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This paper studies the single-file diffusion process on a linear chain of identical pointlike particles with
multiple-site occupation confined in a one-dimensional box. The particles are noninteracting, except that double
occupancy is forbidden. When particles are confined in a finite box, the final stage is saturation. By means
of combinatorial analysis, an exact numerical evaluation of the saturation values for both the mean-square
displacement (MSD) of a tracer particle and the center of mass of the system are obtained. Different initial
distributions of particles are introduced. The time dependence of the MSD is obtained by means of Monte Carlo
simulations. The values of the MSD for the tracer particles as well as the center of mass of the system depend on
the size of the particle, the size of the box, and the initial distribution. Moreover, the transient regime depends
on the initial distribution. In fact, the crossover from normal to subdiffusive regime is observed for random and
alternate initial distributions, while superdiffusive diffusion appears for any stacked initial distributions. In all
cases, it is shown that the collisions between particles do not determine the time exponent of the MSD. A simple
expression for the transient regime is also obtained for the especial case of random initial distribution.
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I. INTRODUCTION

Single-file diffusion (SFD) is a very referenced problem
in statistical physics [1–21]. The first report about this phe-
nomena was informed by Hodgkin and Keynes [1], who were
studying water transport through molecular-sized channels in
biological membranes. New experimental evidence reported in
recent years [2,3,5–8] has encouraged the development of new
theoretical and numerical studies. It is well known that SFD
appears when Brownian particles are confined along a line in
a quasi-one-dimensional channel so narrow that they cannot
cross each other. As a consequence, anomalous diffusion
appears and a strong subdiffusive behavior can be observed.
An analytical description of one-dimensional (1D) diffusion in
a system of hard rods with stochastic background forces was
first reported by Harris [9]. Several other 1D systems have
been examined with different approaches [10–14,17,19–24].

The results show that the diffusion of a tagged particle
presents a normal diffusion regime [i.e., the mean-square
displacement (MSD) increases linearly with time]. This
relation is valid up to a characteristic time, beyond which,
the dynamic of the system is dominated by particle collisions,
leading to single-file behavior (i.e, the MSD is proportional
to the square root of time,

√
t). This regime depends on the

applied boundary conditions of the system, as discussed in
Ref. [13]. It is assumed that the subdiffusive regime of a single
tagged particle is the signature of the interacting system. On
the contrary, the diffusion of the center of mass is always
normal, the corresponding MSD increases linearly with time,
without showing any signature of the interacting system.

However, this behavior has been observed for random initial
distributions of particles. Therefore, it is expected that different
initial distributions of particles should have an important
influence on the time dependence of the MSD of both the
tracer as well as the center of mass of the system. For example,
from an initial configuration where the particles are completely
stacked, the particles will be forced to move, on average, in
one special direction, like in biased diffusion. Then, the time

exponent of the MSD should be greater than 1 [ST (t) ∝ tα with
α > 1]. Moreover, this superdiffusive behavior should also
be observed for the center of mass of the system. However,
to our knowledge a detailed study of the influence of the
initial distribution of particles in the SFD problem has not
been performed yet, in particular, the characterization of the
asymptotic regime and time dependence of the MSD for
different initial conditions.

Different variants of the SFD problem have been proposed
in the literature, for example, the binary mixture problem
[18,20] and long-range interactions [25]. The dependence of
the SFD on the boundary conditions (confinement) has been
analyzed by Lucena et al. [26].

On the other hand, experimental evidence shows diffusion
of large molecules in narrow channels, like DNA binding
proteins diffusing along a DNA chain [4–6]. From a theoretical
point of view, few articles have treated the diffusion of particles
with multiple-site occupancy in a one-dimensional chain. In
particular, in Ref. [27], the authors have developed a theoretical
treatment of the 1D diffusion of k-mers (molecules occupying
k sites in the chain). However, they have not focalized in the
time regime but in the coverage dependence of the diffusion
coefficients.

The exact solution for the single-file diffusion process with
particles of any size and/or arbitrary initial distribution is rather
difficult to obtain, particularly for particles confined in a box.
This encourages one to present approximations or numerical
simulations to attain a better understanding of the problem,
particularly to elucidate the time dependence of the MSD.

This article studies, by means of Monte Carlo simulations,
the single-file diffusion process on a linear chain of identical
pointlike particles with multiple-site occupation, confined in
a finite box. The particles are noninteracting, except that
double occupancy is forbidden. Different initial distributions
of particles are introduced to analyze the influence on the time
behavior of the MSD. By means of combinatorial analysis, an
exact numerical evaluation of the saturation values for both the
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MSD of a tracer particle and the center of mass of the system
are obtained. The paper is organized as follows: in Sec. II, the
basic definitions and the analytical scheme are introduced. In
Sec. III, the results of the analytical calculations are presented
for different initial distributions and compared with Monte
Carlo simulations. Finally, in Sec. IV, the conclusions are
presented.

II. BASIC DEFINITIONS AND ANALYTICAL
CALCULATIONS

The MSD of the center of mass of the system is defined as

SJ (t) =
〈(

N∑
i=1

|ri(t) − ri(0)|
)2〉

. (1)

The above sum can be expressed as

SJ (t) = ST (t) + FC(t), (2)

where ST (t) is the MSD of a tagged particles, which is given
by

ST (t) = 1

N

N∑
i=1

〈[ri(t) − ri(0)]2〉, (3)

where ri(t) is the position of the particle i at time t and 〈· · · 〉
represents an ensemble average. Expanding the sum in Eq. (3)
we obtain

ST (t) = 1

N

[
N∑

i=1

〈
r2
i (t)

〉 + N∑
i=1

〈
r2
i (0)

〉 − 2
N∑

i=1

〈ri(t)ri(0)〉
]

.

(4)

The so-called correlation factor, FC(t), is given by

FC(t) = 2
N∑

i=1

N∑
j>i

〈ri(t)rj (t)〉 + 2
N∑

i=1

N∑
j>i

〈ri(0)rj (0)〉

− 2
N∑

i=1

N∑
j>i

〈ri(t)rj (0)〉. (5)

To perform each of the sums involved in the above equations,
let us consider the system starting from a given initial
configuration, where pk(m,s) is the probability of finding the
first component of the k-mer m in position s at time t = 0.
Because the only interaction is the hard core exclusion, the final
configuration (t → ∞) is completely at random. Therefore,
the probability of finding the first component of the particle
m on the site s in a chain composed of L sites, such that
m � s � L, is given by

Qk(m,s) =
(
s−1−(m−1)(k−1)

m−1

)(
L−s−k+1−(N−m)(k−1)

N−m

)
(
L−N(k−1)

N

) , (6)

where N = θL/k is the number of k-mers in the chain (θ
represents the coverage). The two factors in the numerator
count the number of configurations of all particles to the left
and right of particle m, respectively, and the denominator
counts the total number of particle configurations on the
chain.

In the same way, we can define the conditional probability
to have the first component of the particle n at site r , provided
that the first component of the particle m is at site s, as

Qk(n,r | m,s)

= Qk(m,s)

(
r−s−k−(n−m−1)(k−1)

n−m−1

)(
L−r−k+1−(N−m)(k−1)

N−m

)
(
L−s−k+1−(N−m)(k−1)

N−m

) .

(7)

With this formulation, we can write the sums defined in Eqs. (4)
and (5) as

N∑
i=1

〈
r2
i (t)

〉 =
N∑

m=1

L−k(N−m+1)+1∑
s=km−k+1

s2Qk(m,s) (8)

and

N∑
i=1

〈
r2
i (0)

〉 =
N∑

m=1

L−k(N−m+1)+1∑
s=km−k+1

s2Pk(m,s), (9)

where Pk(m,s) coincides with Qk(m,s) for random initial
distributions of particles. In the same way, we can write

N∑
i=1

N∑
j>i

〈ri(t)rj (t)〉

=
N−1∑
m=1

N∑
n=m+1

L−k(N−m+1)+1∑
s=km−k+1

L−k(N−m+1)+1∑
r=s+k+k(n−m−1)

sQk(m,s)r

×Qk(n,r | m,s) (10)

and

N∑
i=1

N∑
j>i

〈ri(0)rj (0)〉

=
N−1∑
m=1

N∑
n=m+1

L−k(N−m+1)+1∑
s=km−k+1

L−k(N−m+1)+1∑
r=s+k+k(n−m−1)

sPk(m,s)r

×Pk(n,r | m,s). (11)

Here Pk(n,r | m,s) is the conditional probability to have the
first component of the particle n at site r , provided that the first
component of the particle m is at site s, at time t = 0. This
probability coincides with Qk(n,r | m,s) for random initial
distributions of particles. Finally, we can write

N∑
i=1

N∑
j>i

〈ri(t)rj (0)〉

=
N∑

m=1

N∑
n=1

L−k(N−m+1)+1∑
s=km−k+1

s2Qk(m,s)Pk(n,s). (12)

These equivalences allow us to calculate analytically the
MSD for both the tracer particle and the center of mass of
the system, for any number of component of the k-mers, size
of the box, and initial distribution of particles. For k = 1 it
is possible to recover the close expression obtained only for
random initial distributions in Ref. [13].
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(a)

(b)

(c)

(d)

(e)

FIG. 1. Schematic representation of the initial distribution of
dimers, k = 2: (a) random, (b) alternate, (c) one stack, (d) central
stack, and (e) two identical stacks.

III. RESULTS

A. The influence of the initial distribution

In this section the influence of different initial configura-
tions on the behavior of the MSD is analyzed. It is clear that the
MSD for both the tracer and the center of mass of the system
depends on four variables, t , L, k, and θ , i.e., ST (t,L,k,θ )
and SJ (t,L,k,θ ). Figure 1 shows a schematic representation
of the initial distributions of particles used in the analysis:
random [Fig. 1(a)]; alternate, where all particles are equidistant
[Fig. 1(b); one stack [Fig 1(c); one central stack [Fig. 1(d)];
and two identical stacks [Fig. 1(e)]. The initial distribution of
particles determines the behavior of the transient regime as
well as the saturation. To verify this assumption, Fig. 2 shows
the behavior of the MSD for the tracer particles [Fig. 2(a)]
and for the center of mass of the system [Fig. 2(b)], for
dimers (k = 2), in a box with L = 120 and fixed concentration
θ = 0.1. The same results are plotted in Fig. 3, for a coverage
of θ = 0.5. The initial distributions used are described in the
inset.

The Monte Carlo (MC) results are represented by symbols,
while the solid lines are the values of the MSD in the
asymptotic regime obtained by using the equations developed
in the preceding section. These values are reported in the inset
of each figure. It is observed that the initial configuration
substantially affects the behavior of the MSD, both in the
transient regime and in the saturation.

Before discussing the results, let us mention some details
of the MC simulation. To mimic a box, a one-dimensional
finite chain of length L with reflecting borders is considered.
There are N = θL/k diffusing particles of size k that can jump
to the right or to the left with equal transition probabilities
per unit time J0 = 1/2. No interaction, except a hard core,
is considered (the basic assumption of the SFD problem). In
one MC step there are 2N possible processes, and one of these
processes is chosen with the corresponding probability. The
classical fixed time step MC and kinetic MC methods [28] are
used to obtain the simulation results. Because the nonexternal
field is considered, the results obtained by using both methods
are in agreement, according to the study developed in Ref. [29].

(a)

(b)

FIG. 2. MSD for dimers in a box of size L = 120 and concen-
tration θ = 0.1: (a) tracer particles and (b) center of mass of the
system.

It is well discussed in the literature that the diffusion of a
tagged particle in a box presents a normal diffusion regime
up to a characteristic time beyond which different authors
claim that the dynamic of the system is dominated by particle
collisions, leading to single-file behavior. In Fig. 2(a), one
can observe this behavior for random and alternate initial
distributions. The slope of the ST in the subdiffusive regime
is α ≈ 0.5 for the random initial distribution, while for the
alternate initial distribution it is slightly smaller (α ≈ 0.44).
For higher coverage [Fig. 3(a)], normal diffusion is not
observed for these two cases.

However, for an initial configuration where the particles are
completely stacked, the results show that in all cases the slope
of the transient regime is α > 1, confirming that the particles
will be forced to move, on average, in one direction more
than in the other, like in a biased diffusion. This characteristic
is observed for both coverages. Even when in the transient
regime, the stacked particles present similar superdiffusive
behavior and the corresponding saturations are different.

For SJ , the slope of the transient regime, for random and
alternate initial distributions, is α = 1 and does not depend on
coverage [see Figs. 2(b) and 3(b)], while for stacked initial
distributions the slope depends on the coverage.

For θ = 0.1 [Fig. 2(b)], the slope for the two-stack initial
distribution is α ≈ 1, while for the one-stack initial distribution
the slope changes from α ≈ 1.60 to α ≈ 1.2. For the central
stack initial distribution, the slope changes from α ≈ 1.28 to
α ≈ 1.
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(a)

(b)

FIG. 3. MSD for dimers in a box of size L = 120 and concen-
tration θ = 0.5: (a) tracer particles and (b) center of mass of the
system.

For θ = 0.5 [Fig. 3(b)], the slope for central and two-stack
initial distributions is α ≈ 1.44, while for one stack it changes
from α ≈ 1.44 to α ≈ 1.9.

In Figs. 4(a) and 4(b) the saturation values of ST and SJ

are plotted as a function of coverage, for k = 2, L = 120,
and different initial configurations of particles. The analytical
results are in perfect agreement with the MC simulation. Note
that, in the alternate case, the coverage depends on the ratio
between k and L. Moreover, with this condition, the maximum
coverage is given by θmax = k

k+1 .
Although the results for both Ssat

T (L,k,θ ) and Ssat
J (L,k,θ ) at

saturation, obtained through the combinatorial treatment, are
numerically exact, it would be desirable to have a manageable
expression for both coefficients.

In Ref. [13], the authors have obtained an approximate
expression for ST , for k = 1 (monomers). This is valid only
for random initial distributions of particles.

Following the same methodology, we have proposed the
following expressions for the MSD in the case of random
initial distribution:

Ssat
T (L,k,θ ) ≈ k

3

(1 − θ )

θ

[
1 −

(
k − 1

k

)
θ

]
L, (13)

for the tracer particles, and

Ssat
J (L,k,θ ) ≈ k

6
(1 − θ )

[
1 −

(
k − 1

k

)
θ

]
L2, (14)

for the center of mass.

(a)

(b)

FIG. 4. Analytical results for the MSD at saturation for dimers
in a box of size L = 120, as a function of the concentration:
(a) tracer particles and (b) center of mass of the system. Symbols
are as follows: solid circles, random; empty stars, alternate; empty
triangles, one stack; solid triangles, central stack; empty squares, two
stacks.

As can be observed, see Figs. 5(a) and 5(b), the agreement
between the combinatorial analytical solutions and the pro-
posed functions is excellent for a large range of the parameters
k and L.

For the other initial distributions, like the alternate dis-
tribution, the MSD for tracer particles can be approximated
by the function given in Eq. (13), divided by 3. While, for
the stacked initial distributions, the MSD at saturation, for
the tracer particles, is almost independent of the size of the
k-mers, depending on the square of the vacancy and the length
of the chain, Ssat

T (L,k,θ ) ≈ C (1 − θ )2 L2, where C depends
on the initial distribution (C = 1

3 for one stack, C = 1
12 for

one central stack, and C =
√

2π
24 for two stacks.). However, the

MSD, corresponding to the center of mass Ssat
J (L,k,θ ), cannot

fit adequately in any other case.
Next, the effect of the initial distribution on the transient

regime is discussed. One of the most controversial aspects of
the SFD, is the crossover between normal and subdiffusive be-
haviors. The results show that, the diffusion of a tagged particle
presents a normal diffusion regime, i.e., the MSD is propor-
tional to t : ST (t) = 2Dt , where D is the diffusion coefficient.
This relation is valid up to a characteristic time, beyond which,
on average, particles start colliding with their neighbors. Then,
as a consequence of the interaction between particles and the
one-dimensional character of the problem, the tagged particle
shows a subdiffusive behavior of the form ST (t) = 2FH t1/2,
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(a)

(b)

FIG. 5. Comparison between analytical results and approximate
functions for the MSD at saturation, with random initial configura-
tions. (a) MSD of the tracer particles, Ssat

T (k,L,θ ): circles, k = 10 and
L = 1000; squares, k = 5 and L = 1000; stars, k = 2 and L = 1000;
and triangles, k = 1 and L = 1000. (b) MSD of the center of mass of
the particles, Ssat

J (k,L,θ ): squares, k = 5 and L = 500; stars, k = 2
and L = 200; and triangles, k = 1 and L = 100.

where FH is a characteristic coefficient. This subdiffusive
regime lasts forever in infinite systems, but it crosses over
to saturation or normal diffusion in finite systems, depending
on the applied boundary conditions [13]. It is assumed that the
subdiffusive regime of a single tagged particle is the signature
of the interacting system. On the contrary, the diffusion of the
center of mass is always normal; i.e., it increases linearly with
time, without showing any signature of the interacting system.
This behavior has been observed when the initial configuration
of particles is random or, as has been shown in Ref. [21],
for a particular arrangement where particles are equally
spaced.

In order to discuss this assumption, Fig. 6 shows the
number of collisions as a function of time in a log-log plot for
three different initial conditions. As can be observed, for the
one-stack initial condition the number of collisions is dominant
at the beginning and decreases to reach a constant value.
This behavior is also observed for the other two-stack initial
conditions. On the other hand, the number of collisions for the
alternate initial distribution is almost zero at the beginning,
reaching the same constant value. However, for random initial
distributions, the number of collisions does not change in time,
having the same constant value which is directly proportional
to the coverage. Surprisingly, from the simple inspection of
these curves, one can conclude that the change in the slope of
the MSD for random and alternate initial distributions cannot

FIG. 6. Number of collisions as a function of time, for dimers
k = 2, in a box of L = 120 at coverage θ = 0.1. Three different
initial distributions of particles are used: solid circles, random; solid
stars, alternate; empty triangles, one stack.

be attributed to the number of collisions. Particularly, because
the random initial distribution presents the same number of
collisions at all times.

To attain a better understanding of the origin of the
crossover between normal and subdiffusive regimes, Figure 7
shows the first two terms and the third term of Eq. (4) versus
the logarithm of time, for three different initial distributions.
The term 1

N
[
∑N

i=1〈r2
i (t)〉 + 〈r2

i (0)〉] represents the position
of the particle at time t added to the position of the particle
at the initial time. These terms are independent of each
other. However, the term 2

∑N
i=1 〈ri(t)ri(0)〉 represents the

autocorrelation between the position of the particle at time t

with the position of the particle at time t = 0. The competition
between these two terms gives rise to the temporal dependence
of the MSD. In fact, at the beginning the two terms are
nearly equal. Then, the first term starts being greater than the
second. At that time, we must distinguish two behaviors: (a) for
random and alternate initial distributions, the diffusion goes
from normal to anomalous (subdiffusion); and (b) for stacked
initial distributions, the exponent changes from α ≈ 1.44 to
α ≈ 1.09. Finally, in all cases, the MSD reaches a constant
value.

Following the latter arguments, one can observe that the
final stage for the MSD of the tracer particles with a one-stack
initial arrangement is the largest one, while that of a tracer
starting, say, from an alternate configuration is the smallest.
The random initial distribution is in between. That cannot
be explained by the number of collisions, given that with
time the number of collisions saturates to the same value. In
fact, the behavior of the MSD for the tracer is not determined
by the collisions between particles, but is due to the balance in
the autocorrelations in Eq. (4) (Similar arguments can be used
for the MSD of the center of mass of the system). In Fig. 7,
one can observe that the biggest difference between both terms
is for the one-stack initial configuration, while the smallest
corresponds to the alternate initial configuration. In between,
is the random distribution. Therefore, both the transient regime
and the saturation are explained by the balance between the
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(a)

(b)

(c)

FIG. 7. Comparison between the first two terms (upper curve) and
the third term (lower curve) in Eq. (4) for k = 2, L = 240, and θ =
0.2. (a) Random initial distribution; (b) alternate initial distribution;
(c) stacked initial distribution. In the vertical axis, the number of steps
is in lattice units divided by 105.

terms in Eq. (4) and not by the collisions between particles, as
argued by many authors.

B. Transient regime for random initial distribution

To attain a deeper understanding of the behavior of the
MSD in the transient regime, in what follows is considered
the dependence of the MSD with the size of the box L, the
coverage θ , and the size of the particle k, for the random
distribution. The particles of size k are on average a distance
〈�〉 apart (the distance is measured from the first component of
the k-mer), and then the size of the system is L = 〈�〉N and the
coverage can be written as θ = k/〈�〉. Thus, the original lattice
can be rescaled in such a way that the equivalent coverage is
proportional to the inverse of the new average distance between
particles, 〈�′〉; therefore

θeq = 1

〈�′〉 = 1

� − (k − 1)
= θ

k − (k − 1)θ
. (15)

By replacing the expression of equivalent coverage in
Eq. (2.21a) of Ref. [13] and considering the limit of the
large size system, L → ∞, the expression for the short-time

(a)

(b)

FIG. 8. The behavior of the MSD as a function of time and L

for k = 2 at θ = 0.5 for (a) the center of mass of the system and
(b) the tracer particles. The slope of the straight lines correspond
to the expression obtained in Eqs. (16) and (17), respectively. The
Monte Carlo simulations correspond to different sizes of the box
(L = 20, 30, 40, 60, 100, 140, 200, 300, 400, and 500, from bottom to
top).

behavior of ST can be obtained by

ST (k,∞,θ,t) = 2
k(1 − θ )

[k − (k − 1)θ ]
a2J0t, (16)

where J0 = 1/2 is the probability to jump to the right or to the
left and a is the lattice constant. Proceeding in the same way
with Eq. (2.21b) of Ref. [13], the intermediate-time behavior
of ST and be obtained by

ST (k,∞,θ,t) = 2k(1 − θ )

θ
a2

√
J0t

π
. (17)

In Ref. [27], the authors have obtained the exact calculation
of the jump diffusion coefficient DJ for noninteracting k-mers
in a one-dimensional infinite chain. Using the expression for
DJ , the time dependence of SJ in the transient regime can be
easily obtained. The expression of SJ is the same as that of the
short-time behavior ST . Therefore, the first stage of the MSD
for tracer particles coincides with the MSD corresponding to
the center of mass of the system.

Figure 8 shows the behavior of the MSD as a function of
time and L for k = 2 at half coverage, θ = 0.5, for a random
initial distribution. The slope of the straight lines correspond
to the expressions obtained in Eqs. (16) and (17) and they are
the asymptotic limits of the MSD.

Figure 9 shows the dependence of the MSD for different
size of the particles and different coverages. It can be observed
that the agreement between the analytical results and the
simulations is rather good, despite that the size of the systems
is not so large.
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(a)

(b)

FIG. 9. The behavior of the MSD for tracer particles as a
function of time for different coverages and sizes of the particles:
(a) k = 3 and L = 432; (b) k = 4 and L = 500. In both cases, the
coverages are θ = 0.25, 0.50, and 0.75, from top to bottom. The
solid lines correspond to Eq. (16) while the dashed lines correspond
to Eq. (17).

IV. CONCLUSIONS

In this work, the influence of the initial distribution in SFD
of particles confined in a box is studied. An analytical solution
for the MSD at saturation, for both the tracer and the center
of mass of k-mers (particles with multiple-site occupancy) is
obtained by means of combinatorial technics. The analytical

solution is in agreement with the MC simulation. Random,
alternate, and stacked initial distributions are used. It is
observed that the influence of the initial distribution affects not
only the saturation regime but also the transient regime. In fact,
for the alternate and random initial distributions, the classical
crossover from normal to subdiffusive regimes, in the MSD
corresponding to the tracer particles, is observed for any size of
particles and boxes. It is more clear and marked for the alternate
initial distribution than for the random initial distribution. The
MSD corresponding to the center of mass presents a normal
diffusive behavior. However, for stacked initial distributions,
the transient regime is slightly more complicated. In fact, a
superdiffusive regime is observed for all the analyzed cases.
The slope of the MSD for tracer particles is greater than
1. The MSD corresponding to the center of mass presents
a superdiffusive regime too. The slope is also greater than
1 and depends on the coverage. This behavior is easy to
understand; as soon as the particles start to move, they have a
higher probability to jump in one direction than in the other
because of the occupancy. This behavior is similar to a biased
diffusion. Then, the origin of different diffusion regimes is
studied. They are not originated by the collisions between
particles, but because the behavior of the autocorrelation of
the position at time t with the position at time t = 0. Both the
transient regime and the saturation are explained by the balance
between those terms. Particularly, the difference between the
saturation values for different initial configurations for both
MSDs cannot be explained by the number of collisions,
given that with time the number of collisions saturates to
the same value. Finally, analytical approximations for the
MSD for both tracer particles and the center of mass are
obtained, provided that the initial distribution of particles is
random. This solution is obtained by means of simple rescaling
arguments.
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[15] C. Rödenbeck, J. Kärger, and K. Hahn, Phys. Rev. E 57, 4382

(1998).
[16] C. L. Aslangul, Europhys. Lett. 44, 284 (1998).
[17] M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003).
[18] A. Brzank and G. M. Schütz, J. Stat. Mech.: Theory Exp. (2007)

P08028; arXiv:cond-mat/0611702.
[19] L. Lizana and T. Ambjörnsson, Phys. Rev. Lett. 100, 200601

(2008).
[20] T. Ambjörnsson, L. Lizana, M. A. Lomholt, and R. J. Silbey, J.

Chem. Phys. 129, 185106 (2008).
[21] P. M. Centres and S. Bustingorry, Phys. Rev. E 81, 061101

(2010).

021129-7

http://dx.doi.org/10.1038/425027a
http://dx.doi.org/10.1038/425027a
http://dx.doi.org/10.1103/PhysRevLett.94.216001
http://dx.doi.org/10.1103/PhysRevLett.94.216001
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1021/bi00527a028
http://dx.doi.org/10.1093/nar/gkh624
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevLett.95.260603
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1103/PhysRevE.82.031201
http://dx.doi.org/10.1038/nnano.2007.27
http://dx.doi.org/10.2307/3212197
http://dx.doi.org/10.1103/PhysRevB.16.1393
http://dx.doi.org/10.1103/PhysRevB.17.40
http://dx.doi.org/10.1103/PhysRevB.18.2011
http://dx.doi.org/10.1103/PhysRevB.18.2011
http://dx.doi.org/10.1103/PhysRevB.28.5711
http://dx.doi.org/10.1103/PhysRevB.28.5711
http://dx.doi.org/10.1214/aop/1176993602
http://dx.doi.org/10.1103/PhysRevE.57.4382
http://dx.doi.org/10.1103/PhysRevE.57.4382
http://dx.doi.org/10.1209/epl/i1998-00471-9
http://dx.doi.org/10.1103/PhysRevLett.90.180602
http://dx.doi.org/10.1088/1742-5468/2007/08/P08028
http://dx.doi.org/10.1088/1742-5468/2007/08/P08028
http://arXiv.org/abs/arXiv:cond-mat/0611702
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1103/PhysRevLett.100.200601
http://dx.doi.org/10.1063/1.3009853
http://dx.doi.org/10.1063/1.3009853
http://dx.doi.org/10.1103/PhysRevE.81.061101
http://dx.doi.org/10.1103/PhysRevE.81.061101


S. J. MANZI, J. J. TORREZ HERRERA, AND V. D. PEREYRA PHYSICAL REVIEW E 86, 021129 (2012)

[22] V. Pereyra, A. Milchev, and V. Fleurov, Phys. Rev. E 50, 4636
(1994); G. Zgrablich, V. Pereyra, M. Ponzi, and J. Marchese,
AIChE J. 32, 1158 (1986).

[23] J. W. Haus and K. Kehr, Phys. Rep. 150, 263
(1987).

[24] S. Havlin and D. Ben-Avraham, Adv. Phys. 36, 695
(1987).

[25] J.-B. Delfau, C. Coste, and M. Saint Jean, Phys. Rev. E 84,
011101 (2011).

[26] D. Lucena, D. V. Tkachenko, K. Nelissen, V. R. Misko, W. P.
Ferreira, G. A. Farias, and F. M. Peeters, Phys. Rev. E 85, 031147
(2012).

[27] A. J. Ramirez-Pastor, T. P. Eggarter, V. D. Pereyra, and J. L.
Riccardo, Phys. Rev. B 59, 11027 (1999).

[28] F. M. Bulnes, V. D. Pereyra, and J. L. Riccardo, Phys. Rev. E
58, 86 (1998).

[29] V. Ruiz Barlett, J. J. Bigeon, M. Hoyuelos, and H. O. Martin, J.
Comp. Phys. 228, 5740 (2009).

021129-8

http://dx.doi.org/10.1103/PhysRevE.50.4636
http://dx.doi.org/10.1103/PhysRevE.50.4636
http://dx.doi.org/10.1002/aic.690320713
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1016/0370-1573(87)90005-6
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1080/00018738700101072
http://dx.doi.org/10.1103/PhysRevE.84.011101
http://dx.doi.org/10.1103/PhysRevE.84.011101
http://dx.doi.org/10.1103/PhysRevE.85.031147
http://dx.doi.org/10.1103/PhysRevE.85.031147
http://dx.doi.org/10.1103/PhysRevB.59.11027
http://dx.doi.org/10.1103/PhysRevE.58.86
http://dx.doi.org/10.1103/PhysRevE.58.86
http://dx.doi.org/10.1016/j.jcp.2009.04.035
http://dx.doi.org/10.1016/j.jcp.2009.04.035



