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ABSTRACT: The adsorption of long, straight rigid rods of length k (k-mers)
on 2D lattices is described by using a new theoretical approach based on a
generalization of the classical Guggenheim—DiMarzio approximation. In this
scheme, the Helmholtz free energy and its derivatives are written in terms of the
order parameter d, which characterizes the nematic phase occurring in the system
at intermediate densities. Then, using the principle of minimum free energy with
O as a parameter, the main adsorption properties are calculated. Comparisons
with Monte Carlo simulations are performed in order to test the validity of the
theoretical model. The obtained results indicate that the new thermodynamic

description is significantly better than the existing theoretical models developed to

treat the polymer adsorption problem.

1. INTRODUCTION

The adsorption of gases on solid surfaces is an interesting
theoretical problem with important applications related to thin
surface films. Many studies have been carried out on the adsorption
behavior of small molecules in such systems." > However, the
theoretical description of equilibrium and dynamic properties of
polyatomic species adsorbed on 2D substrates still represents a major
challenge in surface science. The inherent difficulty common to
processes involving the adsorption of k-mers (particles occupying
several k contiguous lattice sites) is to calculate the configurational
(entropic) contribution to the thermodynamic potentials properly,
which means the degeneracy of the energy spectrum compatible with
a given number of particles and adsorption sites.

However, several attempts were made in the past to solve the
k-mers problem. Among them, Onsager,7 Zimm,® and Isihara’
made important contributions to the understanding of the statistics
of rigid rods in dilute solution. These treatments are limited in their
application because they are valid for dilute solution only and because
they are not applicable to systems of nonsimple shapes. The FH
theory, due independently to Flory'® and to Huggins,"" has over-
come the restriction to dilute solution by means of a lattice
calculation. The approach is a direct generalization of the theory of
binary liquids in two dimensions or polymer molecules diluted in a
monomeric solvent. It is worth mentioning that, in the framework of
the lattice-gas approach, the adsorption of k-mers on homogeneous
surfaces is an isomorphous problem with the binary solutions of
polymer—monomeric solvent.

The FH statistics, given for the packing of molecules of
arbitrary shape but isotropic distribution, provide a natural founda-
tion onto which the effect of the orientation of the admolecules can
be added. Following this line of thought, DiMarzio'* developed an
approximate method of counting the number of ways, €2, to pack
together linear polymer molecules of arbitrary shape and of arbitrary
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orientations. In the case of allowing only those orientations for which
the molecules fit exactly onto the lattice and for an isotropic distri-
bution, the value of €2 reduces to the value obtained previously by
Guggenheim."® We call this limit the Guggenheim—DiMarzio (GD)
approximation.

More recently, two new theories to describe adsorption with
multisite occupancy have been introduced. In the first, Ramirez-
Pastor et al.'"* ' presented a model to study the adsorption of
linear adsorbates on homogeneous surfaces. The model, here-
after denoted EA, is based on exact forms of the thermodynamic
functions of linear adsorbates in one dimension and its general-
ization to higher dimensions. In the second, which is called
fractional statistical theory of adsorption of polyatomics (FSTA),
the configuration of the molecule in the adsorbed state is
incorporated as a parameter of the model.'”'® The theory in
refs 17 and 18 is based on a generalization of the formalism of
quantum fractional statistics, proposed by Haldane'® and Wu*°
as an extended form of the Pauli exclusion principle. FSTA has
been proposed to extend quantum fractional statistics so as to
describe a broad set of classical systems, such as the adsorption of
polyatomics at the gas—solid interface.

Detailed comparisons between theoretical and simulation
results of adsorption” showed that the GD approach fits the
numerical data at low coverage very well and the EA model behaves
excellently at high coverage. On the basis of these findings, the
semiempirical model for the adsorption of polyatomics (SE) was
developed.'®*" The SE model is a combination of exact calculations
in 1D and the GD approximation with adequate weights.

On the basis of the latter models, generalizations have been
made to take into account the effects of geometric confinement,**
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Figure 1. (a) [(b)] Typical configuration in the isotropic [nematic]
phase.

—25 6—32

heterogeneity in adsorbent sites,”> % mixtures of §ases,2
lateral interactions,">>> multilayer adsorption,>* >® and other
factors neglected in the classical theories. In all of these
systems of hard nonspherical colloidal particles, the orienta-
tion of the molecules can significantly affect the entropic
contribution to the adsorbate’s free energy. An earl7y seminal
contribution to this subject was made by Onsager” with his
paper on the isotropic—nematic (I—N) phase transition in
liquid crystals. Onsager’s theory predicted that very long and
thin rods interacting with only the excluded volume interaction
can lead to long-range orientational (nematic) order. Thus, at
low densities, the molecules are typically far from each other
and the resulting state is an isotropic gas. However, at large
densities, it is more favorable for the molecules to align
spontaneously (there are many more ways of placing nearly
aligned rods than randomly oriented ones), and a nematic
phase is present at equilibrium.

Interestingly, a number of papers have appeared recently in
which the I=N transition was studied in 2D lattices.””*' In ref
37, the authors presented strong numerical evidence that a
system of square geometry, with two allowed orientations, shows
nematic order for k = 7. The nematic phase, characterized by a
big domain of parallel k-mers, is separated from the isotropic
state by a continuous transition occurring at a finite density.
Figure 1 shows a typical configuration in the isotropic (nematic)
phase. Reference 37 also provided a qualitative description of a
second phase transition (from a nematic order to a non-nematic
state) occurring at a density of close to 1. However, the authors
were not able to determine the critical quantities (critical point
and critical exponents) characterizing the [N phase transition
occurring in the system. This problem was solved in refs 38—41,
where an accurate determination of the critical exponents, along
with the behavior of Binder cumulants, showed that the transi-
tion from the low-density disordered phase to the intermediate-
density ordered phase belongs to the 2D Ising universality class
for square lattices and to the three-state Potts universality class
for honeycomb and triangular lattices.

Given that the existence of an I—N phase transition in 2D
lattices has been very recently reported, no theoretical results
have been published on multisite occupancy adsorption in the
presence of nematic order in the adlayer. In this context, the main
idea of the present paper is to build a new theoretical approach to
the problem of k-mers adsorption, which allows us to include the
effects of the I—N phase transition occurring at intermediate
densities on the thermodynamic functions of the system. For this
purpose, we use the formalism of the GD approximation and
write the Helmholtz free energy and its derivatives in terms of the
order parameter 0. Then, using the principle of minimum free

energy with O as a parameter, we derive the main thermodynamic
functions of the system. In addition, an exhaustive MC simula-
tion study has been performed to test the validity of the
theoretical model. The new theoretical scheme allows us to
obtain an approximation that is significantly better than the other
existing approaches and provides a simple model from which
experiments may be reinterpreted.

The paper is organized as follows. In section 2, the new
theoretical approximation for polyatomics is developed. In
section 3, the results of the present approach are compared with
corresponding ones from MC simulations and from the main
theoretical models developed to treat the polymer adsorption
problem. Finally, the conclusions are drawn in section 4.

2. THEORY

In 1944, Guggenheim proposed an interesting method to
calculate the combinatory term in the canonical partition func-
tion for the packing of molecules of arbitrary shape."® Later, in a
valuable contribution, DiMarzio obtained the Guggenheim
factor'? for a model of rigid rod molecules. In this section, we
reproduce the calculations developed by DiMarzio, who ob-
tained the number of ways to pack rigid rods onto a cubic lattice
and its generalization to lattices of connectivity .

Let us place N straight rigid rods onto a cubic lattice. We will
assume that only the three mutually perpendicular base vector
directions are directions in which the rigid rods lie. The
number of molecules that lie in the direction i will be denoted
by N;(i = 1, 2, 3). We wish to determine the number of ways,
Q({++*N;*++}, Np) to pack the N molecules such that N; of
them lie in the direction i and there are N holes. The advan-
tage of allowing only those orientations for which the mole-
cules fit exactly onto the lattice is that for the case of an
isotropic distribution the value of € reduces to the value
obtained previously by Guggenheim."?

Let us place the N; molecules, one at a time, onto the lattice in
orientation 1, the N, molecules, one at a time, in orientation 2,
and then the remaining N3 molecules, one at a time, in orienta-
tion 3. To estimate the number of ways to place the (j; + 1)th
molecule onto the lattice, given that j; molecules have already
been placed, we must know the probability that k contiguous sites
lying in this orientation are empty. Here the subscript reminds us
that we are discussing type 1 molecules. Consider a contiguous
pair of sites arbitrarily chosen except for the fact that the line
determined by the centers of these sites lies along orientation 1.
Label the sites A and B. Site A has a probability of being empty
equal to the fraction of sites unoccupied by molecular segments
because site A can be thought of as chosen arbitrarily. If site A is
empty, then the ratio of the number of times it adjoins a polymer
to the number of times it adjoins a vacant site is 2j,/2(M — kj,),
where M is the total number of sites in the lattice. Notice that in
writing this expression for the ratio we counted only those pairs
of contiguous sites that lie along orientation 1. The pairs that lie
along orientations 2 and 3 are of no consequence as far as the
nearest-neighbor statistics along orientation 1 are concerned.

The above ratio is also the ratio of the number of times a
polymer adjoins site A (presumed empty) to the number of times
a vacant site adjoins site A. Thus, the probability that site B is
empty given that site A is empty is

2(M — kjy)
2(M + kjy) + 2j;

(1)
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We see that v, | |, the number of ways to place the (ji + Dth
molecule onto the lattice, is

2(M — kjy)

2(M + kjy) + 2j; @)

Vi1 = (M= kj)

The total number of ways to place N; indistinguishable mole-
cules onto the lattice in this orientation is

N —1

II Vii+1

j1=0 - M'(M_kNl +N1)'
(N)! B (M — kN1 )IMI(Ny)!

o G

(M — kN)I(N)!

Note that this result so far is equal to the exact number. That is to
say, the number of ways to pack the molecules is the number of
ways to arrange N linear molecules and Ny holes on a linear
lattice.

To count the number of ways to pack the N, molecules in the
second orientation, given that we have already placed the N;
molecules, we need to know the statistics for those pairs of
neighboring sites whose centers are connected by a line in this
direction. The number of this kind of nearest neighbors to
polymer molecules is 2kN; + 2j,, where j, is the number of
polymer molecules in the second orientation and the number of
this kind of nearest neighbors to holes is 2M — (2kN; + 2kj,).

The first segment of the (j, + 1)th molecule can go into the
lattice in (M — kN, — kN) places. The expectancy that a site is
unoccupied when it is known that the adjacent site in the
direction in which the molecules lies is unoccupied is

2(M — kN, — kj) + 2(kN; + j,)

(4)

We therefore have for v; |,
ot

(M — kN; — kj»)

; = (M —kN; — kj
VRt ( 1 ki) (M — kN; — kj) + (kN; + j2)

(5)

The total number of ways to pack these indistinguishable
molecules is

j};[o Tt _ Mo RN)(M KNy N
(N))! (M — kN; — kN,)!M!(N3)! ()

By an exactly analogous reasoning process, we obtain for v;
Vi+1 =

(M — kN — kN, — kj3)
(M — kNy — kN, — kj3) + (kN; + kN, + j3)

(7)

(M — kNy — kN, — kj3)

Ny— 1
V.
1'31;10 PEL (M= KNy — kN,)!(M — kN + N3)!

= (8)

(N3)! (M — kN; — kN, — kN;)!M!(N3)!

The product obtained from eqs 3, 6, and 8 gives the total number
of ways to pack the molecules:

(M —kN; + N)!

(M — kN)I(N))!

(M — kNp)!(M — kN, + N,)!
(M — kN, — kN;)IMI(N,)!

(M — kN — kN,)!/(M — kN; + N3)!
(M — kN; — kN, — kN3)IM!(N3)!

Q(No,Ni,N,,N3) =

zw

M~ (k= 1N
j=1

- (9)
(No)! TT (N)!(21)”

1

:w

1

As remarked before, this expression is exact when all of the
molecules are in one direction. Equation 9 has the proper symmetry
requirements. It is invariant under the permutation of N;.

Isotropic Distribution of the Adsorbed k-mers. For the
case of an isotropic distribution of the k-mers (N; = N, = N3 =
N/3), we obtain

o Moty (v
Nol[(N/3)F (M1)?

Equation 9 can be generalized for a lattice of connectivity y. If
one uses a mole fraction for molecules that are parallel to one
another and a volume fraction for molecules that are perpendi-
cular (it is assumed that the base vectors of the new space are
orthogonal), then the appropriate generalization of eq 9 is

7/2
[TM— (k—1)Ny)!

QN {N}) = (1)
(No)! TT (N1 (aaty 2™

i=1

where y/2 is the dimensionality of the space. Again, if we allow
N; = (2/y)N (and Ny = M — kN) then eq 9 reduces to the well-
known Guggenheim factor:

Q(M,N,y) =

Y\ M {M— kN +[(y = 2)k + 2N}
(5) N!(M—kN)![ M

(12)

From eq 12, the canonical partition function Q(M, N, T) can be
easily calculated. Thus,

QM,N,T) = Q(M,N,y) exp(— pke,N) (13)
where f3 = 1/kgT (with kg being the Boltzmann constant) and &,
is the interaction energy between every unit forming a k-mer and

the substrate. In addition, the Helmholtz free energy F(M, N, T)
relates to Q(M, N, y) through

BE(M,N,T) = —In Q(M,N,T) = —In Q(M,N,y) + fke,N
(14)

Then, the remaining thermodynamic functions can be obtained
from the general differential form"

= —SdT— I dM +u dN (15)
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where S, I, and u designate the entropy, spreading pressure, and
chemical potential, respectively, which by definition are

OF
s= —(E) m- - (&
0T ) yy M) 1y

u= (;@)M (16)

Finally, from eqs 12—16 and by using the lattice coverage 0 =
kN/M, the adsorption isotherm [(6)] can be written in terms of
the intensive variables 6 and T:

plu—ke) = in(7) ~kn(1 =)~ 1n(%)

e

+&ﬂhb—k (17)

Effects of the Orientational Order on the Adsorption
Thermodynamic Functions. As discussed in the Introduction,
recent results showed that long, straight rigid rods on a lattice,
interacting with only an excluded volume interaction, can lead to
nematic order at intermediate density.”” *' To introduce the
effect of this orientational order in the GD statistics, we will
rewrite the equatlons above in terms of the well-known nematic
order parameter 0,” which is given by

Z

6 == (18)

0 represents a general order parameter measuring the orienta-
tion of the k-mers on a lattice with m directions. For simplicity,
we restrict the calculations to the case of square lattices, where
m =2 and the angle between N ; and N ; is 7. Accordingly, the
order parameter reduces to 0 = [N; — N|/(N; + N,), with N;
(N,) being the number of k-mers aligned along the horizontal
(vertical) direction. Without a loss of generality, we can assume
that the nematic order occurs in the direction of N, and

NN,
TN, +N,

(19)

From eq 19 and using 6 = k(N, + N,)/M, the number of
k-mers aligned along the horizontal and vertical directions can be
obtained as

N1 B 0 0
M 2% (1490) and— By

Then, starting from eq 9, operating as in the previous section
and using eq 20, the Helmholtz free energy per site and
adsorption isotherm can be written in terms of 6 and 0:

mwﬁ):-b_ﬁzﬁgiéﬁ]mb_ 1+5ﬂ

ﬁ-%} ln{l— 9}

1-0) (0

(1+0)0. [(1+06)0] (1-9)6 (
LT ln{ 2%k } T ln{ 2k }
+(1—0)In(1—0) + pe,0 (21)

and

plu—ten) = (b= p) |12 200 o[ LR 00

2 200 2%k
SRR e
NUNT et
+ {(1;6)—22—2} 1n{(1_2k6)0}+k1n(1—0) (22)

As it can be observed from eq 22, the calculation of the
adsorption isotherm requires a knowledge of an analytical
expression for the dependence of the nematic order parameter
on the coverage. As expected, eq 22 simplifies to eq 17 when
0(0) = constant and 0 — 0 (isotropic case). In addition, it can be
easily demonstrated that eqs 21 and 22 reduce to the correspond-
ing exact thermodynamic functlons of noninteracting k-mers
adsorbed flat on a 1D lattice* when 0(6) = constant and 0 — 1
(fully anisotropic case).

In the general case, a free-energy-minimization approach is
applied to establish () and then to obtain a general expression
for the adsorption isotherm (without orientational restrictions).
The theoretical procedure can be described as follows:

(1) By differentiating eq 21 with respect to 0 and setting the
result equal to zero, we found the condition

1/("1){(k— 1)[1_2(1—5)} +1}
9(+ﬂ }:a

(23)

(14+90)

_U_éywm—m{@_lﬂ

(2) 0(0) is calculated from solving42 eq 23.

(3) 0(0) is introduced into eq 22, and the adsorption
isotherm is obtained.

Items 1—3 are summarized in the following scheme:

differentiating eq 21 with respect to 0 —eq 23
solving eq 23— (6)

0(0) +eq22—u(0)

3. RESULTS AND DISCUSSION

In this section, we analyze the main characteristics of the new
adsorption isotherm given in eq 22, in comparison with MC
simulation results and the main theoretical models developed to
treat the polymer adsorption problem.'®”'*'®?! Three theories
have been considered: the first is the well-known FH approxima-
tion for straight rigid rods;'”'"'® the second is the GD approach
for an isotropic distribution of admolecules;'>'*'® and the third
is the recently developed SE model for the adsorption of
polyatomics.'®*!

The equation of the GD adsorption isotherm for an isotropic
distribution of adsorbed rods was given in eq 17. The corresponding
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. . 10,11,18 18,21 ;
expressions in the FH and SE theories can be
written as

Blu—ke)) = ln<z> —kIn(1—6) —ln(;/), FH(k = 2)

(24)
and
Blu—key) = ln(%) — klIn(1—6) —ln@)
+(1—0)(k—1) 11{1—(’?1) 29}
+0(k—1) 1n[1—(k‘k1)9} - -

As previously indicated, we restrict the study to square lattices (y
=4).

In the case of the MC simulations, the calculations have been
developed for straight rigid rods of length k, with k ranging between
2 and 14. The surface was represented as a square array of M=L X L
adsorptive sites with L/k = 20 and periodic boundary conditions. As
was shown in ref 40, finite-size effects are negligible for the coverage
dependence of the chemical potential with this lattice size.

To obtain the curve of u versus 6, we have used the
hyperparallel tempering Monte Carlo simulation method.**** This
method consists of generating a compound system of R noninteract-
ing replicas of the system under study. The ith replica is associated with
a chemical potential #;. To determine the set of chemical potentials,
{u}, we set the lowest chemical potential, 1,, in the isotropic phase
where relaxation (correlation) time is expected to be very short and
there exists only one minimum in the free-energy space. However, the
highest chemical potential, tiz, is set in the nematic phase whose
properties we are interested in. Finally, the difference between two
consecutive chemical potentials, (; and p;  ; with t; > ;. 1, is set as
Au = (u; — ug)/(R — 1) (equally spaced temperatures).

Under these conditions, the algorithm to carry out the
simulation process is built on the basis of two major subroutines:
replica update and replica exchange.

Replica Update. The adsorption—desorption and diffusional
relaxation procedure is as follows: (1) One out of R replicas is
randomly selected. (2) A linear k-uple of nearest-neighbor sites,
belonging to the replica selected in (1), is chosen at random. Then, if
the k sites are empty, an attempt is made to deposit a rod with
probability W = min{1, exp(u)}. If the k sites are occupied by units
belonging to the same k-mer, then an attempt is made to desorb this
k-mer with probability W = min{1, exp(—fu)}; otherwise, the
attempt is rejected. In addition, the displacement (diffusional re-
laxation) of adparticles to nearest-neighbor positions, by either jumps
along the k-mer axis or reptation by rotation around the k-mer end,
must be allowed in order to reach equilibrium in a reasonable time.

Replica Exchange. The exchange of two configurations X;
and Xj, corresponding to the ith and jth replicas, respectively, is
tried and accepted with probability W = min{1, exp(—A)},
where A in a nonthermal grand canonical ensemble given by
exp[B(u; — 1) (N; — N)J.

An MC step (MCs) is completed after we repeat (1) and (2)
RM times. The equilibrium state can be well reproduced after
discarding the first ry MCs. Then, the next r MCs are used to
compute averages.

For each value of the chemical potential 1, the corresponding
surface coverage 0; is obtained through simple averages:

0= 1> o) (26)

t=1

In eq 26, X; stands for the state of the ith replica (at chemical
potential u;).

As mentioned before in ref 37, the relaxation time increases
very quickly as the k-mer size increases. Consequently, MC
simulations for large adsorbates are very time-consuming and
may produce artifacts related to nonaccurate equilibrium states.
To discard this possibility, equilibration times of order O(10®
MCs) were used in this study, with an effort reaching almost the
limits of our computational capabilities.*

An extensive comparison among the new adsorption isotherm
(eq 22, solid line), the simulation data (symbols), and the
isotherm equations obtained from the analytical approaches
depicted as GD (eq 17, dashed line), FH (eq 24, dashed and
dotted line), and SE (eq 25, dotted line) is shown in Figure 2:
() k=3, (b) k=6,(c) k=11,and (d) k = 14.

In part a, the behavior of the different approaches can be
explained as follows. The new theory and GD agree very well with the
simulation results for coverage values of up to 6 & 0.6; however, the
disagreement between theoretical and simulation data increases for
larger O values. The coincidence between the new theory and GD
results is due to the fact that, for small values of k (k < 4), the function
0(6) minimizing the free energy is 0(6) = 0 and, under this condi-
tion, eqs 22 and 17 become identical. However, SE provides a good
approximation with very small differences between simulation and
theoretical results in all ranges of coverage.

We now analyze the case corresponding to k = 6 (Figure 2b).
The agreement between simulation and analytical data is very
good for small values of coverage. However, as the surface coverage is
increased, two different behaviors are observed. Although SE and the
new theory provide good results, the classical FH and GD approx-
imations fail to reproduce the simulation data. The differences
between GD and the theory presented here are associated with the
behavior of the order parameter d(6) (obtained from eq 23 with
k = 6), which is shown in the inset of the Figure. The functionality of
O with coverage is indicative of the existence of nematic order for
6 > 0.4. Even though this result is not exact,”” the inclusion of (6) in
eq 22 leads to an extremely good approximation of the adsorption
isotherm.

To complete our study, parts c and d of Figure 2 are devoted to
the analysis of large adsorbates, k = 11 and 14, respectively. The
results are very clear: FH, GD, and SE predict a smaller 6 than the
simulation data over the entire range of coverage. In the case of
the new isotherm, the results are excellent and represent a
significant advance with respect to the existing development of
k-mer thermodynamics.

For each value of k, the differences between theoretical and
simulation data can be very easily rationalized with the help of the
average percent error in the chemical potential 8/5, which is

defined as

1
o>

0

//t sim lu appr

x 100% (27)
lusim

7

where lg, (/,tappr) represents the value of the chemical potential
obtained by using the MC simulation (analytical approach). Each
pair of values (g, /,tappr) is obtained at fixed 6. The sum runs
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Figure 2. Adsorption isotherms for rigid k-mers on a square lattice: (a) k=3, (b) k=6, (c) k=11, and (d) k = 14. Symbols represent the MC results, and

lines correspond to different theoretical approaches as indicated in part a.

124 —=— This work, eq 22
—0—GD, eq 17
—e—FH, eq 24
—0—SE, eq 25

Figure 3. Average percent error in the chemical potential, SZ, as a function
of k for the different approximations studied in this contribution.

over the N points of the simulation adsorption isotherm (in this
case, N = 100 for all k).

The dependence of 8}2 on the k-mer size is shown in Figure 3
for the different theoretical approximations. Several conclusions
can be drawn from the Figure:

(1)

)

©)

In the FH and GD cases, 8; increases monotonically with
increasing k and the disagreement between MC and analy-
tical data turns out to be very large for k = 3 and k = §,
respectively.

The behavior of SE is more coml?lex. In fact, there exists a
range of k (2 < k < 7) where &, remains almost constant
around 1% and SE provides a very good fitting of the
simulation data. However, for k > 8, the differences between
simulation and theoretical data increase with k. This devia-
tion is associated with the appearance of an I—N phase
transition in the adlayer for k > 7, which is not covered by the
SE theory.

The agreement between the new theoretical approach
and the simulation data is excellent in all ranges of k. This
result provides valuable insight into how the adsorption
process takes place. Namely, for k = 7 and intermediate
densities, it is more favorable for the rods to align
spontaneously because the resulting loss of orientational
entropy is compensated for by the gain of translational
entropy.

The study in Figures 2 and 3 demonstrates that explicitly

considering the isotropic and nematic states occurring in the adlayer
at different densities is crucial to understanding the adsorption
process of rigid rods. In this sense and to the best of our knowledge,
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this is the first report of a generalized lattice-gas model that includes
such an I—N phase-transition effect.

We will finish this section by showing how the SE model,
which was recently introduced in a semiempirical form,'®*" can
now be easily understood from the arguments given in the
previous paragraphs.

As discussed in refs 18 and 21, GD and EA were found to be
good expressions for representing the k-mers’ adsorption at low
and high concentrations, respectively. On the basis of this
finding, eq 25 was built as a combination of the GD approxima-
tion and the exact isotherm in 1D, with (1 — 6) and 6 as weights,
respectively. The explanation of this procedure in terms of the
I—N phase transition occurring in the adsorbate is simple: at low
coverage, an isotropic state is formed on the surface and the
system is well represented by the GD adsorption isotherm
equation. However, at high coverage, a nematic order appears
in the adlayer, which is excellently represented by the 1D
isotherm.

The last example reinforces the discussion above. Namely, the
possibility of understanding the adsorption process from a
detailed knowledge of the spatial configuration of the molecules
in the adsorbed state represents a qualitative difference with the
previous generation of models for k-mer adsorption, which
assumes isotropy in the adlayer.'®”'3192>73%4¢ Consequently,
the theory presented here (1) represents a significant qualitative
advance in our understanding of the adsorption of rigid k-mers
and (2) is the most accurate and complete approximation to this
complex problem.

4. CONCLUSIONS

A new theoretical approach to the adsorption of long, straight
rigid rods has been presented on the basis of a generalization of
the classical Guggenheim—DiMarzio approximation. The pro-
posed formalism is capable of including the effects of the I—N
phase transition occurring at intermediate densities on the
thermodynamic functions of the system.

The reaches and limitations of the theory have been analyzed
in comparison with MC simulation and the main analytical
models developed to treat the polymer adsorption problem.
The results obtained represent a significant qualitative advance
with respect to the existing development of k-mer thermody-
namics and show that the treatment of this complex problem can
be significantly simplified if viewed from the new theoretical
perspective.

Finally, the new formalism seems to be a promising way to
develop a more accurate description of the adsorption thermo-
dynamics of polyatomic molecules, allowing us to include
heterogeneous surfaces, lateral interactions between the adpar-
ticles, and multilayer adsorption.
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