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Abstract We simulate the process of compaction under
vertical tapping for a two-dimensional system of particles
deposited in a rectangular box. The particles consist in regu-
lar pentagons and our main objective is to analyze the novel
behavior recently found for the packing fraction as a function
of the tapping strength applied to the system (Vidales et al.
in Phys Rev E 77:051305, 2008). We will relate the behavior
of the number and type of arches, mean coordination number
and number and type of contacts to the peculiar packing den-
sity increase found for increasing tapping strength. Finally,
we present results of an annealed tapping on our packings to
compare the results to the constant tapping protocol. All our
results are compared with the analogous simulations carried
out on disks.
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1 Introduction

Compaction of granular matter under vertical tapping is still
a subject with many open questions. The densification of gra-
nular beds subjected to vertical tapping is generally studied
both as a function of the number of taps and as a function of
the tapping intensity.

Most works in the literature deal with simulations or expe-
riments performed on rounded particles, specially spheres
and disks, but studies on pointed objects are less common
and harder to carry out. In this sense, a first experimental
investigation [1] used assemblies of spheres to build up more
complex objects which however retain the smooth edges of
the constituents.

In a pioneering work, Duparcmeur et al. [2], studied the
densification of a 2D horizontal assembly made of regular
pentagons. Pentagons resting on a concave blowing air table
were allowed to pack as the air pressure under the particles
was slowly decreased. Particles rearrange their positions and
orientations continuously due to the aerodynamic interac-
tions with the air flux which introduce a background vibra-
tion. Thus, the structure of the assembly evolves increasing
its packing fraction. They found that the final configurations
attained by pentagons show crystal like structures and tend
to maximize the average number of contacts and the ave-
rage number of side-to-side contacts. This large numbers of
side-to-side contacts at high packing fractions are due to
the continuous reorganization promoted by the background
vibration on the table. In [3], the same authors studied the
densification of regular polygon packings (pentagons and
heptagons) generated by simulations reproducing the
crystallization features seen in their experiments. Crystal-
lization was also observed in Monte Carlo simulations of
pentagons in the modeling of fluids with symmetry
mismatch [4].
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54 A. M. Vidales et al.

In a recent work [5], we have studied the compaction of
pentagon deposits under tapping, showing that these objects
unpack when gentle vibrations are applied to the system.
These results show a novel behavior for pointed granular
matter compared to rounded objects.

Arches are basic structural entities in granular deposits.
The number and type of the arches found in the granular
packing determine the overall packing fraction and coordi-
nation number [6,7] as well as the ability to jam an opening
during flow [8–11].

In this paper, we present a detailed analysis on the particle–
particle contacts and on the arches formed by the pentagons.
Comparisons with disk packings obtained with an analogous
method are drawn. Packings of pentagons present a response
to vertical tapping which is significantly different from that
observed in packings of rounded grains like disks or spheres.

2 Packing regular pentagons: simulation algorithm

We perform simulations of regular pentagons [5] that com-
prise three phases: (1) the generation of an irregular base of
pentagons followed by a sequential deposition of particles
that create the initial packing, (2) the tapping driven through
a vertical homogeneous expansion of the particles followed
by small random rearrangements, and (3) the simultaneous
deposition of the pentagons using a pseudo molecular dyna-
mics method (PMDM).

2.1 Preparation of the sample

For the present simulations we use a nearly monodisperse
size distribution (5% dispersion). This small dispersion helps
to avoid typical round-off errors in off-lattice simulations.
One thousand regular pentagons are sampled from a uniform
size distribution. A number of them are placed at the bottom
of a rectangular box in a disorder way in order to create an
irregular base. Arranged in this manner, the N base particles
fix the wall-to-wall width of the box which is about 40 particle
diameters. These pentagons remain still over the course of the
tapping protocol. The remaining pentagons are poured one
at a time from the top of the box and from random horizontal
positions and random orientations avoiding overlaps with the
walls of the container. Each grain falls following a steepest
descendent algorithm. When a pentagon touches an already
deposited particle, it is allowed to rotate about the contact
point until a new contact is made or until the contact point no
longer constrains the downward motion of the particle which
is deemed to fall freely again. A pentagon is considered stable
when it has reached two contacts such that the x-coordinate of
its center of mass lies between them. Otherwise, the pentagon
will be allowed to rotate around the contact point with lower
y-coordinate. Side walls are considered frictionless.

2.2 Tapping

Once the initial configuration is obtained, tapping is simula-
ted by using an algorithm that mimics the effect of a verti-
cal tap. The system is expanded by vertically scaling all the
y-coordinates of the particle centers by a factor A > 1. Base
particles are not subjected to this expansion. When pentagons
are expanded upwards with this simple rule, overlaps bet-
ween some of them occur. This fact has been already pointed
out in [5]. To avoid this problem we perform some additional
moves for those particles presenting overlaps after the overall
expansion. These additional moves consist in small upward
displacements of the order of 10δ, where δ is a PMDM para-
meter that will be introduced below, which are repeated for
overlapping particles until all overlaps are removed. We have
checked that this extra moves of some particles do not affect
the overall amplitude of expansion A. After a large number
of taps, the packing attains a steady state whose characteristic
parameters fluctuate around equilibrium values.

It has been shown [12,13] that
√

A − 1 is proportional to
the reduced acceleration Γ generally used in experiments to
characterize the energy input due to a tap. This parameter
Γ corresponds to the peak acceleration experienced by the
container during a tap divided by the acceleration of gravity.
Therefore, we use Γ ≡ √

A − 1 as a measure of the tapping
intensity in the rest of this paper.

After expansion, we introduce a horizontal random noise
for those particles touching any of the walls of the container.
These particles are displaced toward the center of the simula-
tion box in the x-direction by a random distance taken from a
uniform distribution between 0 and Γ 2. The new position of
the particle is accepted only if it does not cause any overlap
with neighboring particles. This process mimics in some way
the shaking that grains suffer in a real experiment because of
the collisions with the walls. Note that the amplitude of the
random horizontal perturbation is proportional to the expan-
sion and each particle is tempted to be moved only once in
each tapping event.

2.3 Deposition through PMDM

After expansion and random rearrangements, the particles are
allowed to deposit simultaneously following an algorithm
similar to that designed by Manna and Khakhar for disks
[14,15]. This is a pseudo dynamic method that consists in
small falls and rolls of the grains until they come to rest by
contacting other particles or the system boundaries. Once all
pentagons come to rest, the system is vertically expanded
again and a new cycle begins.

It is worth pointing out here that more realistic simulations
can in principle be used for the purposes of our investiga-
tion. However, using techniques such as molecular dynamics
(MD) is rather time consuming, given that we apply of the
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Compaction and arching in tapped pentagon deposits 55

order of 103 taps at each amplitude value. Indeed, previous
works using MD for disks (a much simpler system) took
about 10 days of cpu time to carry out 500 taps on a sys-
tem with only 512 particles [20]. Besides, there is another
drawback in the use of MD. Since we aim at studying arch
formation, the history of the formation of each contact has to
be analysed, which is a rather complex problem (see [20] for
an example of the identification of arches in disk packings).
In the PMDM used in this work, the stability provided by
each contact is clearly defined by the simulation algorithm
itself, as will be explained below.

The deposition of grains consists in choosing a pentagon
and allow it to fall freely a distance δ. If in the course of a
fall of length δ a pentagon collides with another pentagon,
the falling pentagon is put just in contact and this contact
is defined as its first supporting contact. If the pentagon has
one single supporting contact we let it rotate an arc-length
δ around the point of contact with its supporting particle.1

On rolling, any collision is identified if after the small roll of
arc-length δ the rolling pentagon overlaps a second particle.
This overlap is negligible since δ is typically two orders of
magnitude smaller than the particle diameters. We do not
move this overlapping particle back at contact position but
keep the small overlap. If in the course of a roll of length δ

a pentagon collides with another pentagon (or a wall), a new
contact is established as a potential supporting contact. The
positions of the two contacts may allow the pentagon to roll
further around the last contact in which case the first contact
is removed from the contact list. Otherwise the pentagon is
assumed to be in a transient stable position. On rolling, a
pentagon may contact twice another single pentagon. In this
case the pentagon is said to lay flat on the bottom pentagon
if its center of mass lies between the two contacts. Notice
that there is no mechanism for the pentagons to slide on top
of each other. Only rolls and vertical falls are allowed. This
introduces an effective static friction in the system (see next
section).

If no new rearrangements of the supporting particles of
a transient stable pentagon occur in future PMDM steps,
the pentagon will remain stable in position and their sup-
porting contacts will be uniquely defined. In this dynamic
context, a moving pentagon can change the stability state of
other pentagons supported by it; therefore, this information
is updated after each move. Each particle is given a chance
to move at each iteration. The deposition is over once each
particle in the system has both supporting contacts defined.
Then, the coordinates of the centers of the pentagons and the

1 We call this rotation a “roll” as in the case of disks [14] even thought
the contact point does not move as in real rolling. Note however that in
following the steepest descent path, a pentagon can actually roll over
another pentagon since the pivot contact point may change from a vertex
to another or to a side of the moving particle.

Fig. 1 Examples of unusual (as compared with disks) stable configu-
rations of pentagons. Arrows indicate contacts between particles and
bold points represent the center of mass of the pentagons. a The cen-
tral pentagon B is supported by particles A and C whose center of
mass are in higher positions. b Pentagon A lies side-to-side with its
supporting bottom partner B. Its center of mass lies between the two
indicated supporting contacts. c Pentagon B is locked during its rol-
ling by the other two particles A and C . The vertical line indicates the
fact that the x-coordinate of its center of mass lies at the le f t of both
supporting contacts. d Theoretical crystal unit for pentagons. Dashed
line indicates the direction where the center of mass lay respect to the
supporting particles, see [2]

corresponding labels of the two supporting particles or wall,
are saved for analysis.

3 Peculiarities of pentagon stability

Pentagons, like other pointed particles, show much more
constrained movements than rounded particles like disks.
Therefore, the configuration space is rather reduced. This
fact introduces special configurations that are not commonly
observed in disk packings. Illustration of this is presented in
Fig. 1.

Figure 1a shows the case of a pentagon supported by other
two whose centers are at higher positions, situation never
allowed for frictionless hard disks.

A pentagon may have two contacts with another single
pentagon when they share part of a side of the polygons. In
this case (see Fig. 1b), if the center of mass lies between the
two contacts, the upper pentagon is said to lay flat on the
bottom pentagon no matters how steep the inclined plane is.
Effectively, this assumes that the pentagon surfaces have a
static friction coefficient µ > tan(π/5) ≈ 0.72.2

2 The maximum inclination angle of the inclined plane on which a
pentagon may lay flat is π/5, since beyond this angle the center of mass
lays outside the pentagon base and the particle would rotate about the
lower vertex. If the particle surfaces are rough enough, the pentagon
will not slide up to this point.
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Figure 1c shows a pentagon that has been locked during
rolling by a pentagon coming from above in such a way that
the x-coordinate of the center of mass lies outside the range
defined by the two contacts. This is also another peculiarity
of pointed objects and, in this case, the particle stops rolling
and attains this stuck position until a rearrangement occurs in
a future PMDM step. If this is not the case, this position is the
final position of that particle. We stress that all these configu-
rations are not possible in disk packings and are responsible
for the particular behavior found in pentagon assemblies, as
we will show below. We will refer to the crystalline order
shown in Fig. 1d later.

4 Arch identification

To identify arches one needs first to identify the two suppor-
ting particles of each pentagon in the packing. Then, arches
can be identified in the usual way [6,7,16]: we first find

all mutually stable particles—which we define as directly
connected—and then we fin the arches as chains of connec-
ted particles. Two pentagons A and B are mutually stable if
A supports B and B supports A.

Unlike disk deposits generated through PMDM, pentagon
packings present capriciously shaped arches. For example,
since pentagons can be locked from above on rolling, arches
may bend upwards over themselves (see Fig. 2a). Also,
concave up arches are common since both supporting penta-
gons of a given particles may be at higher y-coordinates
than the supported pentagon (see Fig. 2b). These structures
may extend over several particles in our model since we do
not consider the instabilities caused by the weight laid on
each particle. The stability of any given pentagon depends
solely on the geometry defined by its supporting contacts. For
example, it is allowed to lay pentagons on top of each other
building up a column as illustrated in Fig 2c even though we
know this is in practice impossible since the center of mass
of the column soon ends up outside the base.

Fig. 2 Examples of unusual
arches. a An arch that bends
over itself. b A concave up arch.
c A column of pentagons which
is stable in the present model but
unstable in real experiments.
The arrow indicates the position
of the center of mass of the
column. Pentagons participating
in the arching are shaded
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Compaction and arching in tapped pentagon deposits 57

5 Results on tapped beds of pentagons

5.1 Packing fraction and annealing

In pseudo dynamics protocols, results are dependent on the
MD step δ used to update the particle coordinates as they fall
and roll. Thus, it is mandatory to find the dependence of the
properties of interest on the MD step. We have considered
systems tapped 104 times at constant Γ = 0.316 for different
values of δ. Its packing fraction was recordered after each tap.
The final steady state packing fraction was calculated by ave-
raging over the last 1, 000 values. Figure 3 shows the results
obtained. Since results agree within statistical uncertainties
for δ < 0.01 we decided to use this maximum value as a
convenient choice for the PMDM simulations. Lower values
of δ require larger cpu times; whereas for δ above 0.01, the
results depend on δ.

Packing fraction of pentagon deposits tapped for various
tapping intensities has been presented and analyzed in [5]. In
that paper, the evolution of packing fraction versus the num-
ber of taps applied to the system, for different tapping inten-
sities, was analysed. Results showed that after 2, 000 taps
the steady state regime is attained. This feature was the same
for all the tapping intensities used in the simulations. Vidales
et al. [5] also shows that the steady state values for packing
fraction increased as tapping intensity increased. To summa-
rize, compaction was enhanced as tapping intensity increased
and the system reached a clear plateau after a moderate num-
ber of taps irrespective of the tapping intensity. To get an idea
of the different appearance that a packing of pentagons has
after suffering a large number of taps, we show in Fig. 4a a
picture of an assembly of 400 pentagons after being shaken
5 × 103 times at Γ = 0.316. To compare the effect of tap-
ping intensity, we present in Fig. 4b the same situation but for
Γ = 1. On both pictures, arches are indicated by segments.

δ

Fig. 3 Dependence of packing fraction on the PMDM parameter δ

Fig. 4 Examples of two packing of 400 pentagons tapped during
5 × 103 times. Arches are indicated by segments. a Γ = 0.316,
b Γ = 1

We will discuss this below. The final equilibrium positions of
the particles in each case are quite different. The creation of
long unstable chains at low Γ due to blocked rollings of the
particles gives as a result a lower compaction in comparison
with that shown for a packing tapped at higher intensities.
Moving the particles farther apart during expansion allows
them to rearrange better and to increase side-to-side contacts
(see next section).

The steady state of the tapping process was evaluated over
the last 1, 000 taps. In Fig. 5a, we present and compare results
with the same experiment carried out on disks [16] and with a
pentagon limiting case obtained as explained in [5]. The limi-
ting case is the one leading to the highest compaction value,
this value being the limit to which the tapping compaction
process approaches for increasing Γ .

There are two clear distinctions between the behavior
shown by disks and that displayed by pentagons. Firstly,
disks attain larger compaction at all tapping intensities. This
is to be expected since pentagons, if not carefully arranged,
tend to leave large interstitial spaces. Secondly, while disks
present a non-monotonic dependence of the packing fraction
versus tapping intensity [12], pentagons show a monotonic
increase in the packing fraction. At high values of Γ both sys-
tems increase their packing fractions with increasing tapping
intensities and eventually reach a maximum plateau value.
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58 A. M. Vidales et al.

a

b

Fig. 5 a Steady state packing fraction obtained by averaging over the
last 1,000 taps as a function of the tapping intensity for disks (circles)
and pentagons (squares). The horizontal dotted line corresponds to
the sequential deposition limit for pentagons (see [5] for details).
b Packing fraction versus intensity Γ for ascending (filled symbols) and
descending (open symbols) annealing performed on disks and penta-
gons. Circles correspond to disks and squares to pentagons

For low Γ we find that disks tend to order and so increase
the packing fraction as Γ is decreased [16]. A minimum
in packing fraction is then located at intermediate values of
Γ . However, this feature is not present in pentagon packings.
Pentagons seem not to order at low Γ and the packing frac-
tion does not present a minimum as in disk packings.

In order to assess whether the tapping protocol applied
to the packings is significant in the results discussed above,
we have carried out an annealed tapping on our packings to
compare with the constant tapping used in the previous sec-
tions. We start from a sequentially deposited packing
and then tap the system at variable tapping intensity. The
intensity was increased from Γ = 0.316 to Γ = 0.837 in
steps of the form 0.05/Γ (smaller as Γ is larger) and 5, 000

taps where applied at each intensity value. Then,
the same protocol was followed but for decreasing intensities.
The corresponding annealing curves for the packing fraction
as a function of Γ are shown in Fig. 5b. As we can observe,
there is no hysteresis nor irreversibility in these systems.
The annealing curves coincide with the constant tapping
results of Fig. 5a. Both, disks and pentagons, attain a unique
packing fraction value for given tapping intensity no mat-
ters the history of the tapping protocol. The same is true
for arches and coordination number. This is coincident with
experiments on glass beads from Philippe and Bideau [17].

Previous simulations on disks [16] and experiments on
glass beads [18] do show an irreversible branch in this type
of experiment. It is important to note that in the case of
simulations [16] the annealing was conducted in a different
manner since the tapping intensity was increased in a quasi-
continuum fashion and a single tap was applied at each value
of Γ . This prevented the disk packing from reaching the
steady state at each value of Γ . In the present work we give
sufficient time for the system to reach the steady state at each
intensity. On the other hand, the annealing experiments by
Nowak et al. [18] were conducted in much the same way
as our simulations, however, their system presented a very
slow relaxation that effectively prevented the packing from
“equilibration” at low tapping intensity.

5.2 Particle–particle contacts

The mean coordination number 〈z〉 of the pentagon packings
is a good indication of the formation of arches in the sys-
tem [16]. In Fig. 6 we observe that as Γ is decreased penta-
gons reduce the coordination number all the way down to
Γ = 0.0. This indicates that a progressively larger number

Fig. 6 Mean coordination number as a function of the tapping intensity
Γ for pentagons and disks, as indicated by open squares and filled
circles, respectively
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Compaction and arching in tapped pentagon deposits 59

of particles form mutually stable contacts. In contrast, disks
show a sudden increase in 〈z〉 when Γ is decreased below
a value that coincides with the minimum packing fraction
observed (see Fig. 5a). These features suggest that the origin
of the contrasting behavior in steady state packing fraction of
pentagons, compared with disks, is related with the enhance-
ment of arch formation under low tapping intensity. We will
study this in detail in the next section.

Another quantity we were able to measure was Nss, the
relative number of pentagons that lay flat on top of a bottom
partner (see Fig. 1b). This number must not be confused with
the total number of side-to-side contacts between particles,
which also include non-supporting contacts. In our simula-
tions, there is a first stage of sequential deposition of penta-
gons to create the initial packing that will be then subjected
to the tapping experiment. This sequential way of deposi-
ting particles favors the occurrence of side-to-side supporting
contacts because particles do not interact with any other par-
ticle except the already stable ones on the free surface of the
deposit. These configurations give rise to the development of
pilings like those shown in Fig. 2c, which do not favor an effi-
cient compaction. We find that 30% of the pentagons in the
packing have this type of supporting contacts. However, after
tapping, all packings reduce Nss down to roughly 10% for all
values of Γ . The decrease in Nss implies a change in the way
particles get their supporting contacts. When the system is
tapped, interaction with neighbor pentagons promotes stabi-
lization with two, rather than one, supporting particles. Since
our algorithm does not allow a particle to be supported by
more than one side-to-side contact, the two contacts will be
of the type vertex-to-side. It has been suggested [2] that orde-
red structures of pentagons like those shown in Fig. 1d are
the responsible of a better filling of empty space in penta-
gon packings. It is important to note that pentagon A in
Fig. 1d has two side-to-side contacts that support it (indi-
cated with arrows). These large ordered domains referred in
[2] are not attained by tapping in our simulations. However,
small crystal-like structures are indeed observed, as can be
seen in Fig. 4, especially at the bottom halves of the two
examples shown there.

5.3 Arches

The total number of arches per unit particle, Narch, in the
pentagon packings as a function of tapping amplitude Γ is
shown in Fig. 7. The corresponding results for disk packings
are shown for comparison. As we can see, in general, penta-
gons form less arches than disks. This seems to be contradic-
tory with the fact that pentagons show a lower coordination
number (see Fig. 6). We will see below that this effect is
due to the wider arch size distribution found in pentagons. In
pentagon packings, the number of arches presents a monoto-
nic decrease with increasing Γ in contrast with the behavior

Fig. 7 Number of arches per unit particle found in the system. Here
again open squares correspond to pentagons and filled circles to disks

of disks that present a maximum at the same tapping intensity
where the minimum packing fraction is achieved. It is parti-
cularly interesting that at Γ < 0.316 disks enter an ordered
phase [16] where arches are largely eliminated from the sys-
tem whereas the pentagon deposits remain in a disordered
state with an increasing number of arches up to very small
tapping intensities.

A simple probe on the overall size of the arches can be
obtained by plotting the number of particles, Np, involved
in arches of any type. In Fig. 8 we present such plot for
pentagons and disks as a function of Γ . Given that arches
are less common among pentagons we would have expected
that the number of particles involved in arches would have
been lower for pentagons than for disks. However, at low
Γ , pentagons show a large proportion of in-arch particles

Fig. 8 Number of particles involved in arches per unit particle. Sym-
bols are as in preceding figures
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which implies a tendency of pentagons to form large arches
if tapped gently. These are the responsible for the voids that
reduce the packing fraction as Γ is decreased (see Fig. 5a)
and for the relatively low coordination number at moderate
and low Γ (see Fig. 6).

In Fig. 9 we show the distribution of arch sizes for penta-
gons and disks at two values of Γ . We confirm here that for
low Γ pentagons have a larger tendency to form large arches
(up to 20 particles), whereas disks form arches of less than
10 particles.

6 Conclusions and final remarks

The compaction by vertical tapping of disks and spheres has
been studied to some extent in the past few years by expe-
riments and by simulations [1,16,18–22]. Setting apart all
issues related to the slow compaction shown by these systems
and considering only the steady state whenever achieved—
this may be obtained by extended constant intensity tapping
or by a suitable annealing—all these systems display a clear
initial reduction in the packing fraction as tapping intensity is
increased followed by a smooth increase at large amplitudes.
This behavior has been observed in simulation of spheres
[22], in 3D experiments with glass beads [18,23] and in
simulation of disks and spheres [12,16,20]. We have extend
a previous work [5] for a deeper understanding of the unex-
pected behavior of pentagon deposits under tapping. We have
found that—either through constant tapping or annealing—
the steady state of the packing presents a monotonic increa-
sing packing fraction with tapping intensity. Moreover, as
the tapping strength is increased from zero, the steady state
values for 〈z〉, Narch and Np vary monotonically in the case of

Fig. 9 Distribution of arch sizes for disks and pentagons at Γ = 0.447
(filled symbols) and Γ = 1.414 (open symbols). Squares represent
values for pentagons and circles for disks

pentagons whereas a clear non-monotonic behavior is present
in disk packings. Such finding reveals that the complexity of
pentagon deposition leads to an unexpectedly simpler beha-
vior of the packing fraction as compared to simpler systems.
This reinforces the idea that pentagons can achieve close
packing fraction only when strong taps are applied so that
the free volume introduced allows for arrangements. On the
contrary, disk are able to rearrange specially well when gently
tapped. This is the key to explain the finding of the simpler
behavior of all steady state properties measured in pentagon
packings compared with those observed in rounded objects.

We have tested the hypothesis that such simple response
is induced by the frustration of order that we find in penta-
gon systems since partial ordering seems to lead the non-
monotonic behavior of disks and spheres. Nevertheless, we
checked this issue in [5] through some trial simulations on
polydisperse disks that are known to show frustration of
order, and still observed the same, although less marked,
non-monotonic behavior. Clearly, there is more than just
frustration of order to the response of pentagon packings.
A sensible explanation for the formation of large arches
at low tapping amplitude should in principle shed light on
this issue. We have already discussed that pointed objects
have a larger tendency to multiple collisions [5]. Multiple
collisions are necessary (although not sufficient) to form
many-particle arches. These multiple collisions are enhan-
ced by two factors: (a) the fact that pentagons may approach
each other closer than disks (recall that a side-to-side contact
leaves pentagon centers separated by ≈0.8 particle diame-
ters) which increases number density despite the lower
packing fraction, and (b) the associated collisions on rolling
originated by the protruding vertexes.
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