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Abstract

In the present work, a generalized lattice-gas model to study multilayer adsorption
of interacting polyatomic species on heterogeneous surfaces is introduced. Using
an approximation in the spirit of the well-known Brunauer–Emmet–Teller (BET)
model, a new theoretical isotherm is obtained in one- and two-dimensional lattices
and compared with Monte Carlo simulation. In addition, the BET approach is used
to analyze these isotherms and to estimate the monolayer volume. In all cases, the
application of the BET equation leads to an underestimate of the true monolayer
capacity. However, significant compensation effects were observed for heterogeneous
surfaces and attractive lateral interactions.

Key words: Equilibrium thermodynamics and statistical mechanics, Surface
thermodynamics, Adsorption isotherms, Multilayer adsorption, Monte Carlo
simulations

1 Corresponding author. Fax +54-2652-430224, E-mail: antorami@unsl.edu.ar

Preprint submitted to Elsevier 28 September 2011

*Manuscript
Click here to view linked References

http://ees.elsevier.com/physa/viewRCResults.aspx?pdf=1&docID=10032&rev=1&fileID=231854&msid={6DA7B513-2DA2-41C2-9347-B8625E2B48A5}


1 Introduction

The theoretical description of adsorption is a long-standing complex problem
in surface science that presently does not have a general solution [1–4].

In 1918 Langmuir derived an analytical expression for the monolayer adsorp-
tion isotherm corresponding to a non-interacting monoatomic gas on an ho-
mogeneous surface [5]. Later, some theories have been proposed to describe
equilibrium adsorption in the multilayer regime [6–17]. Among them, the one
of Brunauer-Emmett-Teller (BET) [6] and the one of Frenkel-Halsey-Hill [7–
9] are the simplest which provide the basis to construct more elaborate ap-
proaches. Those more elaborate analytic approaches take into account lateral
interactions between the admolecules, differences between the energy of the
first and upper layers, surface energetic heterogeneity and so forth. These
leading models have played an important role in the characterization of solid
surfaces by means of gas adsorption.

A more accurate description of multilayer adsorption should account for the
fact that, in practice, most adsorbates are polyatomic. Even the simplest
nonspherical molecules such as N2 and O2 may adsorb on more than one
site depending on the surface structure [17–23]. This effect, called multisite-
occupancy adsorption, introduces a new complexity to the adsorption theory.

From a theoretical point of view, several attempts were done in the past in
order to solve the problem of polyatomic species adsorbed on 2D substrates
[24–33]. In general, these treatments are limited in their application because
they are valid only for monolayer adsorption. There are few studies that take
into account the effect of multisite occupancy in the multilayer regime [34–40].
Aranovich and Donohue [34,35] presented a multilayer adsorption isotherm
that should be capable to include multisite occupancy. Later, a closed exact
solution for the multilayer adsorption isotherm of dimers was reported [36,37].

There are another two important physical facts which have not been suffi-
ciently studied: 1) the effect of lateral interactions between the ad-molecules
and 2) the effect of surface heterogeneity in presence of multisite and multilayer
adsorption. In the first case, a recent paper [38] extends the BET equation to
include nearest-neighbor lateral interactions between the molecules adsorbed
in the first layer. Following the configuration-counting procedure of the Bragg-
Williams approach and the quasi-chemical approximation, Ref. [38] provides
a simple statistical mechanical framework for studying multilayer adsorption
of interacting polyatomics. In the second case, a recent job shows how the
monolayer volume predicted by BET equation differs from its real value when
considering both the adsorbate size and the surface topography [39].

On the other hand, combined effects coming from lateral interactions, multi-
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site occupancy and surface heterogeneity have been analyzed in the interesting
paper by Nikitas [40]. In Ref. [40], the author concluded that: (i) one can ob-
tain an underestimation of the true monolayer capacity of the order of 25%
when the adsorbate occupies more than one lattice site, (ii) this underestima-
tion will become worse if the effect of the multisite occupancy is coupled with
heterogeneity effects, and (iii) the attractive interactions in the gas adsorption
lead always to a weak overestimation of the monolayer volume.

The previously discussed issues can be outlined in Fig. 1, where dimensions of
complexity are sketched. In each axis, a particular characteristic of the adsorp-
tion process, that can (or cannot) be present in a particular model, is shown.
Usually, the more features a model has, the more is its generality and more
complex the process it describes. Fig. 1 shows models that include adsorption
with lateral interactions, but they do not allow to multisite occupancy, or
incorporate surface energetic heterogeneity, but they overlook lateral interac-
tions in the adsorbed layer, etc. At present, some models venture in some of
these dimensions of complexity but, the vast majority, lack the complete set
of complexities. It is also clear that the farther away we are from the origin
the more general (and usually the more complex) the model is. Even more,
the upper plane (including multisite occupancy), is a set of models developed
in the last decade that represents a leap forward in the lattice-gas theory.

In this work we will attempt to take one step further away from the origin,
into a more general and encompassing scheme, presenting a model that con-
siders the totality of these dimensions of complexity (multilayer adsorption,
lateral interactions, multisite occupancy, energetic heterogeneity and surface
topography). For this purpose, a theoretical formalism is presented based upon
the analytical expression of the adsorption isotherm with lateral interaction
weighted by the characteristic length of the surface heterogeneous. In addition,
Monte Carlo (MC) simulations are performed in order to test the validity of
the theoretical model. The new theoretical scheme allows us (1) to obtain an
accurate approximation for multilayer adsorption on 2D substrates accounting
multisite occupancy, lateral interactions, energetic heterogeneity and surface
topography, and (2) to provide a simple model from which experiments may
be reinterpreted.

2 Model and theory

In this section, we will present the model and make a revision of some existing
theories describing the adsorption process in the framework of the lattice-gas
approximation.
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2.1 Model

The substrate is modeled by a regular lattice ofM sites with periodic boundary
conditions, where the adsorption energy of the first layer εfi depends on each
site i of the surface. The adsorbate is represented by k-mers (linear particles
that have k identical units). A k-mer adsorbed occupies k sites of the lattice
and can arrange in many configurations. This property is called multisite-
occupancy adsorption.

On the other hand, for higher layers, the adsorption of a k-mer is exactly
onto an already absorbed one, with an adsorption energy of kε. Thus, the
monolayer structure reproduces in the remaining layers. The mechanism used
to describe the adsorption in the multilayer regime mimics the phenomenon
called pseudomorphism. This phenomenon was observed, by using low-energy
electron diffraction technique [41–43], in the case of adsorption of straight
chain saturated hydrocarbon molecules on metallic surfaces.

Finally, and in order to obtain an approximation in the spirit of the BET
model, attractive and repulsive lateral interactions are considered in the first
layer and horizontal interactions are ignored in higher layers. As it is well-
known [17,44], BET equations can be applied at coverage not greatly exceed-
ing (statistically) monolayer coverage. In these conditions, the density of the
molecules in the second and higher adlayers is expected to be much lower than
that in the first adsorbed layer. Therefore, it seems to be satisfactorily enough
to take into account only the interactions between the molecules adsorbed in
the first layer. Under these considerations the Hamiltonian can be written as:

H =
M
∑

i=1

εfi σi + kε(N −N1) + w
∑

〈i,j〉

σiσj − wN1(k − 1), (1)

where the first term of the right-hand side represents the adsorption energy
of the N1 k-mers adsorbed in the first layer (adjacent to the adsorbent) and
the second term is the energy of the (N − N1) k-mers adsorbed on top of
the first layer (second layer, third layer, and so on). The third and fourth
terms correspond to the lateral interaction energy, where w is the interaction
energy between two nearest-neighbor (NN) units belonging to different k-mers
adsorbed in the first layer (we use w > 0 for repulsive and w < 0 for attractive
interactions); σi is the occupation variable which can take the values 0 if the
site i is empty or 1 if the site i is occupied and 〈i, j〉 represents pairs of NN
sites. Since the summation in the third term overestimates the total energy by
including N1(k − 1) bonds belonging to the N1 adsorbed k-mers, the fourth
term subtracts this exceeding energy.

Our study will be restricted to the class of lattice-gas models in which the
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substrate is a regular array of individual adsorption sites where molecules can
be deposited (also in a discrete manner). In the following sections, some ana-
lytical deductions of those models will be reviewed. A more in depth treatment
is carried out in the original publications.

2.2 Multilayer adsorption of non-interacting polyatomics on homogeneous

surfaces

One way to begin our analysis is to review the behavior of a system of identical
particles, which will be adsorbed on a regular lattice of M identical sites of
adsorption [37]. The supposition is that, like in the BET model, adsorption
is done on the surface of the solid or onto an already adsorbed particle. In
this case, instead of adsorbing spherically symmetric ad-atoms, entities that
occupy k consecutive lattice sites will be used.

Therefore, only two possible unit-adsorption processes can occur: (1) a k-mer
occupies k consecutive empty surface sites; and (2) a k-mer adsorbs on top
of an already adsorbed k-mer. This adsorptive process will form columns of
k-mers on the solid. It must be noticed that a unit-adsorption where a k-mer
adsorbs on top of two already adsorbed k-mers is prohibited.

In the case of the unit-desorption processes, only it will be able to desorb a
k-mer that is on the top of one k-mers column or a k-mer that is adsorbed on
the solid surface, but has no other k-mers adsorbed on top of it.

Under these conditions, the grand partition function of the system is:

Ξ =
nmax
∑

n=0

Ωk(n,M)ξn, (2)

where nmax(= M/k) is the maximum number of columns that can be formed,
Ωk(n,M) is the total number of distinguishable configurations of n columns
in M sites and ξ is the grand partition function of a unique column of k-mers
that has at least one k-mer in the first layer.

On the other hand, the grand partition function of the monolayer (Ξ1) is:

Ξ1 =
nmax
∑

n=0

Ωk(n,M)λn
1 , (3)

being n, in this case, the number of k-mers adsorbed on the surface of the
solid (first layer), and λ1 the fugacity of the monolayer. Ωk(n,M) is still the
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number of possible configurations with n k-mers in M sites. This quantity
must be equal in Eqs. (2) and (3).

By comparing Eqs. (2) and (3) it is possible to observe that they have a similar
form. This allows us to write:

(

∂Ξ

∂ξ

)

M,T

=

(

∂Ξ1

∂λ1

)

M,T

. (4)

Inspired by this similarity, the following ansatz can be proposed:

λ1 = ξ. (5)

Then

λ1 = ξ =
cp/p0

1− p/p0
⇒ p

p0
=

1

1 + c/λ1
, (6)

where p/p0 is the relative pressure [17,45] and c = q1/q = exp[−βk(εf − ε)] is
the ratio between the partition function of a particle in the first layer and a
particle in any other layer [β = (kBT )

−1, being kB the Boltzmann constant].
And, then, the monolayer coverage can be written as:

θ1 =
kn̄

M
=

k

M
λ1

(

∂ ln Ξ1

∂λ1

)

M,T

(7)

=
k

M
ξ

(

∂ ln Ξ

∂ξ

)

M,T

, (8)

where n̄ is the mean number of k-mers adsorbed on the first layer.

Now, the total coverage (θ) can be written in terms of the coverage of the
monolayer (θ1):

θ =
θ1

1− p/p0
. (9)

The theoretical procedure in Eqs. (6)-(9) provides the isotherm in the multi-
layer regime from the isotherm in the monolayer regime. In fact:

(1) By using θ1 as a parameter (0 ≤ θ1 ≤ 1), the relative pressure is obtained
by using Eq. (6). This calculation requires the knowledge of an analytical
expression for the monolayer adsorption isotherm.
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(2) The values of θ1 and p/p0 are introduced in Eq. (9) and the total coverage
is obtained. The items (1) and (2) are summarized in the following scheme:

θ1 + λ1(θ1) + Eq. (6) → p/p0

⇒ θ1 + p/p0 + Eq. (9) → θ.

Following the previous scheme, it is possible to obtain the exact multilayer
isotherm for k-mers in 1D homogeneous surfaces. In fact, in Ref. [37] the
expression for the monolayer coverage is proved to be:

p/p0 =
θ1
[

1− (k−1)
k

θ1
]k−1

kc(1− θ1)k +
[

1− (k−1)
k

θ1
]k−1 . (10)

Equations (9) and (10) represent the exact solution of the 1D model and, as
it is expected, retrieve the BET equation for the case k = 1.

Also, the previous scheme can be used to obtain an accurate approximation
for multilayer adsorption on 2D substrates accounting for multisite occupancy.
In this case, the semi-empirical monolayer adsorption isotherm [33,45] can be
used

p

p0
=

θ1
[

1− (k−1)
k

θ1
](k−1)θ1 [

1− 2(k−1)
ζk

θ1
](k−1)(1−θ1)

mkc (1− θ1)
k + θ1

[

1− (k−1)
k

θ1
](k−1)θ1 [

1− 2(k−1)
ζk

θ1
](k−1)(1−θ1)

, (11)

where ζ is the connectivity of the lattice and m represents the number of
available configurations (per lattice site) for a linear k-mer at zero coverage.
Thus, m = 1 for k = 1 and m = ζ/2 for k ≥ 2.

Note that, for ζ = 2, Eq. (11) is identical to the Eq. (10). Therefore, Eqs. (9)
and (11) represent the general solution of the problem of multilayer adsorption
in homogeneous surfaces with multisite occupancy.

In the following section our aim will be to generalize this expression to include
the lateral interactions following the methodology used in Ref. [38]. Clearly,
the complexity of the isotherm is greatly increased, but the expression is still
a manageable one and in the case of zero interactions the previous case is
retrieved.
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2.3 Multilayer adsorption of interacting polyatomics on homogeneous sur-

faces

Due to the complexity introduced in the analytical expressions because of the
lateral interactions is that approximations are used to deal with this feature
of the adsorption process. The most commonly used approximations are the
mean-field approximation (MFA) [44,46] and the quasi-chemical approxima-
tion (QCA) [44,46]. The main assumption in MFA [QCA] is that sites [pairs
of NN sites] are treated as if they were independent of each other [44].

As shown in previous work [46], the configuration-counting procedure of the
QCA allows us to obtain an approximation that is significantly better than
the MFA for polyatomics. Based on this finding, the rest of the discussion will
be restricted to the estimates obtained under QCA.

In order to apply the theoretical scheme described in previous section, we start
with the monolayer adsorption isotherm of interacting k-mers adsorbed on a
lattice of connectivity ζ obtained from the formalism of QCA [46],

λ1=







θ1 exp (βwz/2)

k m
(

2
ζ

)2(k−1)







×











(1− θ1)
k(ζ−1) [k − (k − 1)θ1]

k−1
[

zθ1
2k

− α
]z/2

[

ζk
2
− (k − 1)θ1)

]k−1 [ ζ
2
(1− θ1)− α

]kζ/2 (
zθ1
ζk

)z











, (12)

where

z = [2(ζ − 1) + (k − 2)(ζ − 2)] , (13)

α =
zζ

2k

θ1(1− θ1)
[

ζ
2
−
(

k−1
k

)

θ1 + b
] , (14)

b =







[

ζ

2
−
(

k − 1

k

)

θ1

]2

− zζ

k
Aθ1(1− θ1)







1/2

, (15)

and

A = 1− exp(−βw). (16)

Replacing Eq. (12) into Eq. (6),
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(

p

po

)−1

=1 +











ckm
(

2
ζ

)2(k−1) [ ζk
2
− (k − 1)θ1)

]k−1

θ1 exp (βwz/2)(1− θ1)k(ζ−1)











×











[

ζ
2
(1− θ1)− α

]kζ/2 (
zθ1
ζk

)z

[k − (k − 1)θ1]
k−1

[

zθ1
2k

− α
]z/2











. (17)

Eqs. (9) and (17) represent the solution describing the multilayer adsorption
of interacting k-mers on homogeneous surfaces in the framework of the QCA.
This method is presented in more depth in [38].

In the next section, the role of surface heterogeneity and lateral interactions
will be analyzed.

2.4 Multilayer adsorption of interacting polyatomics on heterogeneous sur-

faces

In the two previous sections, the multilayer isotherm was obtained from the
monolayer isotherm. It is possible demonstrate that this formalism still holds
for interacting k-mers and a given surface heterogeneity. However, this strategy
leads to a complex solution that is not useful for practical purposes. To build
a simpler function (easier to analyze), the multilayer heterogeneous isotherm
will be approximated by a weighted sum of multilayer homogeneous isotherms.

The heterogeneous surface is modeled by two kinds of adsorption sites in the
first layer (bivariate surface): strong sites with adsorption energy εf1 and weak
sites with adsorption energy εf2 . As seen later, these sites can be spatially dis-
tributed in different ways (different topographies). Then, the total adsorption
energy for an isolated k-mer on the first layer with k1 monomers located over
strong sites and k2 monomers located over weak sites is

Ei = k1ε
f
1 + k2ε

f
2 . (18)

Under these considerations, and using the formalism of the integral equation
of the adsorption isotherm [17], the mean coverage θ can be written as

θ =
∑

Ei

f(Ei)θloc(Ei), (19)

where f(Ei) is the fraction of k-uples of k1 strong sites and k2 weak sites
(k1 + k2 = k) and θloc(Ei) represents the local multilayer adsorption isotherm
corresponding to an adsorptive energy Ei. This local isotherm can be well
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approximated by using the multilayer adsorption isotherm associated to an
homogeneous surface characterized by an effective value of c given by

ci = exp [−β (Ei − kε)] . (20)

The value of ci can also be expressed as function of c1 and c2, the values of c for
homogeneous surfaces whose adsorption energies are εf1 and εf2 , respectively.
Thus, if the i-th term in Eq. (19) corresponds to a k-mer with k1 units located
over strong sites and k2 units located over weak sites, then

ci =
(

ck11 ck22
)1/k

. (21)

As an example, let us consider the multilayer adsorption of non-interacting
dimers on a bivariate linear lattice, where strong and weak sites are spatially
distributed in alternating homotattic patches of size l (l = 1, 2, 3, · · ·). In
this case, Eq. (19) has three different terms, being each one of them a dimer
isotherm with a particular value of c,

θ=

(

l − 1

2l

)

1

(1− p/p0)







1−
[

1− p/p0
1 + (4c1 − 1) p/p0

]1/2






+

+
(

1

l

)

1

(1− p/p0)











1−




1− p/p0

1 +
(

4
√
c1c2 − 1

)

p/p0





1/2










+

+

(

l − 1

2l

)

1

(1− p/p0)







1−
[

1− p/p0
1 + (4c2 − 1) p/p0

]1/2






. (22)

The first [third] term in the RHS of Eq. (22) represents the adsorption within
a strong [weak] patch, on a pair of sites (εf1 , ε

f
1) [(εf2 , ε

f
2)], with c1 [c2]. The

fraction of (εf1 , ε
f
1) [(ε

f
2 , ε

f
2)] pairs on the lattice is (l−1)/2l [47]. The remaining

term of Eq. (22) corresponds to a dimer isotherm on a (εf1 , ε
f
2) [or (εf2 , ε

f
1)]

pair (c =
√
c1c2), being 1/l the fraction of this kind of pairs on the lattice.

As it can be observed, Eq. (22) depends on l and the dimer isotherm sees the
topography.

In general, the number of terms in Eq. (19) increases as the adsorbate size k
is increased and this equation leads to a complex solution. This scheme can
be notoriously simplified following the results in Ref. [39]. In this paper, the
authors showed that:

• If k ≫ l (with k > 1), the multilayer adsorption isotherm can be represented
by a single homogeneous isotherm

θ = θloc (
√
c1c2) . (23)
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• For a topography where k ≪ l, the isotherm is

θ =
1

2
θloc (c1) +

1

2
θloc (c2) . (24)

• The details of the topography are relevant only when k ∼ l. In this case, it
is possible to consider a simpler expression of the multilayer isotherm given
by

θ =

(

l − 1

2l

)

θloc (c1) +
(

1

l

)

θloc (
√
c1c2) +

(

l − 1

2l

)

θloc (c2) . (25)

Eq. (25) (i) captures the extreme behaviors Eqs. (23) and (24), and (ii)
approximates very well the complete Eq. (19) in 1D and 2D. In the 2D
case, the local isotherm in Eq. (25) is obtained from Eqs. (9) and (11), with
ζ = 3, 4 and 6 for honeycomb, square and triangular lattices, respectively.

Finally, in order to move toward a more general equation, we propose to ex-
tend Eq. (25) as to describe multilayer adsorption of interacting polyatomic
molecules on heterogeneous surfaces. For this purpose, the local isotherms
can be obtained from Eqs. (9) and (17). The advantages of using this simple
description as a tool for interpreting multilayer adsorption data and charac-
terization of the adsorption potential will be shown in Section 4 by analyzing
simulation results.

3 Monte Carlo simulation

The adsorption process is simulated through a grand canonical ensemble MC
method.

For a given value of the temperature T and chemical potential µ, an initial
configuration with N k-mers adsorbed at random positions (on kN sites)
is generated. Then, an adsorption-desorption process is started, where each
elementary step is attempted with a probability given by the Metropolis [48]
rule:

W = min {1, exp [−β (∆H − µ∆N)]} . (26)

∆H and ∆N represent the difference between the Hamiltonians and the varia-
tion in the number of particles, respectively, when the system changes from an
initial state to a final state. In the process there are four elementary ways to
perform a change of the system state, namely, adsorbing one molecule onto the
surface, desorbing one molecule from the surface, adsorbing one molecule in
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the bulk liquid phase and desorbing one molecule from the bulk liquid phase.
In all cases, ∆N = ±1.

The algorithm to carry out one MC step (MCS), is the following :

1) Set the value of the chemical potential µ and the temperature T .
2) Set an initial state by adsorbing N molecules in the system. Each k-mer

can adsorb in two different ways: i) on a linear array of (k) empty sites on
the surface or ii) exactly onto an already adsorbed k-mer.

3) Introduce an array, denoted as Q, storing the coordinates of ne entities,
being ne,

ne=number of available adsorbed k−mers for desorption (nd)

+ number of available k−uples for adsorption (na), (27)

where na is the sum of two terms: i) the number of k-uples of empty sites on
the surface and ii) the number of columns of adsorbed k-mers (note that the
top of each column is an available k-uple for the adsorption of one k-mer).

4) Choose randomly one of the ne entities, and generate a random number
χ∈ [0, 1]

4.1) if the selected entity is a k-uple of empty sites on the surface then adsorb
a k-mer if χ ≤ W surf

ads , being W surf
ads the transition probability of adsorbing

one molecule onto the surface.
4.2) if the selected entity is a k-uple of empty sites on the top of a column of

height i, then adsorb a new k-mer in the i + 1 layer if χ ≤ W bulk
ads , being

W bulk
ads the transition probability of adsorbing one molecule in the bulk

liquid phase.
4.3) if the selected entity is a k-mer on the surface then desorb the k-mer

if χ ≤ W surf
des , being W surf

des the transition probability of desorbing one
molecule from the surface.

4.4) if the selected entity is a k-mer on the top of a column then desorb the
k-mer if χ ≤ W bulk

des , being W bulk
des the transition probability of desorbing

one molecule from the bulk liquid phase.
5) If an adsorption (desorption) is accepted in 4), then, the array Q is updated.
6) Repeat from step 4) M times.

The first r MCS of each run were discarded to allow for equilibrium and the
next r′ MCS were used to compute averages. The total coverage was obtained
as,

θ =
k 〈N〉
M

, (28)

where 〈N〉 is the mean number of adsorbed particles, and 〈...〉 means the time
average over the MC simulation runs.
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4 Results and discussion

In the present section, the main characteristics of the multilayer adsorption
isotherm given by Eq. (25) [with local isotherms obtained from Eqs. (9) and
(17)] will be analyzed, in comparison with simulation results for a lattice-gas
of interacting k-mers on heterogeneous one-dimensional and square lattices.

Heterogeneity is introduced by considering bivariate surfaces, i.e., surfaces
composed by two kinds of sites in the first layer, strong and weak sites, with
adsorptive energies εf1 and εf2 , respectively. Recent developments in the theory
of adsorption on heterogeneous surfaces, like the supersite approach [49], and
experimental advances in the tayloring of nanostructured adsorbates [50,51],
encourage this kind of study. A special class of bivariate surfaces, with a
chessboard structure, has been observed recently to occur in a natural system
[52], although it was already intensively used in modeling adsorption and
surface diffusion phenomena [47,53–55].

Bivariate surfaces may also mimic, to a rough approximation, more general
heterogeneous adsorbates. Just to give a few examples, we may mention the
surfaces with energetic topography arising from a continuous distribution of
adsorptive energy with spatial correlations, like those described by the dual
site-bond model [56], or that arising from a solid where a small amount of
randomly distributed impurity (strongly adsorptive) atoms are added [57]. In
both cases the energetic topography could be roughly represented by a random
spatial distribution of irregular patches (with a characteristic size) of weak and
strong sites.

In the particular case studied in this article, the surface is modeled in two
different ways: (1) as a chain of alternating patches of size l (see Fig. 2a);
and (2) as a collection of finite homotattic patches in a chessboard-like array,
where each patch is assumed to be a domain of equal size, l× l sites (see Fig.
2b). In this model, the energy correlation length is simply given by the patch
size.

The computational simulations have been developed for one-dimensional chains
of 104 sites, and square L × L lattices with L = 144, and periodic boundary
conditions (note that the linear dimension L has to be properly chosen in such
a way that it is a multiple of l). In addition, the equilibrium state could be
well reproduced after discarding the first r ≈ 106 MCS. Then, averages were
taken over r′ ≈ 106 MCS successive configurations. With these values of L,
r and r′, (1) finite-size effects are negligible and (2) statistical errors in Figs.
3-6 are smaller than the size of the symbols.

In the first place, the topography effects will be considered. Fig. 3 shows
the behavior of the multilayer adsorption isotherms for k = 2, βw = −1
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and different topographies in 1D as indicated. The energy difference between
patches has been chosen to be high (c1 = 1000 and c2 = 1) in order to
emphasize the effects of the surface heterogeneity. The different topographies
have been identified as lC for patches of size l, and bp for the case of a surface
with two big patches (l → ∞). Symbols represent simulation results and lines
correspond to theoretical data [Eq. (25)]. It can be seen that all curves are
contained between the two limit ones: the one corresponding to 1C and the
one corresponding to bp.

For l = 1, the adsorption energy of a dimer in the first layer is εf1 + εf2 for all
configuration. In this condition, the system corresponds to a 1D lattice-gas of
interacting dimers on a homogeneous surface and, consequently, Eq. (25) is
exact.

In general, for l > 1, Eq. (25) is approximate. For l = 2, the analytic isotherms
agree very well with the simulation data. However, for p/p0 ranging between
0 and 0.15, some differences between theoretical and numerical data are ob-
served. This happens because Eq. (25) has been built assuming that the three
different pairs of sites are filled simultaneously and independently. However,
for c1 ≫ c2, the real process occurs in 3 stages: (i) the pairs of sites (εf1 , ε

f
1)

are covered; (ii) the pairs (εf2 , ε
f
2) begin to be filled and (iii) the multilayer

is formed. Note that in the first stage all the pair of sites (εf1 , ε
f
2) and (εf2 , ε

f
1)

are removed. For this regime, a better approximation can be obtained by a
semisum of two isotherms with c1 y c2.

When l = 3, the agreement between the analytic isotherms and the simulation
data is very good. In this case, the first stage does not eliminate all the pairs
of sites (εf1 , ε

f
2) and (εf2 , ε

f
1), because each dimer occupies only two sites in the

strong patches. For this reason, the range of validity of Eq. (25) is wider than
in the previous case. Now, if l = 4 or l = 5, the behaviors are similar to those
observed for l = 2 or l = 3, respectively. In general, for even l, the first stage
eliminates almost completely the pairs of sites (εf1 , ε

f
2) and (εf2 , ε

f
1), while this

does not happen for odd l. Finally, when l → ∞, the fraction of pair (εf1 , ε
f
2)

and (εf2 , ε
f
1) goes to zero and Eq. (25) is exact. This limit corresponds to the

called large patches topography (bp surface in our model), where the surface
is assumed to be a collection of homogeneous patches, large enough to neglect
border effects between neighbor patches with different adsorption energies.

The effect of the lateral interactions on the behavior of the system will now be
analyzed. For this purpose, Fig. 4 shows the adsorption isotherms for k = 2,
c1 = 1000, c2 = 1 and two different values of the lateral interactions βw = −1
(attractive case) and βw = 1 (repulsive case). In addition, for each value of
βw, the limit topographies (1C and bp) have been considered (as seen in Fig.
3, all curves corresponding to all topographies are contained between them).
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For repulsive couplings, the interactions do not favor the adsorption on the
first layer and the isotherms shift to higher values of pressure. On the other
hand, attractive lateral interactions facilitate the formation of the monolayer.
Consequently, the isotherms shift to lower values of p/po and their slope in-
creases as the ratio |βw| increases. In both cases (βw = −1 and βw = 1), the
agreement between theoretical and simulation data is excellent.

From the curves in Fig. 4 (and from data not shown here for the sake of clarity)
it is observed that: there exists a wide range of βw’s (−2 ≤ βw ≤ 2), where
the theory provides an excellent fitting of the simulation data. In addition,
most of the experiments in surface science are carried out in this range of
interaction energy. Then, the present theory not only represents a qualitative
advance in the description of the multilayer adsorption of interacting k-mers
on heterogeneous surfaces, but also gives a framework and compact equations
to consistently interpret thermodynamic multilayer adsorption experiments
of polyatomics species such as alkanes, alkenes, and other hydrocarbons on
regular surfaces.

The effect of energetic heterogeneity (ratio between c1 and c2) is analyzed
in Fig. 5, where the degree of heterogeneity is varied by changing the value
of c2 between 1 and 100 with c1 fixed (c1 = 1000). As in Fig. 4, k = 2
and βw = −1. Lines represent theoretical results and symbols correspond to
simulation data (c2 = 1: circles; c2 = 10: triangles; and c2 = 100: squares).
For each set of values of the parameters, the limit cases corresponding to 1C
(open symbols) and bp (solid symbols) topographies are studied. As it can
be observed from the simple inspection of the figure, the effect of topography
is important in a range of c2/c1 between 10−3 and 10−2 and is practically
negligible for 10−1 < c2/c1 < 1.

To complete the discussion started in Fig. 3, the effect of the k-mer size on the
adsorption isotherms was evaluated. This study is shown in Fig. 6, where the
1C and bp multilayer adsorption isotherms are plotted for βw = −1, c1 = 1000,
c2 = 1 and two different values of k (k = 2 and k = 10). One important
conclusion can be drawn from the figure. Namely, the effects of topography
and energetic heterogeneity tend to disappear as the size k is increased.

The study in Figs. 3-6 was repeated for surfaces in 2D. The behavior of the
curves (not shown here for brevity) is very similar to the one observed in 1D.

Summarizing, it has been shown that just by using an expression of three
terms, Eq. (25), the multilayer adsorption of interacting polyatomics on 1D
and 2D heterogeneous surfaces can be well approximated. In the next, this
approximation and Monte Carlo simulations will be used to study how lateral
interactions, multisite occupancy and surface heterogeneity affect the deter-
mination of monolayer volume predicted by the BET equation.
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In a typical experiment of adsorption, the adsorbed volume of the gas, v, is
measured at different pressures and at a given fixed temperature, the total
coverage is θ = v/vm. Analyzing an isotherm with the BET equation

θ =

(

1

1− p/p0

)(

cp/p0
1− p/po + cp/p0

)

, (29)

it is possible to estimate the monolayer volume if we rewrite the previous
equation as:

p/p0
v (1− p/p0)

=
1

cvm
+

(c− 1)

cvm
p/p0. (30)

This equation is a linear function of p/p0. If we denote with i and s, the
y-intercept and the slope of this straight line, respectively, we obtain

v∗m =
1

i+ s
(31)

and

c∗ =
s

i
+ 1. (32)

The asterisk has been added in order to indicate that the quantities given by
Eqs. (31) and (32) correspond to the prediction of the BET theory. Then, by

means of a plot (the so-called BET plot) of the experimental data of p/p0
v(1−p/p0)

vs p/p0, an estimate of the monolayer volume and the parameter c can be
obtained. Nevertheless, in the experiments it is commonly found that there
are deviations from linearity in the BET plot.

Following the scheme described in previous paragraphs, numerical experiments
were carried out to determine, in different adsorption situations, how much
the value of the monolayer volume predicted by the BET equation differs from
its real value, vm. With this purpose, analytic and simulation isotherms were
analyzed as experimental data. In addition, according to the recommendation
of the Commission on Colloid and Surface Chemistry of the International
Union of Pure and Applied Chemistry (IUPAC), the range chosen for the
linear fit of Eq. (30) was 0.05 < p/p0 < 0.30 [58]. Under these conditions,
the values obtained for the linear correlation coefficient were of the order of
0.99 and the standard errors in the intercept and slope allowed us to estimate
the monolayer volume with an error less than 3 %. In this way, it has been
determined how adsorbate size, surface heterogeneity and lateral interactions,
affect the standard determination of the monolayer volume.
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In Fig. 7, the calculated value of v∗m/vm is plotted as a function of k for fixed
values of c1 and c2 (namely c1 = 1000 and c2 = 1) and different values of
the attractive lateral interaction. The repulsive interactions, not shown in the
figure, show a marked deviation from the predicted BET equation, therefore
wiping out compensation effects due to the surface heterogeneity.

Three sets of plots can be distinguished in Fig. 7. Each set (1) is the result
of the effect of different lateral interactions strengths: βw = 0, circles; βw =
−0.5, squares and βw = −1.0, triangles; and (2) depicts the limiting cases
for the surface topography: open and solid symbols correspond to 1C and bp
surfaces, respectively. All other topographies must lay in between those two
plots.

The behavior of the open symbols corresponds, essentially, to the behavior
of the homogenous case [39], where an already known feature can be distin-
guished: the compensation effect of k is lower as k increases, as [37] stated for
the non-interacting case. On the other hand, for bp surfaces, the compensa-
tion effect increases with k as seen in [39]. In all cases, for stronger (attractive)
interaction strength the plots move upwards showing greater compensation ef-
fects.

As shown in previous work [36,37] for non-interacting k-mers on homogeneous
surfaces, the monolayer volume from the BET model diminishes with increas-
ing values of the k-mer size. The data presented in Fig. 7 demonstrate that
attractive lateral interactions and surface heterogeneity play a key role in the
compensation of k-mer size effects. This finding is very important because
most of the experiments in surface science are carried out in these conditions.

Finally, the study in Fig. 7 was repeated for 2D surfaces (see Fig. 8). In
this case, both the compensation effect for attractive interactions and the
underestimation of the monolayer volume for repulsive interactions (not shown
here) are more important than in the 1D case. The explanation is simple: in 1D
systems, particles will interact only at their ends, regardless of k; on the other
hand, in 2D systems, each particle interacts at their ends, but also interacts
along its k monomers. This makes the interaction energy grow linearly with
k (if all first neighbors are occupied), and indicates that lateral interactions
play a more important role in two-dimensional adsorption systems than in
one-dimensional ones.

5 Conclusions

In this work, the multilayer adsorption of interacting polyatomic molecules
onto heterogeneous surfaces has been studied. The polyatomic character of
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the adsorbate was modeled by a lattice gas of k-mers. With respect to the
lateral interactions, the adsorbate-adsorbate couplings in the monolayer were
explicitly considered in the theory. The range of validity of the analytical
isotherms was analyzed by comparing theoretical and MC simulation results.

The 1D and 2D BET plots, obtained from theoretical and simulation isotherms,
were also analyzed. For non-interacting k-mers, it was found that the use of
BET equation leads to an underestimate of the true monolayer volume: this
volume diminishes as k is increased. The situation is different for the case
of interacting molecules over heterogeneous surface. Thus, attractive lateral
interactions favor the formation of the monolayer and, consequently, compen-
sate the effect of the multisite occupancy. In this case, the monolayer volume
predicted by BET equation agrees very well with the corresponding true value.
In the case of repulsive couplings, the lateral interactions impede the forma-
tion of the monolayer and the BET predictions are bad (even worse than
those obtained in the non-interacting case). Both the compensation effect for
attractive interactions and the underestimation of the monolayer volume for
repulsive interactions are more important for 2D systems.
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Nomenclature

k Adsorbate size

L Lattice side

M Total number of lattice sites

w Interaction energy between two NN units belonging to different

k-mers adsorbed in the first layer

〈i, j〉 Pair of NN sites i, j

N Total number of adsorbed k-mers

N1 Number of k-mers adsorbed in the first layer

H Hamiltonian of the system

n Total number of k-mers columns on the lattice

n̄ Mean number of k-mers columns on the lattice

nmax Maximum number of columns that can be formed in M sites

T Temperature

q1 Partition function of a particle in the first layer

q Partition function of a particle in the second and higher layers

c Ratio between q1 and q

p Equilibrium gas pressure

p0 Saturation vapor pressure of the gas

kB Boltzmann constant

m Number of available configurations (per lattice site) for a linear

k-mer at zero coverage

z Parameter introduced in Eq. (13)

b Parameter introduced in Eq. (15)

A Parameter introduced in Eq. (16)

k1 Number of units located over strong sites belonging to a k-mer

adsorbed on the first layer of a bivariate surface

k2 Number of units located over weak sites belonging to a k-mer

adsorbed on the first layer of a bivariate surface
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Ei Adsorption energy corresponding to a k-mer adsorbed on the

first layer of a bivariate surface with k1 units located over strong

sites and k2 units located over weak sites, Eq. (18)

f(Ei) Fraction of k-uples of k1 strong sites and k2 weak sites

c1 Value of c for a homogeneous surface whose adsorption energy in

the first layer is εf1

c2 Value of c for a homogeneous surface whose adsorption energy in

the first layer is εf2

ci Parameter introduced in Eqs. (20) and (21)

l Patch size of the bivariate surface

nd Number of available adsorbed k-mers for desorption

na Number of available k-uples for adsorption

ne Sum of nd and na

Q Array storing the coordinates of the ne entities

W surf
ads Metropolis transition probability of adsorbing one molecule onto

the surface

W bulk
ads Metropolis transition probability of adsorbing one molecule in

the bulk liquid phase

W surf
des Metropolis transition probability of desorbing one molecule from

the surface

W bulk
des Metropolis transition probability of desorbing one molecule from

the bulk liquid phase

MCS Monte Carlo step

r Number of MCS to reach the equilibrium state

r′ Number of MCS to calculate the temporal average of the surface

coverage

lC Symbol identifying a bivariate surface characterized by alternating

patches of size l

bp Symbol identifying a bivariate surface characterized by two big

patches (l → ∞)
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v Adsorbed volume of gas

vm Volume of gas required to form a monolayer

i y-intercept of the linearized form of the BET adsorption isotherm

equation

s Slope of the linearized form of the BET adsorption isotherm equation

v∗m Parameter introduced in Eq. (31)

c∗ Parameter introduced in Eq. (32)
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Greek symbols

ζ Lattice connectivity

εfi Adsorption energy of the i-th site in the first layer

ε Adsorption energy of a site in the second and higher adlayers

σi Occupation variable of the site i

Ξ Grand partition function of the system

Ωk(n,M) Total number of distinguishable configurations of n columns

in M sites

ξ Grand partition function of a unique column of k-mers that

has at least one k-mer in the first layer

Ξ1 Grand partition function of the monolayer

λ1 Fugacity of the monolayer

µ Chemical potential

β Inverse of the temperature in kB units [β = (kBT )
−1]

θ Total surface coverage

θ1 Surface coverage of the monolayer

α Parameter introduced in Eq. (14)

εf1 Adsorption energy of the strong sites in the first layer of a

bivariate surface

εf2 Adsorption energy of the weak sites in the first layer of a

bivariate surface

θloc(Ei) Local multilayer adsorption isotherm corresponding to an

adsorptive energy Ei

χ Random number between 0 and 1
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Figure Captions

Fig. 1: Schematic representation of the evolution of complexity in the theoret-
ical adsorption models.

Fig. 2: Schematic representation of heterogeneous bivariate square surfaces
with chessboard topography. The black (white) symbols correspond to strong
(weak) adsorption sites. (a) One-dimensional lattice and (b) square lattice.
The patch size in this figure is l = 2.

Fig. 3: Adsorption isotherms for dimers on 1D lattices with βw = −1 and
different topographies 1D as indicated. The energy difference between different
patches has been chosen to be high (c1 = 1000 and c2 = 1) in order to
emphasize the effects of the surface heterogeneity. Solid lines and symbols
represent theoretical and simulation results, respectively. For each set of values
of the parameters, the limit cases corresponding to 1C (open symbols) and bp
(solid symbols) topographies are shown.

Fig. 4: Adsorption isotherms for dimers on 1D lattices with c1 = 1000, c2 = 1
and two different values of the lateral interactions βw = −1 (attractive case)
and βw = 1 (repulsive case). Solid lines and symbols represent theoretical
and simulation results, respectively. For each set of values of the parameters,
the limit cases corresponding to 1C (open symbols) and bp (solid symbols)
topographies are shown.

Fig. 5: Adsorption isotherms for dimers on 1D lattices with βw = −1. The de-
gree of the surface heterogeneity is varied by changing the value of c2 between
1 and 100 with c1 fixed (c1 = 1000). Lines represent theoretical results and
symbols correspond to simulation data (c2 = 1: circles; c2 = 10: triangles; and
c2 = 100: squares). For each set of values of the parameters, the limit cases
corresponding to 1C (open symbols) and bp (solid symbols) topographies are
shown.

Fig. 6: Adsorption isotherms for dimers on 1D lattices with βw = −1, c1 =
1000, c2 = 1 and two different values of k (k = 2 and k = 10). Solid lines and
symbols represent theoretical and simulation results, respectively. For each set
of values of the parameters, the limit cases corresponding to 1C (open symbols)
and bp (solid symbols) topographies are shown.

Fig. 7: Results of the BET plots for the adsorption in 1D heterogeneous sur-
faces with c1 = 1000, c2 = 1. Dependence on k of the fraction v∗m/vm for three
different values of βw: βw = 0, circles; βw = −0.5, squares and βw = −1.0,
triangles. For each set of values of the parameters, the limit cases correspond-
ing to 1C (open symbols) and bp (solid symbols) topographies are shown.
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Fig. 8: As Fig. 7 for 2D surfaces: βw = 0, circles; βw = −0.1, squares and
βw = −0.5, triangles. Symbols connected by (solid) dotted lines correspond
to results obtained from (theoretical) MC simulation isotherms.
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