 106 0.9
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Table B.3
Simulation parameters and GS energy per spin for the 3D EAB model.

L uL Ns t P0

2 −1.3473(4) 106 30 > 0.999

3 −1.6717(1) 106 102 > 0.999

4 −1.7375(1) 5× 105 5× 102 > 0.999

5 −1.7611(1) 105 2× 103 > 0.999

6 −1.7714(3) 104 2× 104 > 0.999

7 −1.7772(3) 6× 103 2× 105 > 0.999

8 −1.7800(3) 4× 103 7× 105 0.997

9 −1.7824(3) 2× 103 1.2× 106 0.99

10 −1.7830(3) 2× 103 2× 106 0.97

12 −1.7849(8) 102 107 0.93

14 −1.7858(7) 102 1.6× 107 0.73

Table B.4
Simulation parameters and GS energy per spin for the 3D EAG model.

L uL Ns t P0

2 −1.4360(3) 106 102 > 0.999

3 −1.6204(2) 5× 105 3× 102 > 0.999

4 −1.6660(2) 2× 105 1.5× 103 > 0.999

5 −1.6824(3) 6× 104 104 > 0.999

6 −1.6891(4) 2× 104 5× 104 > 0.999

7 −1.6937(8) 3× 103 5× 105 > 0.999

8 −1.6955(6) 3× 103 106 0.997

9 −1.6966(7) 2× 103 1.3× 106 0.98

10 −1.6981(7) 1.3 × 103 1.6× 106 0.90

11 −1.6982(8) 826 4.1× 106 0.80
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