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The percolation behavior of aligned rigid rods of length k (k-mers) on two-dimensional triangular

lattices has been studied by numerical simulations and finite-size scaling analysis. The k-mers,

containing k identical units (each one occupying a lattice site), were irreversibly deposited along

one of the directions of the lattice. The connectivity analysis was carried out by following the

probability RL,k(p) that a lattice composed of L × L sites percolates at a concentration p of sites

occupied by particles of size k. The results, obtained for k ranging from 2 to 80, showed that

the percolation threshold pc(k) exhibits a increasing function when it is plotted as a function of

the k-mer size. The dependence of pc(k) was determined, being pc(k) = A + B/(C +
√
k), where

A = pc(k → ∞) = 0.582(9) is the value of the percolation threshold by infinitely long k-mers,

B = −0.47(0.21) and C = 5.79(2.18). This behavior is completely different to that observed for

square lattices, where the percolation threshold decreases with k. In addition, the effect of the

anisotropy on the properties of the percolating phase was investigated. The results revealed that,

while for finite systems the anisotropy of the deposited layer favors the percolation along the parallel

direction to the nematic axis, in the thermodynamic limit, the value of the percolation threshold

is the same in both parallel and transversal directions. Finally, an exhaustive study of critical

exponents and universality was carried out, showing that the phase transition occurring in the

system belongs to the standard random percolation universality class regardless of the value of k

considered.
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I. INTRODUCTION

Percolation is a very active field of research and applied to a wide range of fields, such as

biology, nanotechnology, device physics, physical chemistry, and materials science [1–4].

The problem of percolation is not a new one but still attracts considerable interest [5–7],

and some unsolved questions remain.

Percolation theory was derived for periodic lattices of sites (bonds) which are occupied

with probability p or empty (nonoccupied) with probability (1 − p) [1]. In the case

of deposition processes, p coincides (in the thermodynamic limit) with the coverage of

the lattice or fraction of sites occupied by the deposited objects. If the concentration

of these objects is sufficiently large, a cluster (a group of occupied sites in such a way

that each site has at least one occupied nearest-neighbor site) extends from one side to

the opposite one of the system. The central idea of the percolation theory is based in

finding the minimum concentration for which a complete path of adjacent sites crossing

the entire system becomes possible. This value of the concentration rate is named the

critical concentration or percolation threshold pc, and determines the phase transition in

the system [1].

One of the most popular methods of studying percolation of deposited objects is the

Random Sequential Adsorption (RSA) technique [8–10]. In this process, objects of a

specified shape are randomly and sequentially adsorbed onto a substrate and then immo-

bilized. Excluded volume, or particle-particle interaction, is incorporated by rejection of

deposition overlap, while particle-substrate interaction is modeled by the irreversibility of

deposition. The final state generated by RSA is a disordered state (known as jamming

state), in which no more objects can be deposited due to the absence of free space of

appropriate size and shape (the jamming state has infinite memory of the process and the



orientational order is purely local). Thus, a competition between percolation and jam-

ming is established [9, 10]. In some applications one may want that percolation dominates

(i.e. communications) in others one may prefer that jamming dominates and percolation

is suppressed at an early stage (i.e. forest fires).

For randomly distributed and isotropically oriented linear k-mers [67] (linear rigid par-

ticles occupying k consecutive sites) on square lattices, it was shown that the perco-

lation threshold does not change monotonically with the length of needles [12–14]. For

short objects the percolation threshold decreases rapidly, goes through a minimum around

k = 13 . . . 15, and then it started to increase moderately. Later, Kondrat et al. [15] pre-

sented a strict proof that in any jammed configuration of nonoverlapping, fixed-length,

horizontal or vertical needles on a square lattice, all clusters are percolating clusters. The

theorem refutes the conjecture [12–14] that in the RSA of such needles on a square lat-

tice, percolation does not occur if the needles are longer than some threshold value k∗,

estimated to be of the order of several thousand.

In a very recent paper, Slutskii et al. [16], using simulation techniques, corroborated

the result reported by Kondrat et al. [15]. Based in a very efficient parallel algorithm, the

authors studied the problem of large linear k-mers (up to k = 217) on a square lattice with

periodic boundary conditions. The obtained results indicate that the percolation threshold

tends to a constant value as k → ∞, being pc(k → ∞) = 0.615(1). The limit value of pc

is lower than the asymptotic value of the jamming coverage: pj(k → ∞) = 0.655(9) [17].

This finding reinforces the theoretical analysis in Ref. [15], namely, in the case of linear

k-mers on square lattices, percolation always occurs before jamming.

An interesting problem arises when the probability of taking horizontal and vertical

orientation is not the same. In this context, the advent of modern techniques for building



highly conductive rodlike particles (such as carbon nanotubes [18], metal nanowires [19],

etc.) has considerably encouraged the investigation of anisotropic composites made of

these elongated particles on an insulating matrix. The study of the conductive properties

of these composite materials is an area of increasing interest for the production of flexible

transparent conductors [20–22], with diverse applications in solar cells, touch-screens, and

transparent heaters [23–27]. These promising applications are inspiring both theoretical

and experimental studies in this field [28].

In order to design a composite with the desired properties, it is crucial to understand

and control the formation of a system-spanning network of nanofillers inside the host

matrix, which happens above a critical concentration of filler material. This critical con-

centration coincides with the percolation threshold of the system [29, 30], demonstrating

the importance of percolation theory and its applicability to study the electrical conduc-

tivity of materials composed of rodlike highly conducting fillers. In this line, numerous

works have been conducted on percolation of rodlike particles and its connection with the

electrical conductivity [31–38]. The studies in Refs. [31–38] represent an important step

in the understanding of the percolating properties of anisotropic conductors.

In a previous paper from our group, the effect of anisotropy (or k-mer alignment) on

percolation was investigated for the case of aligned rigid k-mers on square lattices [39].

The results, obtained for k ranging from 1 to 14, showed that (i) the percolation threshold

exhibits a decreasing function when it is plotted as a function of the k-mer size; and (ii)

for any value of k(k > 1), the percolation threshold is higher for aligned rods than for

rods isotropically deposited. Later, Tarasevich et al. [12] extend the analysis in Ref. [39]

to larger lattices (100 ≤ L ≤ 19200) and longer objects (2 ≤ k ≤ 512). The authors

corroborate the results obtained by Longone et al. [39] for the case of perfectly aligned



rods, and complete the study by including the percolation behavior of partially ordered

phases (states whose degree of anisotropy varies between the two limit cases, i.e. isotropic

and perfectly aligned k-mers).

In the case of triangular lattices, many interesting results have been reported on RSA

of objects of various shape [40], reversible RSA [41], reversible RSA of mixtures [42],

anisotropic RSA of extended objects [43], percolation of extended objects [44] and jam-

ming and percolation in RSA of extended objects on lattice with quenched impurities

[45]. However, the effect of k-mer alignment on percolation has been poorly studied. In

this context, the main objective of the present paper is to study the percolation behav-

ior of aligned rigid rods on 2D triangular lattices. For this purpose, extensive numerical

simulations (with 2 ≤ k ≤ 80 and 75 ≤ L/k ≤ 640) supplemented by analysis using

finite-size scaling theory have been carried out. The obtained results revealed that the

percolation threshold pc(k) is an increasing function with k. This finding contrasts with

the decreasing tendency observed for pc(k) in square lattices, showing that (1) it is of

interest and of value to inquire how a specific lattice structure influences the main per-

colation properties of particles occupying more than one site; and (2) the structure of

the lattice plays a fundamental role in determining the statistics of extended objects. In

addition, the anisotropy effect on the percolation probabilities characterizing the different

lattice directions was investigated. The study also includes a complete analysis of critical

exponents and universality.

The present work is a natural extension of our previous research in the area of percolation

of polyatomic species and the results obtained here could have potential application in

the field of conductivity in composite materials. The paper is organized as it follows: the

model and basic definitions are given in Sec. II. Percolation properties are studied in Sec.



III. The conclusions are drawn in Sec. IV. Finally, a complete study of critical exponents

and universality is presented in the Supplemental Material [66].

II. MODEL AND BASIC DEFINITIONS

Straight rigid rods are deposited randomly, sequentially and irreversibly on a 2D tri-

angular lattice. In the computer simulations, a rhombus-shaped system of M = L × L

sites (L rows and L columns) is used (see Fig. 1). The deposition process is performed

with the following restrictions: (1) the k-mers contain k identical units and each one

occupies a lattice site. Small adsorbates with spherical symmetry would correspond to

the monomer limit (k = 1); (2) the distance between k-mer units is assumed in registry

with the lattice constant a; hence exactly k sites are occupied by a k-mer when deposited;

(3) the k-mers are deposited along one of the directions of the lattice, forming a nematic

phase as depicted in Fig. 1; (4) the incoming particles must not overlap with previously

added objects; and (5) periodic boundary conditions are considered.

Due to the blocking of the lattice by the already randomly adsorbed elements, the

limiting or jamming coverage, pj = p(t = ∞) is less than that corresponding to the close

packing (pj < 1). Note that p(t) represents the fraction of lattice sites covered at time

t by the deposited objects. Consequently, p ranges from 0 to pj for objects occupying

more than one site [9]. For a fully aligned system, as studied here, the jamming problem

reduces to the one-dimensional (1D) case. In this limit, p(t) can be written as [11, 17],

p(t) = k

∫ t

0

exp

[

−u− 2

k−1
∑

j=1

(

1− e−ju

j

)

]

du. (1)

The numerical evaluation of Eq. (1) allows us to obtain the dependence on k of the

jamming coverage pj(k). Note that Eq. (1) corresponds to an exact result obtained for

an infinite 1D lattice.
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FIG. 1: Snapshot corresponding to a configuration of aligned tetramers (k = 4) on a rhombus-shaped triangular

lattice. Green and red circles represent empty sites and tetramer units, respectively.

III. THE PERCOLATION THRESHOLD

As mentioned in Sec. I, the central idea of the pure percolation theory is based in finding

the minimum concentration of elements (sites or bonds) for which a cluster extends from

one side to the opposite one of the system. For this particular value of the concentration

rate, the percolation threshold pc, at least one spanning cluster (also called “infinite”

cluster, inspired by the thermodynamic limit) connects the borders of the system [46–49].

In that case, a second-order phase transition appears at pc which is characterized by well

defined critical exponents.

In the simulations, each run consists of the following stages: (a) the construction of the



lattice for the desired fraction p = kN/M of sites (N is the number of k-mers deposited),

according to the filling procedure presented in previous section; and (b) the cluster analysis

by using the Hoshen and Kopelman algorithm [50, 51] with open boundary conditions.

In the last step, the size of the largest cluster SL is determined, as well as the existence

of a percolating island. For this purpose, the probability R = RX
L,k(p) that a L×L lattice

percolates at a concentration p of sites occupied by rods of size k can be defined. Here,

the following definitions can be given according to the meaning of X [1, 52, 53]:

• RP
L,k(p): the probability of finding a percolating cluster in a parallel direction to the

nematic alignment (see Fig. 1),

• RT
L,k(p): the probability of finding a percolating cluster in a transverse direction to

the nematic alignment (see Fig. 1).

Other useful definitions for the finite-size analysis are:

• RU
L,k(p): the probability of finding either a parallel or a transverse percolating cluster,

• RI
L,k(p): the probability of finding a cluster which percolates both in a parallel and

in a transverse direction,

• RA
L,k(p) =

1
2
[RU

L,k(p) +RI
L,k(p)].

n runs of such two steps are carried out for obtaining the number mX of them for which a

percolating cluster of the desired criterion X is found. Then, RX
L,k(p) = mX/n is defined

and the procedure is repeated for different values of p, L and k. A set of n = 106

independent samples is numerically prepared for each pair p and L/k (L/k = 75, 100,
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FIG. 2: Fraction of percolating lattices RX
L,k(p) (X = I,U,A as indicated) as a function of the concentration p

for k = 4 (a), k = 8 (b) and three different lattice sizes: L/k = 128 (up triangles), L/k = 256 (down triangles)

and L/k = 640 (diamonds). In each panel, the vertical dashed line denotes the percolation threshold in the

thermodynamic limit.

128, 256 and 640). The L/k ratio is kept constant to prevent spurious effects due to the

k-mer size in comparison with the lattice linear size L.

In Fig. 2, the probabilities RA
L,k(p), R

I
L,k(p) and RU

L,k(p) are presented for aligned rods

with k = 4 (Fig. 2a), k = 8 (Fig. 2b). As mentioned in the previous paragraph, the

simulations were performed for lattice sizes ranging between L/k = 75 and L/k = 640.

For clarity, three sizes are shown in the figure: L/k = 128 (up triangles), L/k = 256

(down triangles) and L/k = 640 (diamonds). Several conclusions can be drawn from Fig.

2. First, curves for different lattice sizes but with the same value of k cross each other

in a unique point, RX∗

k (measured in the vertical axis, see figure), which depends on the

criterion X used and those points are located at very well defined values in the p-axes

determining the critical percolation threshold (measured in the horizontal axis, see figure)

for each k. Second, pc(k) shifts to the left upon increasing the k-mer size. This observation
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FIG. 3: Percolation probability RA
L,k(p) as a function of the concentration p for k = 12 and L/k = 75. Upper-left

inset: Magnification of the main figure in the range 0.523 ≤ p ≤ 0.538. Lower-right inset: dRA
L,k/dp as a function

of p around the critical point pAc (L, k). Symbols correspond to simulation data and the solid line represents a

Gaussian fitting curve.

is a clear indication of that the percolation threshold decreases upon increasing k.

Third, RI∗

k and RU∗

k show a strong dependence on the k-mer size. For k = 1 (data not

shown here), RI∗

1 ≈ 0.311 and RU∗

1 ≈ 0.687, as reported in previous work for standard

site percolation on a rhombus-shaped lattice with open boundary conditions [54]. As k is

increased, two well-differentiated behavior are observed: (1) RU∗

k increases monotonically

to RU∗

k ≈ 1 for larger sizes; and (2) RI∗

k decreases monotonically to RI∗

k ≈ 0 for larger

sizes. On the other hand, RA∗

k remains constant (around 0.5 [54]) when k increases. A

similar behavior has been observed in the case of aligned k-mers on square lattices [39]



and thermal transitions in the presence of anisotropy [55, 56].

In percolation theory, the value of the probability RX
L at the transition point in the

thermodynamic limit plays an important role in the scaling theory, being indicative of

the universality class of the transition. From this perspective, the dependence of RI∗

k and

RU∗

k on k could be taken as a first indication of a nonuniversal behavior of the system for

variable k-mer size. However, as pointed out by Selke et al. [55, 56], the measure of the

probability intersection may depend on various details of the model which do not affect

the universality class, in particular, the boundary condition, the shape of the lattice, and

the anisotropy of the system. Consequently, more research is required to determine the

universality class of the phase transition.

In order to express RX
L,k(p) as a function of continuous values of p, it is convenient to fit

RX
L,k(p) with some approximating function through the least-squares method. The fitting

curve is the error function because dRX
L,k/dp is expected to behave like the Gaussian

distribution [68]

dRX
L,k

dp
=

1√
2π∆X

L,k

exp







−1

2

[

p− pXc (L, k)

∆X
L,k

]2






, (2)

where pXc (L, k) is the concentration at which the slope of RX
L,k(p) is the largest and ∆X

L,k

is the standard deviation from pXc (L, k).

The standard procedure described in the last paragraph is valid for RT
L,k(p) and RP

L,k(p)

in all range of k. The same does not occur in the case of RA
L,k(p). In fact, as will be

discussed in detail later (see Figs. 6 and 7), the anisotropy of the percolating phase leads

to a separation between the parallel and transversal probabilities. As a consequence of

this separation, which increases with k, the RA
L,k(p) curves tend to gradually develop a

plateau, with a marked inflection point around RA∗

k ≈ 0.5. This singularity, which is

barely perceptible in Fig. 2, can be clearly visualized in Fig. 3, where the percolation



probability RA
L,k(p) has been plotted as a function of the concentration p for k = 12 and

L/k = 75.

The upper-left inset shows a zoom of the plateau region. On the other hand, the lower-

right inset shows dRA
L,k/dp as a function of p around the inflection point. Thus, the

value of pAc (L, k) can be obtained from the concentration at which the minimum occurs.

For an accurate determination of this concentration, we fit the simulation data with an

inverted Gaussian function. The procedure is shown in the lower-right inset: open circles

correspond to simulation data and solid line represents the Gaussian fitting curve.

Once determined the positions pXc (L, k), the percolation threshold pc(k) can be obtained

using an extrapolation scheme. Thus, for each criterion (I, U and A), and for each value

of k, one expects that [1]

pXc (L, k) = pc(k) + AXL−1/ν , (3)

where AX is a nonuniversal constant and ν is the critical exponent of the correlation

length which will be taken as 4/3 for the present analysis, since, as it will be shown in

the Supplemental Material [66], our model belongs to the same universality class as 2D

random percolation [1].

Figure 4 shows the plots towards the thermodynamic limit of pXc (L, k) according to Eq.

(3) for the data in Fig. 2. From extrapolations it is possible to obtain the percolation

thresholds for the criteria I, A and U . Combining the three estimates for each case,

the final values of pc(k) can be obtained. Additionally, the maximum of the differences

between |pc(k)U − pc(k)
A| and |pc(k)I − pc(k)

A| gives the error bar for each determination

of pc(k). In this case, the values obtained were: pc(k = 4) = 0.5220(2) (a), and pc(k =

8) = 0.5281(5) (b).

The procedure in Fig. 4 was repeated for different values of k ranging between 2
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FIG. 4: Extrapolation of pXc (L, k) towards the thermodynamic limit according to the theoretical prediction given

by Eq. (3). Triangles, circles and squares denote the values of pXc (L, k) obtained by using the criteria I , A and

U , respectively. The data correspond to the cases presented in Fig. 2: k = 4 (a) and k = 8 (b).

and 80. The obtained values of pc(k) are collected in Table I (second column) and are

plotted in Fig. 5 (open squares). As it can be observed from the figure, the percolation

threshold increases upon increasing k. The curve rapidly increases for small values of k,

it flatten out for larger values of k, and asymptotically converges towards a definite value

as k → ∞. In the range 2 ≤ k ≤ 80, the data of pc(k) can be fitted with the function

proposed in Ref. [16]: pc(k) = A + B/(C +
√
k), being A = pc(k → ∞) = 0.582(9)

the value of the percolation threshold by infinitely long k-mers, B = −0.47(0.21) and



TABLE I: Percolation thresholds versus k.

k pc(k)

2 0.5157(2)

4 0.5220(2)

8 0.5281(5)

12 0.5298(8)

16 0.5328(7)

32 0.5407(6)

48 0.5455(4)

64 0.5487(8)

80 0.5500(6)

C = 5.79(2.18). The adjusted coefficient of determination is R2 = 0.9899. As observed in

previous theoretical [32–35], experimental [58–60], and simulation work [12, 39, 61–63],

the percolation threshold is higher for aligned rods than for rods isotropically deposited

(see Ref. [64], where the problem of isotropic k-mers on triangular lattices has been

studied).

The inset of Fig. 5 shows the behavior of pc(k) for aligned k-mers on square lattices.

Solid triangles and open diamonds correspond to data in Refs. [39] and [12], respectively.

The dashed line represents the fitting curve obtained in Ref. [12]: pc(k) = a1/k
α1+pc(k →

∞), where pc(k → ∞) = 0.533(1), a1 = 0.088(3) and α1 = 0.72(4). These results are

qualitatively different from those obtained for triangular lattices (main figure). Clearly,

the structure of the lattice plays a fundamental role in determining the statistics and

percolation properties of extended objects.

Figure 5 also includes the behavior of pj(k) for aligned k-mers (solid circles joined by a

solid line). The corresponding numerical values were obtained by solving Eq. (1) (with

t → ∞). The curve of pj(k) remains above the curve of pc(k), tending to pj(k → ∞) ≈
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√
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Percolation threshold as a function of k for aligned k-mers on square lattices. Solid triangles and open diamonds

denote previous data in Refs. [39] and [12], respectively. The dashed line represents the fitting curve obtained in

Ref. [12]: pc(k) = a1/k
α1 + pc(k → ∞).

0.7475979202 in the limit of infinitely long rods [65]. This finding indicates that the RSA

model of aligned k-mers on triangular lattices presents percolation transition in the whole

range of k.

To complete the study, and given the anisotropy of the percolating phase, it is interesting

to analyze the behavior of the transversal [RT
L,k(p)] and parallel [RP

L,k(p)] percolation

probabilities. In Fig. 6, the probabilities RP
L,k(p) (solid symbols) and RT

L,k(p) (open

symbols) are presented for a typical case: aligned rods with k = 4 and different lattice

sizes between L/k = 75 and L/k = 640. From a simple inspection of the figure it is
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FIG. 6: Fraction of percolating lattices RX
L,k(p) (X = P, T as indicated) as a function of the concentration p for
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(down triangles) and L/k = 640 (diamonds). The vertical dashed line denotes the percolation threshold in the

thermodynamic limit.

observed that: (a) for a fixed value of L = L1, the RP
L1,k

(p) curve shifts to the left of

the RT
L1,k

(p) curve. The result indicates that for finite systems the anisotropy of the

deposited layer favors the percolation along the direction of the nematic phase. This

scenario does not occur in isotropic systems, where for a fixed L, the vertical and horizontal

percolation probabilities are indistinguishable [57]; and (b) RP ∗

k and RT ∗

k crossing points

are located at the same point on the p-axis (vertical line in the figure), indicating that,

in the thermodynamic limit, the value of the percolation threshold is the same in both

parallel and transversal directions.

An alternative way to visualize the effects described in points (a)− (b) (last paragraph)
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squares; and k = 8, solid squares.



is presented in Fig. 7. In part a), the parallel and transversal probabilities are shown for

k = 4 and a fixed value of the lattice size L/k = 128. In order to measure the separation

between the curves in the p-space, the distance δ(L, k) is defined as δ(L, k) = p∗T (L, k)−

p∗P (L, k), where p∗T [P ](L, k) is the value of the concentration p for which R
T [P ]
L,k (p) = 0.5.

δ(L, k) was calculated for different values of k and L. The results are shown in Fig. 7b)

for two k sizes (k = 4 and 8) and L/k ranging between 75 and 640 (note the log-log scale

in the figure). In all cases, the separation between the parallel and transversal curves

diminishes for increasing L, being δ(L → ∞, k) = 0. This result reinforces the arguments

given in the discussion of Fig. 6. Namely, for an infinite system of aligned k-mers on

triangular lattices, the properties of the percolating phase are characterized by an unique

percolation threshold, regardless of the lattice direction (transversal or parallel to the

alignment direction).

Finally, an exhaustive study of critical exponents and universality was carried out.

The results of this analysis are presented in the Supplemental Material [66]. The values

obtained for ν, γ and β verify that, as expected for a system with short-range correlations

(it is well known that RSA has very short-range correlations), this problem belongs to

the same universality class that the random percolation problem.

IV. CONCLUSIONS

In this paper, the percolation behavior of aligned rigid rods of length k on 2D triangular

(rhombus-shaped) lattices has been investigated by computer simulations and finite-size

scaling analysis. The k-mers (with k from 2 to 80) were deposited along one of the

directions of the lattice, forming a nematic phase. Lattice sizes up to L/k = 640 were

used.



For each value of k, the size of the largest cluster SL and the probability RX
L,k(p) (X =

P, T, U, I, A) that a lattice of size L percolates at concentration p were used to obtain the

critical point (percolation threshold pc(k) and intersection point of the probability curves

RX∗

k ) and the critical exponents ν, β and γ characterizing the phase transition.

The percolation threshold exhibits a monotonic increasing function when it is plotted as

a function of the k-mer size: pc(k) = A+B/(C +
√
k), being A = pc(k → ∞) = 0.582(9)

the value of the percolation threshold by infinitely long k-mers, B = −0.47(0.21) and C =

5.79(2.18). This behavior, which is reported here for the first time, is completely different

to that observed for square lattices, where the percolation threshold decreases with k

[12, 39]. The present result clearly demonstrates that the structure of the lattice plays

a fundamental role in determining the statistics and percolation properties of extended

objects. To finish with the analysis of pc(k), it is important to note that, for all k, the

percolation threshold of aligned rods is higher than the corresponding one to isotropic

k-mers [64].

The effect of the anisotropy on the properties of the percolating phase was investigated

by following the behavior of RP
L,k(p) (probability of finding a percolating cluster in a par-

allel direction to the nematic alignment) and RT
L,k(p) (probability of finding a percolating

cluster in a transverse direction to the nematic alignment). For finite systems, while in

the case of isotropic k-mers the vertical and horizontal percolation probabilities are in-

distinguishable, in the case of aligned k-mers the anisotropy of the deposited layer favors

the percolation along the direction of the nematic phase. The difference between the

parallel and transversal probabilities diminishes for increasing the lattice size L, being

RP
L,k(p) = RT

L,k(p) in the limit of L → ∞. In other words, the value of the percolation

threshold is the same in both parallel and transversal directions.



The breaking of the orientational symmetry influences also the behavior of the percola-

tion probabilities at the intersection point RX∗

k . Thus, RU∗

k and RI∗

k exhibit a nonuniversal

critical behavior, varying continuously with changing the k-mer size. A similar scenario

has been already reported in the case of aligned k-mers on square lattices [12, 39] and

thermal transitions in the presence of anisotropy [55, 56]. These results indicate that the

universality of the intersection points RX∗

k ’s is observed only for isotropic systems. For

anisotropic systems, this universality is violated and the value of the crossing point of the

percolation probabilities is dependent upon k (and the degree of alignment).

Finally, the improved accuracy in the determination of the critical exponents (ν, β

and γ) confirmed that the model belongs to the same universality class as the random

percolation, regardless of the size k considered. In addition, the corresponding curves

collapse according to the predictions of the scaling theory.
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[7] L. L. Treffenstädt, N. A. M. Araújo, and D. de las Heras, Soft Matter 14, 3572 (2018).

[8] J. Feder, J. Theoret. Biol. 87, 237 (1980).

[9] J. W. Evans, Rev. Mod. Phys. 65, 1281 (1993).

[10] J. Talbot, G. Tarjus, P. R. Van Tassel, and P. Viot, Colloid. Surface A 165, 287 (2000).

[11] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View of Statistical Physics (Cambridge University

Press, 2010).

[12] Y. Y. Tarasevich, N. I. Lebovka, and V. V. Laptev, Phys. Rev. E 86, 061116 (2012).

[13] Y. Y. Tarasevich, V. V. Laptev, N. V. Vygornitskii, and N. I. Lebovka, Phys. Rev. E 91, 012109 (2015).

[14] P. M. Centres and A. J. Ramirez-Pastor, J. Stat. Mech. (2015) P10011.

[15] G. Kondrat, Z. Koza, and P. Brzeski, Phys. Rev. E 96, 022154 (2017).

[16] M. G. Slutskii, L. Y. Barash, and Y. Y. Tarasevich, Phys. Rev. E 98, 062130 (2018).

[17] N. I. Lebovka, N. N. Karmazina, Y. Y. Tarasevich, and V. V. Laptev, Phys. Rev. E 84, 061603 (2011).

[18] J.-C. Charlier, X. Blase, and S. Roche, Rev. Mod. Phys. 79, 677 (2007).

[19] A. G. N. Sofiah, M. Samykano, K. Kadirgama, R. V. Mohan, and N. A. C. Lah, Applied Materials Today,

11 320 (2018).

[20] D. S. Hecht, L. Hu, and G. Irvin, Adv. Mater. 23, 1482 (2011).

[21] D. McCoul, W. Hu, M. Gao, V. Mehta, and Q. Pei, Adv. Electron. Mater. 2, 1500407 (2016).

[22] R. M. Mutiso and K. I. Winey, Prog. Polym. Sci. 40, 63 (2015).

[23] S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, ACS Nano 4, 7064 (2010).

[24] R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, ACS Nano 7, 7654 (2013).

[25] T. Ackermann, R. Neuhaus, and S. Roth, Sci. Rep. 6, 34289 (2016).

[26] A. Kumar and G. U. Kulkarni, J. Appl. Phys. 119, 015102 (2016).

[27] A. Kumar, N. S. Vidhyadhiraja, and G. U. Kulkarni, J. Appl. Phys. 122, 045101 (2017).



[28] R. Taherian, Compos. Sci. Technol. 123, 17 (2016).

[29] S. P. Finner, M. I. Kotsev, M. A. Miller, and P. van der Schoot, J. Chem. Phys. 148, 034903 (2018).

[30] S. Torquato, Random Heterogeneous Materials (Springer, New York, 2002), Vol. 16.

[31] G. E. Pike and C. H. Seager, Phys. Rev. B 10, 1421 (1974).

[32] I. Balberg and S. Bozowski, Solid State Commun. 44, 551 (1982).

[33] I. Balberg, N. Binenbaum, and C. H. Anderson, Phys. Rev. Lett. 51, 1605 (1983).

[34] I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B 30, 3933 (1984).

[35] A. P. Chatterjee, J. Chem. Phys. 140, 204911 (2014).

[36] Y. Y. Tarasevich, V. A. Goltseva, V. V. Laptev, and N. I. Lebovka, Phys. Rev. E 94, 042112 (2016).

[37] N. I. Lebovka, Y. Y. Tarasevich, N. V. Vygornitskii, A. V. Eserkepov, and R. K. Akhunzhanov, Phys. Rev.

E 98, 012104 (2018)

[38] Y. Y. Tarasevich, N. I. Lebovka, I. V. Vodolazskaya, A. V. Eserkepov, V. A. Goltseva, and V. V. Chirkova,

Phys. Rev. E 98, 012105 (2018)

[39] P. Longone, P. M. Centres, and A. J. Ramirez-Pastor, Phys. Rev. E 85, 011108 (2012).
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