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Abstract

A riemannian metric is introduced in the infinite dimensional manifold Σn of positive operators
with rank n < ∞ on a Hilbert space H. The geometry of this manifold is studied and related
to the geometry of the submanifolds Σp of positive operators with range equal to the range of a
projection p (rank of p = n), and Pp of selfadjoint projections in the connected component of p. It
is shown that these spaces are complete in the geodesic distance.
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1 Introduction

The space M+
n (C) of positive definite (invertible) matrices is a differentiable manifold, in fact an

open subset of the real euclidean space of hermitian matrices. Let x, y be hermitian matrices and
a positive definite, the formula

< x, y >a= tr(xa−1ya−1)

endows M+
n (C) with a riemannian metric, which makes it a negatively curved, complete metric

space. This fact is well known and has been used in a variety of contexts. For example, in
interpolation theory of Banach and Hilbert spaces [9], [21], in partial differential equations [20],
or in mathematical physics [18], [22], [11]. It has also been generalized to infinite dimensions, i.e.
Hilbert spaces and operator algebras: [22], [7], [8], [4].

The purpose of this paper is to introduce a riemannian structure in the set Σn of positive
operators of finite (fixed) rank n on an infinite dimensional Hilbert space H. Note that even
though n < ∞, this set Σn is infinite dimensional. Corach et al. [4], [5] considered a Finsler
structure for positive non invertible operators with fixed range. We go one step further fixing only
the rank. The condition that the rank is fixed ensures that for all a ∈ Σn, the projections onto
their ranges, which we denote by ρ(a), are unitarily equivalent.

In particular, if p is a projection with rank n, then the connected component Pp of p in the space
of projections, lies inside Σn. Also inside Σn lies Σp, the space of positive operators with range
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equal to the range of p. Apparently, Σp identifies with M+
n (C). We shall introduce a riemannian

metric in Σn, which naturally generalizes the metric given above for M+
n (C), and which restricted

to Σp makes the identification of this space with M+
n (C) isometric. Moreover, when restricted to

Pp, one obtains the trace inner product of this space. Our main result on Σn (6.9) states that,
though we lose the negative curvature properties for positive operators (because Pp inside Σn is
positively curved), Σn is a complete metric space for the geodesic distance.

Let us fix some notation. Let H be a Hilbert space, U(H) and Gl(H) the Banach-Lie groups
of, respectively, unitary and invertible operators of H. Throughout this paper ‖x‖ will denote the
usual operator norm of x ∈ B(H). Fix n < ∞ , and let p a projection with rank n, and consider
the following sets:

• Σn the set of positive operators with rank n.
• Σp the set of positive operators with range equal to the range of p.
• Ip the set of partial isometries with initial space equal to the range of p.

Clearly these sets Σp ⊂ Σn and Ip are subsets of B2(H), the class of Hilbert-Schmidt operators of
H. Denote by P the set of projections acting on H, and by Pp the connected component (in the
norm topology) of p in P, which coincides with the unitary orbit of p, {upu∗ : u unitary in H}. The
three sets of the above list and Pp will be considered with the inner product topology of B2(H).
Since these are sets of finite rank operators, this topology coincides there with the operator norm
topology of B(H).

A relevant feature in this study is the map

ρ : Σn → Pp,

ρ(a) = projection onto the range of a. This map is continuous due to the fact that n < ∞. Moreover,
it was shown in [5] that it is differentiable. In this paper we revise the differentiable structure of
Σn, Pp and Ip. We introduce a riemannian metric in Σn, based on the trace of B2(H), and consider
geometric problems therein. When restricted to the submanifold Σp of positive operators with fixed
range p(H), one obtains the well studied non positive curvature connection for the set of positive
invertible operators [7].

The contents of the paper are as follows. In section 2 we revise the riemannian geometry of Pp.
As it turns out, the connection looks formally identical to the reductive connection for the space
of projections in an abstract C∗-algebra [6], [16], [17]. Then one can profit from the computations
done there: geodesics, curvature tensor, etc. Here we establish that Pp is complete. In section 3
we consider Ip with the metric given, as with Pp, by the inner product of B2(H). Here we are able
to compute the geodesics, and prove that Ip is complete. Note that both Pp and Ip are infinite
dimensional, so that even though they are geodesically complete, completeness in the geodesic
distance needs proofs. In section 4 we introduce the riemannian metric in Σn, and compute the
connection. We examine how the submanifolds Pp and Σp sit inside Σn. In section 5 we consider
the homotopy type of Σn, by means of the map

$ : Σp × Ip → Σn, $(b, x) = xbx∗,

which is a smooth principal bundle. In section 6 we prove our main result: completeness of Σn in
the geodesic distance. This is done without knowing how the geodesics do actually look. A role
here is played by the space Σ∞ of positive definite infinite matrices [3].

2 Geometry of Projections

The differential geometry of the space of projections of a C∗-algebra is the subject of several papers
[6],[8], [4], [20]. Let us mention the book [23] by H. Upmeier which treats general symmetric
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spaces in the infinite dimensional setting. Let us recall some known facts. We shall be concerned
only with the case of the full operator algebra B(H). The set P of selfadjoint projections is a
submanifold of B(H) (in the norm topology), whose connected components are the unitary orbits
{upu∗ : u ∈ U(H)}, which are parametrized by the possible ranks k ∈ IN∪{∞}. If p is an arbitrary
projection, the tangent space (TP)p identifies with the selfadjoint elements x of B(H) which satisfy
x = xp + px. If one represents the elements of B(H) as 2 × 2 block matrices in terms of p, then
(TP)p consist of the selfadjoint codiagonal matrices. The unitary group U(H) acts on P, as inner
automorphisms: u · p = upu∗. The isotropy group of this action consists of the unitaries which
commute with p, i.e. the unitaries of the commutant of p, which is the C∗-algebra of diagonal
matrices in terms of p. This endows P (or rather, its connected components) with a homogeneous
structure. The reason for this is that the action admits local smooth cross sections. There is more
than one way to obtain local cross sections. For instance, if ‖q− p‖ < 1, then σp(q) = unitary part
of (the invertible element) qp+(1− q)(1− p) is a unitary operator, defined locally around p, which
conjugates p and q:

σp(q)pσ∗p(q) = q.

Clearly σp is a smooth map. From now on, we make the asumption that the rank of p is < ∞.
Therefore, Pp ⊂ B2(H), and the norm topology of B(H) and the inner product norm topology of
B2(H) coincide in Pp. Indeed among operators a, b of rank ≤ n one has the trivial estimate

‖a− b‖ ≤ ‖a− b‖2 ≤
√

n‖a− b‖. (2.1)

It is well known that Pp (for any p, not necesarilly of finite rank) is a C∞ submanifold of B(H). In
our case, Pp is a C∞ submanifold of B2(H). Let us state this result for the sake of completeness
of the exposition.

Lemma 2.1 Let p be a projection of rank n < ∞. Then the map

πp : U(H) → Pp ⊂ B2(H), πp(u) = upu∗

is a C∞ submersion, and induces on Pp a homogeneous structure. In particular Pp is a C∞

submanifold of B2(H).

Proof. In order to prove this result, we use an elegant consequence of the inverse function theorem
in the context of Banach spaces, written by Raeburn in [19]. This states that in order to prove the
above result it suffices to show that

1. the map πp is C∞, as a map from U(H) to B2(H),

2. the map πp is open, as a map from U(H) to Pp,

3. the range of d(πp)1 is a complemented subspace of B2(H), and

4. the kernel of d(πp)1 is a complemented subspace of (TU(H))1 = B(H)ah (the space of anti-
hermitic operators of H).

The first assertion is a consequence of the fact that the (real) bilinear map

B(H)× B(H) → B2(H), (x, y) 7→ xpy∗

is bounded, which is apparent. Note that therefore πp is C∞, being the restriction of this map to
the submanifold {(u, u) : u ∈ U(H)} of B(H)× B(H).

The second assertion follows from the existence of continuous local cross sections for πp, re-
marked above. Here continuity holds both for the operator and Hilbert-Schmidt norms.

The differential d(πp)1 equals the map δp,

δp : B(H)ah → B2(H), δp(x) = xp− px.
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Its range consists of the selfadjoint operators of B2(H), which have 2× 2 codiagonal matrices with
respect to p. Clearly, this real linear subspace of B2(H) is closed, and therefore complemented. Its
orthogonal complement (with respect to the trace inner product) consists of 2×2 diagonal matrices
with respect to p.

The kernel of δp consists of antihermitic operators in B(H) which commute with p. This space
is complemented in B(H)ah, by the space of antihermitic operators which have 2 × 2 codiagonal
matrices with respect to p. 2

Let us consider the following riemannian metric on Pp:

< x, y >q= tr(xy), q ∈ Pp, x, y ∈ (TPp)q,

i.e. the usual inner product of B2(H) at every point of Pp. Let us compute the riemannian
connection of this metric:

∇xyq = P(TPp)q
(x{y}),

for x ∈ (TPp)q and y a tangent vector field. Here P(TPp)q
stands for the orthogonal projection

onto (TPp)q, and x{y} is the derivative of y in the x-direction, performed in B2(H). Note that if
a ∈ B(H)h, P(TPp)q

(a) = pa(1− p) + (1− p)ap. Therefore

∇xyq = qx{y}(1− q) + (1− q)x{y}q.

Remarkably, this is the same connection as the reductive connection for the space of projections
in an abstract C∗-algebra [6]. Then one has the explicit form for the geodesics, the exponential
map and the curvature tensor. Moreover the results of existence of geodesics joining two given
endpoints, as well as the minimality results, can be derived from previous work (see also [16], [17]).
Let us list this facts.

Remark 2.2 1. The unique geodesic ρ(t) with ρ(0) = q and ˙ρ(0) = x is given by

ρ(t) = etδq(x)qe−tδq(x), t ∈ IR. (2.2)

2. The curvature tensor is given by

R(x, y)z = [[x, y], z], x, y, z ∈ (TPp)q,

where [a, b] = ab− ba.

3. Two projections p0 and p1 in Pp such that the geodesic distance dg(p0, p1) < π
2 are joined by

a unique geodesic whose length equals the geodesic distance.

The exponential map suggests the definition of a different local cross section for πp [6]. Namely,

ϑp : {q ∈ Pp : ‖q − p‖ < 1} → U(H), ϑp(q) = ex, (2.3)

where x ∈ (TPp)p is the unique p-codiagonal antihermitic element of B(H) such that expe−x = q.

Remark 2.3 Pp has non negative sectional curvature. Indeed,

R(x, y)y = xy2 − 2yxy − y2x,

and therefore
< R(x, y)y, x >q= 2(tr(x2y2)− tr(xyxy)).

Now, by the Cauchy-Schwarz inequality, tr(xyxy) = tr((yx)∗xy) ≤ tr((yx)∗yx)1/2tr((xy)∗xy)1/2 =
tr(xy2x)1/2tr(yx2y)1/2 = tr(x2y2).
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Note (2.2) that Pp is geodesically complete. Let us show that it is complete with the geodesic
distance.

Proposition 2.4 Pp is complete with the geodesic distance.

Proof. From (2.1) it follows that the geodesic riemannian distance is equivalent to the geodesic
distance of the Finsler structure obtained by considering the usual operator norm in each tangent
space, with the same geodesic curves as minimal curves. This was studied in the general context
of abstract C∗-algebras [17], [6]. Let us denote by df the distance induced in Pp by the Finsler
structure. It is known [2], [15] that if ‖q1 − q2‖ < 1 (which is equivalent to df (q1, q2) < π/2), then
df (q1, q2) = arcsin(‖q1 − q2‖). If one further requires that ‖q1 − q2‖ < 0.9, then

3
2
df (q0, q1) =

3
2
arcsin(‖q0 − q1‖) ≤ ‖q0 − q1‖ ≤ arcsin(‖q0 − q1‖) = df (q0, q1).

If follows that if {pk} is a Cauchy sequence in Pp for the geodesic riemannian metric, then it also a
Cauchy sequence for df , and the inequalities above show that it is a Cauchy sequence for the usual
norm of operators. Since P is closed in B(H) in the norm topology, and therefore complete for the
norm metric, the result follows. 2

3 Partial isometries with initial space p

In this section we consider the set Ip = {u ∈ B(H) : u∗u = p} of partial isometries with initial
space p. Note that since dim p(H) < ∞, Ip ⊂ B2(H). We shall consider this set endowed with
the inner product topology. This set was shown to be a C∞ submanifold of B(H) (in the norm
topology) [1], in the abstract setting of arbitrary C∗-algebras. Here we shall see that in our context,
Ip is a C∞ submanifold of B2(H). As with the set of projections, this will be done by considering
the appropriate action from the group U(H). Namely,

U(H)× Ip → Ip, (w, u) 7→ wu.

First note that the metrics given by the operator norm and the inner product norm are also
equivalent in Ip. Indeed, operators in Ip have rank n = rank(p). In [1] it was shown that this
action is locally transitive, and that if p is of finite rank (more generally, if it is a finite projection),
then Ip is connected, i.e., the action is transitive.

Proposition 3.1 The map

µp : U(H) → Ip ⊂ B2(H), µp(w) = wp

is a C∞ submersion, and defines on Ip a homogeneous structure. In particular, Ip is a C∞

submanifold of B2(H).

Proof. This map is clearly C∞, since it is the restriction of the bounded linear map B(H) → B2(H),
x 7→ xp. As in the analogous result in the preceeding section, it suffices to prove that µp is open,
and that its differential has closed range and complemented kernel. That it is open follows from the
fact that it has local cross sections in which are continuous in the norm (equivalent to the Hilbert-
Schmidt) metric. The differential d(µp)1 : B(H)ah → B2(H) is d(µp)1(x) = xp. It is apparent that
ker d(µp)1 ⊂ B(H)ah and Im d(µp)1 ⊂ B2(H) are complemented subspaces. 2

Let us characterize the tangent spaces.
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Lemma 3.2 The tangent space (TIp)u equals

(TIp)u = {xu : x∗ = −x} = {zp ∈ B2(H).p : z∗u + u∗z = 0}.

Proof. Let w ∈ U(H) such that u = wp. The fact that µp above is a submersion implies that the
tangent space (TIp)u equals d(µp)w((TU(H))w). This (TU(H))w equals B(H)ahw, and therefore
(TIp)u = {xwp : x∗ = −x} = {xu : x∗ = −x}. Let us prove now that (TIp)u = {z ∈ B2(H).p :
z∗u+u∗z = 0}. If z = xu with x∗ = −x, then zp = xup = xu = z and z∗u+u∗z = −u∗xu+u∗xu =
0. Conversely, if z = zp verifies z∗u+u∗z = 0. Consider y = 1

2uu∗zw∗− 1
2wz∗uu∗+(1−uu∗)zw∗−

wz∗(1− uu∗). Clearly this element verifies y∗ = −y. Now compute

yu =
1
2
uu∗zw∗u− 1

2
wz∗uu∗u + (1− uu∗)zw∗u−wz∗(1− uu∗)u =

1
2
uu∗zp− 1

2
wz∗u + (1− uu∗)zp.

Using that z∗u = −u∗z and zp = z, one obtains

yu =
1
2
uu∗z +

1
2
wu∗z + (1− uu∗)z =

1
2
uu∗z +

1
2
wpw∗z + (1− uu∗)z = z.

2

As before, we introduce a riemannian metric in Ip, by means of the inner product of the ambient
space B2(H).

The inner product tr((yu)∗xu) = −tr(u∗yxu) may take complex values. Therefore we define:

< xu, yu >u= Re(tr((yu)∗xu)).

Let us compute the riemannian connection corresponding to this metric. First we must compute
the orthogonal projection P(TIp)u

: B2(H) → (TIp)u. This is given next

Lemma 3.3 The projection P(TIp)u
equals Pu,

Pu(x) = xp− 1
2
uu∗xp− 1

2
ux∗u, x ∈ B2(H).

Proof. First note that if x = yu ∈ (TIp)u with y∗ = −y, then Pu(x) = yup− 1
2uu∗yup− 1

2uu∗y∗u =
yu + 1

2uu∗yu + 1
2uu∗yu = yu = x. Next, if z = Pu(x), clearly zp = z and

z∗u + u∗z = (px∗ − 1
2
px∗uu∗ − 1

2
u∗xu∗)u + u∗(xp− 1

2
uu∗xp− 1

2
ux∗u)

= px∗u− 1
2
px∗u− 1

2
u∗xp + u∗xp− 1

2
u∗xp− 1

2
px∗u = 0.

This shows that Pu is a projection with range equal to (TIp)u. Let us see that it is orthogonal for
the (real) inner product of B2(H). If x, y ∈ B2(H),

< Pu(x), y >= Re tr(y∗xp)− 1
2
Re tr(y∗uu∗xp)− 1

2
Re tr(y∗ux∗u).

Let us examine these terms. In the first, one has tr(y∗xp) = tr(py∗x) = tr((yp)∗x). In the second,
tr(y∗uu∗xp) = tr(xpy∗uu∗) = tr(x(uu∗yp)∗) = tr((uu∗yp)∗x). In the third, Re tr(y∗ux∗u) =
Re tr(uy∗ux∗) = Re tr((uy∗ux∗)∗) = Re tr(xu∗yu∗) = Re tr((uy∗u)∗x). It follows that

< Pu(x), y >= Re tr((yp)∗x)− 1
2
Re tr((uu∗yp)∗x)− 1

2
Re tr((uy∗u)∗x) =< x,Pu(y) > .

Therefore Pu is the orthogonal projection onto the tangent space of Ip at u. 2
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Now suppose that x is a vector field which is tangent along the curve γ in Ip. The covariant
derivative of the riemannian connection of the metric defined above gives

Dx

dt
= P(TIp)γ

(ẋ) = ẋp− γγ∗ẋp + γẋ∗γ

2
= ẋ− γγ∗ẋ + γẋ∗γ

2
,

where ẋp = ẋ because x takes values in the subspace B2(H)p (which contains Ip and all its tangent
spaces). This expression can be simplified, if one uses (3.2) that any field x which is tangent along
γ satisfies x∗γ + γ∗x = 0. Differentiating this, one obtains x∗γ̇ + γ̇∗x = −ẋ∗γ − γ∗ẋ. Therefore

Dx

dt
= ẋ +

γγ̇∗ + γx∗γ̇

2
.

The riemannian connection is therefore given by

(∇xy)u = x(y) +
ux∗y + uy∗x

2
.

In particular, a curve δ is a geodesic of the riemannian connection if it satisfies the equation

δ̈ + δδ̇∗δ̇ = 0. (3.4)

The action of U(H) on Ip, is clearly isometric for the riemannian metric. It follows that if δ is a
geodesic and w ∈ U(H), then wδ is also a geodesic. Therefore it suffices to compute the geodesics
which start at p. This is done in the following:

Theorem 3.4 Let x ∈ (TIp)p. The unique geodesic δ with δ(0) = p and δ̇(0) = x is given by

δ(t) = etzetyp, t ∈ IR,

where z = 2pxp + (1− p)xp− px∗(1− p) and y = −pxp.

Proof. Note that x = x0p, with x∗0 = −x0. This implies that both z and y are antihermitic:
z∗ = 2px∗0p + px∗0(1− p)− (1− p)x∗0p = −2px0p− px0(1− p) + (1− p)x0p = −z, and analogously
with y. It follows that etzety is a curve of unitaries, and therefore δ(t) ∈ Ip, satisfies δ(0) = p and

δ̇(0) = zp + yp = xp = x.

Let us show that δ satisfies the equation 3.4. Note that y commutes with p. Compute

δ̇(t) = etzzetyp + etzetyyp = etz(zp + yp)ety

and
δ̈(t) = etzz2etyp + 2etzzyetyp + etzetyy2p = etz(z2p + 2zyp + y2p)ety.

Then δ̇∗(t) = −e−ty(pz + yp)e−tz. It follows that δ(t)δ̇∗(t)δ̇(t) = −etzp(pz + py)(zp + yp)ety.
Replacing these expressions in equation 3.4 one obtains

etz(z2p + 2zp + y2p− pz2p− pzyp− pyzp− y2p)ety.

Recall that xp = x. Then z2p = (2pxp + (1 − p)xp − px∗(1 − p))2p = 4px2p + 2(1 − p)x2p. Also
zyp = (2pxp+(1− p)xp− px∗(1− p))(−pxp) = −2px2p− (1− p)x2p and pyzp = −pxp(2pxp+(1−
p)xp− px∗(1− p)) = −2px2p. These facts imply that

z2 + 2zyp = 0,

and
pz2p + pzyp + pyzp = 0.

Therefore δ verifies equation 3.4. 2
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Remark 3.5 Ip is geodesically complete.

Next we show that Ip is complete (with the geodesic distance). Let R > 0 be the radius of a normal
neighbourhood of p ∈ Ip. Since the action of U(H) on Ip is transitive and isometric, it follows that
the same radius works for every element in Ip.

Lemma 3.6 There exists a number R0 ≤ R such that if x ∈ (TIp)p, x = (z + y)p as in 3.4, with
‖x‖2 < R0 then √

2
2
‖x‖2 ≤ ‖p− ezpey‖2 ≤

√
6

2
‖x‖2. (3.5)

Proof. Note that

‖p− ezpey‖22 = tr(p) + tr(e−ypey)− 2Re tr(pezpey) = 2n− 2Re tr(pezpey).

Recall that z, y are antihermitic, and y commutes with p. Compute

tr(pezpey) = tr(ezpey) = tr(p + zp + py +
1
2
z2p +

1
2
py2 + zpy + . . .)

Since z, y are antihermitic, the trace of terms of odd degree in the above expansion give pure
imaginary numbers. Since we are taking real part of the trace, only terms of even degree remain.
Also it is clear that the terms of degree 2 give

tr(
1
2
z2p +

1
2
py2 + zpy) =

1
2
{tr(z2p) + tr(y2p) + tr(zpy) + tr(yzp)} =

1
2
‖x‖22.

Next note that |tr(zjpyi)| ≤ ‖zjpyi‖1 ≤ n‖zjpyi‖ ≤ n‖z‖j‖y‖i. Then

‖p− ezpey‖2 = ‖x‖22 − 2tr{terms of even degree ≥ 4},

and

|2tr{terms of even degree ≥ 4}| ≤ 2n{ 1
4!
‖z‖4+ 1

3!
‖z‖3‖y‖+1

2
1
2
‖z‖2‖y‖2+ 1

3!
‖z‖‖y‖3+ 1

4!
‖y‖4+. . .}

= 2n{cosh(‖z‖+ ‖y‖)− 1− 1
2
(‖z‖+ ‖y‖)2}.

Recall that z = 2pxp + (1− p)xp− px∗(1− p) and y = −pxp. Then ‖z‖ ≤ 4‖x‖2 and ‖y‖ ≤ ‖x‖2.
Since cosh(t)− 1− t2

2 is increasing for t ≥ 0, this implies that

|2tr{terms of even degree ≥ 4}| ≤ 10n‖x‖22{
1
4!

(5‖x‖2)2 +
1
6!

(5‖x‖2)4 + . . .}.

The function f(t) = 1
4! (5t)2 + 1

6! (5t)4 + . . . = 1
t2

(
cosh(5t) − 1 − (5t)2

2

)
is also increasing for t ≥ 0

and verifies f(0) = 0. It follows that there exists R0 > 0 (chosen R0 ≤ R) such that f(t) < 1
20n if

t < R0. Puting these facts together yields the following: if ‖x‖2 < R0, then

|2tr{terms of even degree ≥ 4}| ≤ 1
2
‖x‖22.

Therefore , if ‖x‖2 < R0, we have

1
2
‖x‖22 ≤ ‖p− ezpey‖22 ≤

3
2
‖x‖22,

and the statement follows. 2
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Corollary 3.7 The space Ip is complete with the geodesic distance.

Proof. Let {uk} be a Cauchy sequence in Ip for the metric dg. There exists k0 such that
dg(uk, ul) < R0 if k, l ≥ k0. The above lemma states that for such elements, the geodesic distance
is equivalent to the metric given by the Hilbert Schmidt norm ‖ ‖2. Indeed, if dg(u, v) < R0 ≤ R
there exists a (unique) geodesic γ(t) = wetzpety with γ(0) = wp = u and γ(1) = v for an appro-
priate unitary operator w. Then dg(u, v) = ‖w(z + y)p‖2 = ‖(z + y)p‖2 < R0. On the other hand
‖u − v‖2 = ‖wp − wezpey‖2 = ‖p − ezpey‖2, and the claim follows. Therefore {uk} is a Cauchy
sequence in the ‖ ‖2 metric, or equivalently, in the usual operator norm ‖ ‖ metric. It is apparent
that Ip is closed in norm in B(H), which is complete. 2

4 A riemannian metric for the space Σn

In [5] it was proven that the space Σn of positive operators with rank n < ∞ is a differential
manifold. It coincides with the orbit of the action g · a = gag∗ of Gl(H) on any a ≥ 0 with rank n,
for instance

Σn = {gpg∗ : g ∈ Gl(H)}.

Moreover, on Σn the maps a 7→ ρ(a) and a 7→ a† (=inverse of a as an operator in a(H), also called
Moore-Penrose inverse of a) are differentiable maps. Note that a†a = aa† = ρ(a). First we shall
verify that in fact Σn is also a submanifold of B2(H).

Proposition 4.1 The set Σn is a C∞ submanifold of B2(H). The map

Gl(H) → Σn, g 7→ gpg∗

is a C∞ submersion.

Proof. We use the same argument as before. The map is C∞ because it is the restriction of a (real)
bilinear bounded map as in 2.1. The differential at 1 is the map B(H) → B2(H), x 7→ xp + px∗. If
one represents the elements of B(H) as 2× 2 matrices in terms of p, the kernel of this map consists
of elements x ∈ B(H) such that

pxp + px∗p = 0 and (1− p)xp = 0.

A supplement for this space is, for example, {y ∈ B(H) : pyp = py∗p, y(1 − p) = 0}. The range
is {xp + px∗ : x ∈ B(H)}, which coincides with {z ∈ B2(H) : z∗ = z, (1 − p)z(1 − p) = 0}.
Indeed, if z = xp + px∗, it is apparent that z = z∗ and (1 − p)z(1 − p) = 0. Conversely suppose
that z ∈ B2(H) is selfadjoint and verifies (1 − p)z(1 − p) = 0. Put x = pz + zp − 3

2pzp. Then
xp + px∗ = zp + pz − pzp = z because (1 − p)z(1 − p) = 0. Finally, the map g 7→ gpg∗ is open
because it has continuous local cross sections [5] in the norm topology (which coincides with the
Hilbert-Schmidt topology) in Σn. 2

Let us compute the tangent spaces (TΣn)a. There is g ∈ Gl(H) such that gpg∗ = a. Therefore
(TΣn)a = g(TΣn)pg

∗ and by the proposition above, (TΣn)p = {z ∈ B2(H) : z∗ = z, (1−p)z(1−p) =
0}. Then (TΣn)a = {gzg∗ ∈ B2(H) : z∗ = z, (1 − p)z(1 − p) = 0}. Note that gzg∗ is selfadjoint.
Suppose that ξ ∈ ker(a) = ker(gpg∗), then g∗ξ ∈ ker(gp) = ker(p). Since (1−p)z(1−p) = 0, then z
sends the kernel of p inside the range of p, i.e. zg∗ξ ∈ Im(p). Then gzg∗ξ ∈ Im(gp) = Im(gpg∗) =
Im(a), it follows that gzg∗ (which is an arbitrary element in (TΣn)a) sends the kernel of a inside
the range of a, i.e. (1− ρ(a))gzg∗(1− ρ(a)) = 0. Therefore we have

(TΣn)a = {z ∈ B2(H) : z∗ = z, (1− ρ(a))z(1− ρ(a)) = 0},
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or in other words, it consists of the selfadjoint elements of B2(H) whose 2× 2 matrices in terms of
ρ(a) have 0 in the 2, 2 coordinate.

Remark 4.2 1. The space Pp lies inside Σn, and it is a complemented submanifold. The inclu-
sion i : Pp ↪→ Σn induces an injection between the tangent spaces with complemented range.
Indeed, if q ∈ Pp, the image of diq is {z ∈ B2(H) : z∗ = z, pzp = (1− p)z(1− p) = 0} which
is complemented in (TΣn)q = {z ∈ B2(H) : z∗ = z, (1− p)z(1− p) = 0}.

2. For a fixed a ∈ Σn, recall that Σρ(a) consist of all elements of Σn with range equal to the
range of a. These are submanifolds of Σn: the tangent spaces are complemented subspaces of
(TΣn)a. If b ∈ Σρ(a), then (TΣρ(a))b = {z ∈ B2(H) : z∗ = z, z = ρ(a)zρ(a)}. In fact Σρ(a)

lies inside ρ(a)B2(H)ρ(a), therefore it is a finite dimensional manifold, which identifies with
the space of complex positive invertible n × n matrices. Note that Σρ(a) ∩ Pp = {ρ(a)}. We
shall see that these two submanifolds are orthogonal in a natural sense.

Let us introduce a riemannian metric in Σn. If a ∈ Σn, denote by κ(a) = 1 − ρ(a) (=projection
onto the kernel of a). If a ∈ Σn and z1, z2 ∈ (TΣn)a,

< z1, z2 >a= tr(z1(a + κ(a))−1z2(a + κ(a))−1) = tr(z1(a† + κ(a))z2(a† + κ(a))). (4.6)

Since a 7→ ρ(a) is a C∞ mapping, it follows that the distribution 4.6 is smooth. It is a metric, i.e.
it is positive definite: if 0 =< z, z >a= tr(z(a + κ(a))−1z(a + κ(a))−1) = tr((a + κ(a))−1/2z(a +
κ(a))−1z(a + κ(a))−1/2), then 0 = z(a + κ(a))−1z = z(a + κ(a))−1/2(a + κ(a))−1/2z, and therefore
(a + κ(a))−1/2z = 0, i.e. z = 0.

Remark 4.3 It is straightforward to verify that if u ∈ U(H), then the map

ad(u) : Σn → Σn, ad(u)(a) = uau∗

is an isometric diffeomorphism for this metric.

Note that if we regard q ∈ Pp as an element in Σn, then q + κ(q) = 1 and therefore if z1, z2 ∈
(TΣn)q,

< z1, z2 >q= tr(z1z2).

In particular this inner product, restricted to the tangent spaces of Pp, yields the same metric
introduced in section 2 for Pp.

On the other hand, if one restricts it to measure vectors z1, z2 in (TΣρ(a))b, this computation
takes place in ρ(a)B2(H)ρ(a) ' B(ρ(a)(H)). If we use the same letters to denote the operators
b, z1, z2 in ρ(a)(H), this measurement gives

< z1, z2 >b= tr(z1b
−1z2b

−1)

which is the well studied non positively curved metric of Mn(C) [7], [20], [21].
Finally, note that with this metric, Pp is the normal submanifold of Σρ(a) at ρ(a). That is, if

z1 ∈ (TPp)ρ(a) and z2 ∈ (TΣρ(a))ρ(a), then

< z1, z2 >ρ(a)= tr(z1z2) = 0

and
(TPp)ρ(a) ⊕ (TΣρ(a))ρ(a) = (TΣn)ρ(a).

The first assertion: z1 = ρ(a)z1(1− ρ(a)) + (1− ρ(a))z1ρ(a) and z2 = ρ(a)z2ρ(a), then tr(z1z2) =
tr((ρ(a)z1(1− ρ(a)) + (1− ρ(a))z1ρ(a))ρ(a)z2ρ(a)) = tr((1− ρ(a))z1ρ(a))ρ(a)z2ρ(a)) = 0.
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The second assertion: note that, regarded as 2× 2 matrices in terms of ρ(a), (TPp)ρ(a) consists
of selfadjoint codiagonal matrices, (TΣρ(a))ρ(a) consists of selfadjoint matrices with zeros except in
the 1, 1 entry, and therefore these add all selfadjoint matrices with zero in the 2, 2 entry, which is
precisely the space (TΣn)ρ(a).

We shall next study the riemannian connection induced by this metric. We shall see that Pp

is curved in Σn, specifically, the geodesics of Pp are never geodesics in the ambient Σn (least they
are constant curves). On the other hand Σρ(a) lies flat in Σn: the connection of Σn, when applied
to tangent vector fields which lie in TΣρ(a) (a fixed), gives the connection of Σρ(a). In particular,
the geodesic curves of Σρ(a) are geodesics in the ambient space Σn. The reason for this is that the
orthogonal projection from TΣn onto TΣρ(a) factors through the linear space ρ(a)B2(H)ρ(a).

In order to obtain a formula for the connection, we need to compute the differential of the map
a 7→ ρ(a). In what follows, if x ∈ (TΣn)a, then

x = xd + xc

denotes the diagonal+codiagonal decomposition of x in terms of the projection ρ(a), i.e. xd =
ρ(a)xρ(a) and xc = ρ(a)xκ(a) + κ(a)xρ(a).

Proposition 4.4 The differential of the map a 7→ ρ(a) is

dρa(x) = xca
† + a†xc, x ∈ (TΣn)a.

Proof. Decompose x = xd + xc. Note that xd ∈ (TΣρ(a))a, therefore it can be realized as the
tangent vector to a curve γ(t) ∈ Σρ(a), with γ(0) = a and γ̇(0) = xd. It follows that ρ(γ(t)) = ρ(a),
and therefore 0 = ˙ρ(γ)(t)|t=0 = dρa(xd). Therefore dρa(x) = dρa(xc). Consider the curve δ(t) =
etzae−tz, with z = xca

† − a†xc. Note that z∗ = −z and therefore δ(t) ∈ Σn. Also δ(0) = a and

δ̇(0) = za− az = xca
†a− a†xca− axca

† + aa†xc = xcρ(a) + ρ(a)xc = xc,

which holds because xc, being codiagonal with respect to ρ(a), verifies a†xca = a†ρ(a)xcρ(a)a = 0,
and axca

† = 0. Then dρa(xc) = ˙ρ(δ)(t)|t=0. If w ∈ U(H), then ρ(waw∗) = wρ(a)w∗, therefore
ρ(δ(t)) = ρ(etzae−tz) = etzρ(a)e−tz. Then

˙ρ(δ)(t)|t=0 = zρ(a)− ρ(a)z = xca
†ρ(a)− a†xcρ(a)− ρ(a)xca

† + ρ(a)a†xc = xca
† + a†xc,

i.e. dρa(x) = xca
† + a†xc as claimed. 2

It shall also be useful to compute the adjoint of

dρa : (TΣn)a → (TPp)ρ(a),

with respect to the corresponding inner products.

Remark 4.5 The adjoint dρ∗a : (TPp)ρ(a) → (TΣn)a is the inclusion map

dρ∗a(x) = x, x ∈ (TPp)ρ(a).

Indeed, if y ∈ (TΣn)a, because x is codiagonal with respect to ρ(a), one has < x, y >a= tr(y(a† +
κ(a))x(a† + κ(a))) = tr(y(a†xκ(a) + κ(a)xa†)). This equals tr(y(a†x + xa†)), because a†xκ(a) +
κ(a)xa† = a†x + xa†. Then < x, y >a= tr(ya†x) + tr(yxa†) = tr(x(ya† + a†y) =< x, dρa(y) >ρ(a).

We use Koszul’s formula to compute ∇xy. Recall that if x, y, z are vector fields then

2 < ∇xy, z >= x < y, z > +y < z, x > −z < x, y > + < [x, y], z > + < [z, x], y > − < [y, z], x > .
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Let us compute x < y, z >. In order to distinguish derivation of a field y with respect to x from
the usual product of the operator valued functions x and y, we denote by x{y} the former and by
xy the latter. Derivations are performed at the point a ∈ Σn, which is omitted.

x < y, z >= tr(x{y(a† + κ(a))z(a† + κ(a))}) =

= tr(x{y}(a† + κ(a))z(a† + κ(a)) + yx{a† + κ(a)}z(a† + κ(a))+

+y(a† + κ(a))x{z}+ y(a† + κ(a))zx{a† + κ(a)}).

Note that x{a†+κ(a)} = x{(a+κ(a))−1} = −(a†+κ(a))x{a+κ(a)}(a†+κ(a)), and x{a+κ(a)} =
x{a} + x{κ(a)} = x + x{1 − ρ(a)} = x − dρa(x). The second and third term in Koszul’s formula
are dealt analogously. The other terms, e.g. < [x, y], z >, give

< [x, y], z >= tr(z(a† + κ(a))x{y}(a† + κ(a)))− tr(z(a† + κ(a))y{x}(a† + κ(a))).

After adding up all these formulas one gets:

2 < ∇xy, z >=< PΣn,a

(
2x{y} − x(a† + κ(a))y − y(a† + κ(a))x + dρa(x)(a† + κ(a))y+

+y(a† + κ(a))dρa(x) + +dρa(y)(a† + κ(a))x + x(a† + κ(a))dρa(y)
)
−

−dρ∗a
(
PPp,q[x(a† + κ(a))y + y(a† + κ(a))x]

)
, z > . (4.7)

Here PΣn,a denotes the projection from the space B2(H)h of hermitic operators in B2(H), onto the
tangent space (TΣn)a, which is given by

PΣn,a(x) = x− (1− ρ(a))x(1− ρ(a)).

We by PPp,q the projection from B2(H)h onto the tangent space (TPp)q, given by

PPp,q(x) = qx(1− q) + (1− q)xq.

These two projections are orthogonal with respect to the inner product < , >a, when this form is
extended to the whole B2(H). Using these abreviations, and the computations above, one obtains

2∇xy = PΣn,a

(
2x{y} − x(a† + κ(a))y − y(a† + κ(a))x + (xca

† + a†xc)(a† + κ(a))y+

+y(a† + κ(a))(xca
† + a†xc) + x(a† + κ(a))(yca

† + a†yc) + (yca
† + a†yc)(a† + κ(a))x

)
−

−PPp,q

(
x(a† + κ(a))y + y(a† + κ(a))x

)
. (4.8)

In particular, the equation for the geodesic curves of Σn is

0 = PΣn,γ

(
γ̈ − γ̇(γ† + κ(γ))γ̇ + (γ̇cγ

† + γ†γ̇c)(γ† + κ(γ))γ̇ + γ̇(γ† + κ(γ))(γ̇cγ
† + γ†γ̇c)

)
−

−PPp,ρ(γ)

(
γ̇(γ† + κ(γ))γ̇

)
. (4.9)

We were not able to compute the geodesics of this connection. As was remarked before, this metric
induces on the submanifolds Pp and Σq the usual connections on these spaces. The properties of
the connection on Pp were recalled in section 2. If one identifies Σq with the space of positive
invertible operators in the range of q, i.e. n× n positive definite matrices, the connection induced
on Σq is well known in differential geometry [7], [20]. It has non positive sectional curvature, and
the geodesics, as well as the geodesic distance, have been characterized. If a, b ∈ Σq, then there is
a unique minimizing geodesic which joins them, given by

γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2, t ∈ IR.
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Here inverses are taken as operators in the range of q. The geodesic distance is given by

dg(a, b) = (tr
(
(log(a−1/2ba−1/2)2

)
)1/2.

Note that Σq (being finite dimensional) is a complete metric space.
These submanifolds Pp and Σq (q ∈ Pp) sit inside Σn in quite different manners:

Proposition 4.6 The geodesic curves of Pp are never geodesic curves of Σn (except if they are
constant curves). The geodesic curves of Σq are geodesics of Σn, and in particular Σq is totally
geodesic in Σn.

Proof. The second assertion follows from the fact that Σq ⊂ qB2(H)q, and Σq = Σn ∩ qB2(H)q.
Note that qB2(H)q is a linear and complemented subspace of B2(H). Indeed, if x and y are vector
fields in Σn which happen to take values in TΣq, then x{y} as well as all terms in 4.8 take values
in qB2(H)q. It follows that the riemannian connection ∇Σq

x y induced by the metric on Σq coincides
with ∇xy of the ambient space Σn.

With respect to the first assertion, let x be a q-codiagonal (antihermitian) vector, and consider
the geodesic δ(t) = etxqe−tx of Pp. Straightforward computations show that

1. γ̇ = etx(xq − qx)e−tx.

2. γ̈ = etx(x2q − 2xqx + qx2)etx.

3. γ̇c = γ̇.

4. γ† + κ(γ) = 1.

Note that x2 and (xq − qx)2 commute with q. Note also that PΣn,waw∗(wyw∗) = wPΣn,a(y)w∗.
Lets replace these relations in the geodesic equation 4.9. First,

γ̇(γ† + κ(γ))γ̇ = etx(xq − qx)2e−tx

which commutes with γ = etxqe−tx. It follows that

−PPp,ρ(γ)

(
γ̇(γ† + κ(γ))γ̇

)
= 0.

Using the covariance of the projections PΣn,a with respect to inner automorphisms remarked above,
in order that γ be a geodesic, the projection onto (TΣn)q of the term

x2q − 2xqx + qx2 + (xq − qx)2 = x2q − 3xqx

must vanish. That is

PPp,q(x2q − 3xqx) = x2q − 3xqx− (1− q)x2q(1− q) + 3(1− q)xqx(1− q) = qx2q = 0.

That is, qx = xq = 0. Since x is q-codiagonal, x = xq + qx, and therefore x = 0, i.e. γ is constant.
2

5 Homotopy of Σn

Consider the following map

$ : Σp × Ip → Σn, $(b, x) = xbx∗.

Clearly this map is smooth and surjective. Let us compute the fibre over p. If xbx∗ = p, then the
range of xbx∗ is contained in p(H). Since xbx∗ is one to one when restricted to p(H), this implies
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that the range of x is p(H), i.e. x is a “unitary” operator in p(H). Therefore $−1(p) = {(v, p) :
v∗v = vv∗ = p} ' U(p(H)). We identify U(p(H)) with this fibre. Note that U(p(H)) acts both on
Σp and Ip with right actions: b · v = v∗bv and x · v = xv. We may consider the diagonal action on
Σp × Ip: (b, x) · v = (v∗bv, xv). With this action one has $((b, x) · v) = $(b, x). Moreover,

$(b, x) = $(c, y)

only if there exists v ∈ U(p(H)) such that

(b, x) · v = (c, y).

Indeed, xbx∗ = ycy∗ implies that c = pcp = y∗ycy∗y = y∗xbx∗y = (x∗y)∗bx∗y. Clearly, as above,
from xbx∗ = ycy∗ it follows that x and y have the same range, and since they are partial isometries,
this implies that x∗y is a partial isometry with initial and final space p, i.e. an element in U(p(H)).
Therefore, if we denote v = x∗y, (b, x) · v = (v∗bv, xv) = (c, xx∗y) = (c, y), where xx∗y = y because
xx∗ equals the projection onto the range of x (which is equal to the range of y).

Proposition 5.1 The map $ is a principal bundle with structure group U(p(H)).

Proof. Let us show that $ has local cross sections. Fix a0 = x0b0x
∗
0 ∈ Σn. Let ρ(a0) = p0 and

u0 ∈ U(H) such that u0pu∗0 = p0. Since ρ is continuous, it follows that the set Da0 = {a ∈ Σn :
‖ρ(a)− p0‖ < 1} is open in Σn. It follows that ρ(a) lies in the domain of the local cross section σp0

of the unitary orbit of p0 (see section 2). Therefore u0σp0(ρ(a)) satisfies that

(u0σp0(ρ(a)))∗ρ(a)u0σp0(ρ(a)) = p,

in other words, (u0σp0(ρ(a)))∗au0σp0(ρ(a)) lies in Σp. Let us define

sa0 : Da0 → Σp × Ip, sa0(a) = ((u0σp0(ρ(a)))∗au0σp0(ρ(a)), u0σp0(ρ(a))p).

It is straightforward to verify that sa0(a0) = (a0, p0) and that $(sa0(a)) = a. Clearly sa0 is smooth.
Now if (b, x) ∈ $−1(Da0), then sa0($(xbx∗)) = (α(xbx∗), χ(xbx∗)). Note that χ(xbx∗)∗x lies in
U(p(H)). Put

Φ : $−1(Da0) → Da0 × U(p(H)), Φ(b, x) = (xbx∗, χ(xbx∗)∗x).

Then Φ is a smooth local trivialization for the map $, which additionally satisfies that if v ∈
U(p(H)), then Φ((b, x) · v) = (xbx∗, χ(xbx∗)∗xv), i.e. it is an equivariant trivialization. 2

Remark 5.2 In [1] it was proven that the map

U(H) → Ip, u 7→ up

is a principal bundle (in fact, a homogeneous space), with fibre equal to U(p(H)⊥). Since p(H) is
finite dimensional, and Ip is a connected differentiable manifold [1], these facts imply [12], [14] that
Ip is contractible.

Corollary 5.3 For k ≥ 1, πk(Σn) ' πk−1(U(n)), where U(n) is the unitary group of Cn.

Proof This follows from the fact that $ : Σp × Ip → Σn is a fibration, with fibre U(p(H)), where
Ip is contractible and Σp is convex. 2
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Moreover, Σn is B(U(n)), the classifying space of U(n) which is unique up to homotopy equiv-
alence. Thus it is homotopy equivalent to the Grassmann manifold of n-planes in H.

There are another interesting subsets of Σn, the “tubes”

Tq = {a ∈ Σn : ‖ρ(a)− q‖ < 1}.

Note that Tq is an open neighbourhood of Σq. Let us define the following map

τ = τq : Tq → Σq, τ(b) = ϑq(ρ(b))∗bϑq(ρ(b)),

where ϑq is the cross section for the unitary orbit of q, defined in 2.3. Note that ϑq(ρ(b))∗ρ(b)ϑq(ρ(b)) =
q, and therefore τ is well defined. Clearly it is also smooth.

Proposition 5.4 The map τ is an homotopy equivalence between Tq and Σq. In particular this
implies that Tq is contractible.

Proof. It is in fact a deformation retract. The cross section ϑq takes values in the domain of
a smooth logarithm [6]: σq(r) = eζ(r), where ζ is a smooth function with values in B(H)ah,
defined on the neighbourhood of q in Pp given by ‖q − r‖ < 1, with ζ(q) = 0. For t ∈ [0, 1], let
Ft(b) = e−tζ(ρ(b))betζ(ρ(b)). Then F0 = id, F1 = τ and if b ∈ Σq, ρ(b) = q and then Ft(b) = b.

2

Remark 5.5 In particular τq : Tq → Σq is a smooth retraction. Therefore for each a ∈ Σq, the set
Na = τ−1({a}) is a submanifold of Σn.

Proposition 5.6 For each a ∈ Σq, Na and Σq are normal at a.

Proof. We claim that if x ∈ (TNa)a, then x is codiagonal with respect to q. Let γ(t) be a
curve in Na with γ(0) = a and γ̇(0) = x. Then τ(γ(t)) = q, so that dτa(x) = 0. Now
dτa(x) = [d(ϑq))q(dρa(x))]∗a + x + ad(ϑq))q(dρa(x)). Note that since ϑq takes unitary values,
then [d(ϑq))q(dρa(x))]∗ = −d(ϑq))q(dρa(x)). Moreover (see [6]), if z is a tangent vector of Pp at q,
then d(ϑq)q(z) = zq − qz. Therefore

dτa(x) = −[d(ϑq)q(xca
†+a†xc)]a+x+a[d(ϑq)q(xca

†+a†xc)] = −(xca
†−a†xc)a+x+(xca

†−a†xc)a.

Recall that a†xca = 0. Therefore,

0 = dτa(x) = −xcq + x− qxc = x− xc,

i.e. x = xc is q-codiagonal. A tangent vector y ∈ (TΣq)q verifies y = qyq. It follows that

< x, y >a= tr(x(a† + κ(a))y(a† + κ(a))) = 0

because x is q-codiagonal and (a† + κ(a))y(a† + κ(a)) is q-diagonal. 2

If q0, q1 are projections in Σn such that ‖q0−q1‖ < 1, then τq0 induces an isometric diffeomorphism
between Σq1 and Σq0 . Indeed, if b ∈ Σq1 , τq0(b) = w∗bw, where w = ϑq0(q1) does not depend on b.
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6 The embedding Σq → Σ∞

In [3] we studied the space Σ∞ of positive definite infinite matrices. Let us recall this space and
its properties. Let HIR be the real Hilbert space of operators in B(H) given by

HIR = {λ + x ∈ B(H) : λ ∈ IR, x = x∗ ∈ B2(H)},

with the inner product < λ + x, µ + y >= λµ + tr(xy). We define

Σ∞ = {a ∈ HIR : a is positive and invertible in B(H)}.

Remark 6.1 [3]

1. Σ∞ is open in HIR.

2. If a ∈ Σ∞, and x, y ∈ HIR ' (TΣ∞)a, then < x, y >a=< xa−1, a−1y > defines a riemannian
metric for Σ∞. With this metric, Σ∞ has non positive curvature. In particular, any two
points a, b in Σ∞ are joined by a unique and minimizing geodesic, which is given by

γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2, t ∈ IR.

3. The geodesic metric is given by

dg(a, b) = {< x, x >}1/2,

where x = log(a−1/2ba−1/2). Σ∞ is complete with this metric.

Let us consider the map
 : Σn → Σ∞, (a) = a + κ(a).

This map  is well defined, because a + κ(a) is a finite rank perturbation of the identity, and also
a positive and invertible operator. Clearly  is smooth. Indeed, Σn lies inside HIR, and the Hilbert
space norm of HIR restricted to Σn is the Hilbert Schmidt norm ‖ ‖2. The map ρ : Σn → Σn ⊂ HIR

is therefore smooth as a map with values in HIR, and then so is κ = 1− ρ.

Proposition 6.2 Let a ∈ Σn. The differential

da : (TΣn)a → (TΣ∞)(a)

is contractive, i.e. verifies that ‖da(x)‖(a) ≤ ‖x‖a for all x ∈ (TΣn)a, if and only if ‖a†‖ ≤ 2 (or
equivalently, a ≥ 1

2ρ(a)).

Proof. Let x ∈ (TΣn)a. Compute da(x) = x + dκa(x) = x − dρa(x) = x − (xca
† + a†xc).

Decompose x = xd +xc. Note that (a+κ(a))−1xd is ρ(a)-diagonal while (a+κ(a))−1(xca
†+a†xc)

is ρ(a)-codiagonal. It follows that they are orthogonal for the inner product of HIR (which coincides
with the trace inner product for these vectors). Then

‖x− (xca
† + a†xc)‖2(a) = ‖x‖2(a) + ‖xca

† + a†xc‖2(a) − 2tr((a† + κ(a))xc(a† + κ(a))(xca
† + a†xc)).

The norm ‖x‖(a) coincides with the norm of x as an element of (TΣn)a. Therefore, in order to
characterize when da is contractive, it is necessary and sufficient to characterize when

‖xca
† + a†xc‖2(a) − 2Re tr((a† + κ(a))xc(a† + κ(a))(xca

† + a†xc)) ≤ 0. (6.10)

Compute

(xca
† + a†xc)(a† + κ(a))(xca

† + a†xc)(a† + κ(a)) = xc(a†)3xcκ(a) + a†xcκ(a)xc(a†)2.
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This implies that

‖xca
† + a†xc‖2(a) = tr(xc(a†)3xcκ(a) + a†xcκ(a)xc(a†)2) = 2tr(κ(a)xc(a†)3xcκ(a)).

On the other hand

xc(a† + κ(a))(xca
† + a†xc)(a† + κ(a)) = xc(a†)2xcκ(a) + xcκ(a)xc(a†)2.

Then
−2Re tr(xc(a† + κ(a))(xca

† + a†xc)(a† + κ(a))) = −4tr(κ(a)xc(a†)2xcκ(a)).

Suppose now that ‖a†‖ ≤ 2. This implies that a† ≤ 2ρ(a), and then (a†)3 ≤ 2(a†)2. This clearly
implies

2κ(a)xc(a†)3xcκ(a) ≤ 4κ(a)xc(a†)2xcκ(a).

Taking traces on this inequality proves 6.10.
Conversely, suppose 6.10 holds. Note that ρ(a)xc(a†)i = (a†)ixcρ(a) = 0, because xc is ρ(a)-

codiagonal. Then 6.10 implies that

tr(xc(a†)3xc) ≤ 2tr(xc(a†)2xc).

Let x∗ = x ∈ B(H), then (1− ρ(a))xρ(a) + ρ(a)x(1− ρ(a)) is ρ(a)-codiagonal and selfadjoint, if we
put it in the place of xc in the above inequality, we obtain that

tr((1− ρ(a))x(a†)3x(1− ρ(a))) ≤ 2tr((1− ρ(a))x(a†)2x(1− ρ(a))).

Since this happens for any selfadjoint operator x, it implies that (a†)3 ≤ 2(a†)2, which multiplying
by a on both sides implies that a† ≤ 2ρ(a), or equivalently, ‖a†‖ ≤ 2. 2

The map  is clearly not injective. For instance, for all q ∈ Pp, (q) = 1. However,  is injective
when restricted to the submanifolds Σq, in fact, in these cases it gives the natural way to embed
Σq in Σ∞.

Proposition 6.3 For q ∈ Pp, the map |Σq is an isometric embedding. In particular, if γ is a
geodesic in Σq, then (γ) is a geodesic in Σ∞, and the length of curves is preserved under .

Proof. If x ∈ Σq, (x) = x+(1−q), and therefore |Σq
is injective. Moreover, apparently dx(z) = z

for all z ∈ (TΣq)x. Note that {z : z ∈ (TΣq)x} is closed in (TΣ∞)(x) = HIR. 2

Let us define, for d > 0,
Wd = {a ∈ Σn : ‖a†‖ < d}

Clearly these sets are open in Σn. Also note that Pp ⊂ Wd is d > 1.

Remark 6.4 The sets Wd have also the following convexity properties:

1. If a ∈ Wd and u ∈ U(H), then uau∗ ∈ Wd. The proof is straightforward.
2. If a, b ∈ Σq lie inside Wd, then the unique geodesic γa,b(t) in Σq joining them lies inside Wd

for t ∈ [0, 1]. This is a consequence of a geometric form of the Loewner-Heinz inequality [8],
namely: if g, h are positive invertible elements in a C∗-algebra, then for all t ∈ [0, 1],

‖g1/2(g−1/2hg−1/2)tg1/2‖ ≤ ‖g‖1−t‖h‖t.

Using this inequality for g = a−1 and h = b−1 in the C∗-algebra B(q(H)), and the fact that
a† (resp. b†) identifies with a−1 (resp. b−1), one obtains that

‖γ†a,b(t)‖ = ‖γa−1,b−1(t)‖ ≤ ‖a†‖1−t‖b†‖t < d1−tdt = d,

for t ∈ [0, 1].
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Corollary 6.5 Let a, b ∈ Σq ∩ W2. Then the (unique) geodesic γa,b(t) = a1/2(a−1/2ba−1/2)ta1/2

joining a, b in Σq (and in Σn) is shorter than any other curve in W2

Proof. Let ν(t) ∈ W2 be a (piecewise) smooth curve such that ν(0) = a and ν(1) = b. By
proposition 6.2, (ν) is shorter than ν. This curve (ν) joins a + 1− q with b + 1− q in Σ∞. It is
then longer than the geodesic in Σ∞ joining the same endpoints, which is (γa,b) and has the same
length as γa,b. 2

Next we examine the behaviour of the map ρ in the sets Wd.

Proposition 6.6 If a ∈ Wd, then for all x ∈ (TΣn)a,

‖dρa(x)‖ρ(a) ≤
√

d ‖x‖a.

Proof. Compute
‖dρa(x)‖2ρ(a) = tr((xca

† + a†xc)2) = 2tr(xc(a†)2xc).

On the other hand

‖x‖2a = tr(xda
†xda

†) + 2tr(κ(a)xca
†xcκ(a)) = tr(xda

†xda
†) + 2tr(xca

†xc),

where the last equality follows because tr(ρ(a)xca
†xcκ(a)) = tr(ρ(a)xca

†xcρ(a)) = 0. Since a ∈ Wd,

(a†)2 ≤ da†,

and therefore (note that tr(xda
†xda

†) ≥ 0)

‖dρa(x)‖2ρ(a) ≤ d ‖x‖2a.

2

Corollary 6.7 Let a and b in Wd. then

dg(ρ(a), ρ(b)) ≤
√

d dg(a, b),

where the term on the left denotes the geodesic distance in the submanifold Pp and the term on the
right denotes the geodesic distance in Σn.

Lemma 6.8 If {ak} is a Cauchy sequence in Σn, then the norms ‖a†k‖ are uniformly bounded.

Proof. Suppose that the norms ‖a†k‖ are not bounded, then there exists a subsequence such that
the norms tend to infinity. For simplicity of notation, let us suppose that ‖a†k‖ → ∞. Let uk be
unitaries such that ukpu∗k = ρ(ak). Then bk = u∗kakuk ∈ Σp. Note that because unitary conjugation
is isometric for this metric (Remark 4.3),

dg(bk, p) = dg(ak, ρ(ak)) ≤ dg(ak, p) + dg(p, ρ(ak)).

The terms dg(ak, p) are bounded because {ak} is a Cauchy sequence. On the other hand dg(p, ρ(ak))
is bounded by the rectifiable diameter of Pp, which is finite (see [15]). It follows that {bk} is a
bounded sequence in Σp, in fact in B(p(H)), which is finite dimensional. Then there exists a
subsequence {bkj

} which converges to b in Σp. Then b†kj
→ b†, and in particular ‖a†kj

‖ = ‖b†kj
‖ is

bounded, which is a contradiction. 2

Our main result in this section is the following.
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Theorem 6.9 The space Σn is complete in the geodesic distance.

Proof. Let {ak} be a Cauchy sequence in Σn for the geodesic distance. By virtue of the above
lemma, we have that there exists d > 0 such that ak ∈ Wd for all k. Let us suppose first that
d < 2. The result (6.2) on W2 implies that {(ak)} is a Cauchy sequence for the geodesic distance
in Σ∞, which is complete. Therefore {(ak)} converges to b ∈ Σ∞ in the geodesic distance, as
well as in the norm of HIR. On the other hand, corollary 6.7 implies that {ρ(ak)} is a Cauchy
sequence in Pp, which is also complete. Therefore ρ(ak) → q ∈ Pp, in the geodesic distance, which
is equivalent to the usual operator norm of B(H). It follows that there exists k0 such that for all
k ≥ k0, ‖ρ(ak) − q‖ < 1. This implies, using one of the continuous local cross sections of πq in
section 2, that there exist unitary operators uk → 1 (in norm) such that ukqu∗k = ρ(ak). Denote by
a′k = u∗kakuk. Then ρ(a′k) = q. Note that ρ(ak) → q in Pp implies that κ(ak) = 1− ρ(ak) → 1− q
in Σ∞. It follows that ak = (ak)− κ(ak) → b− (1− q) = b0 in Σ∞. Since these elements belong
to B2(H), then ak → b0 in ‖ ‖2. It follows that a′k → b0, because uk → 1. We have shown above
that ρ(a′k) = q, then ρ(b0) ≤ q. We claim that in fact b0 ∈ Σn, i.e. ρ(b0) = q. To this effect, note
that {a′k} is a Cauchy sequence in Σn. Indeed

dg(a′k, a′l) ≤ dg(a′k, ak) + dg(ak, al) + dg(al, a
′
l).

It suffices to prove that dg(ak, a′k) → 0. Recall that a′k = u∗kakuk, where uk = exk for some antiher-
mitic xk of finite rank. Then dg(ak, a′k) ≤ length(δk), where δk is the curve δk(t) = e−txkaketxk ,
t ∈ [0, 1]. The length of this curve δk equals

√
2 tr(xkakx∗k)1/2 =

√
2 tr(a1/2

k x∗kxka
1/2
k )1/2 ≤

√
2‖xk‖tr(ak)1/2.

Since uk → 1, the elements xk converge to 0 in the usual operator norm. Then it suffices to show
that the traces tr(ak) are bounded. We have shown that both {ak} and {ρ(ak)} are convergent
in the trace norm of B2(H). Then tr(ak) =< ak, ρ(ak) > is a bounded sequence, and our claim is
proven. Then {a′k} is a Cauchy sequence in Σn, in fact it is a sequence in Σq ∩W2, and therefore,
by 6.5, a Cauchy sequence in Σq. Since Σq is complete, it follows that a′k → b0 in the geodesic
distance of Σq, and therefore b0 ∈ Σq ⊂ Σn. Then a′k → b0 in the geodesic distance of Σn. Using

dg(ak, b0) ≤ dg(ak, a′k) + dg(a′k, b0),

and the computations above, one has that ak → b0 in the geodesic distance of Σn.
It remains to prove the result for arbitrary d ≥ 2. Let now {ak} be a Cauchy sequence (for the

geodesic distance of Σn) lying in Wd with d ≥ 2. It follows that {d
2ak} lies in W2. We claim that

{d
2ak} is also a Cauchy sequence for the geodesic distance. If γ is a curve in Σn, and d

2 = c ≥ 1,
then cγ is another curve in Σn with length(cγ) ≤

√
c length(γ). Let us prove this assertion, which

implies our claim and finishes the proof. Note that

‖cγ̇‖cγ2 = tr
(
cγ̇(

γ†

c
+ κ(cγ))cγ̇(

γ†

c
+ κ(cγ))

)
= tr(γ̇γ†γ̇γ†) + 2c tr(κ(γ)γ̇γ†γ̇κ(γ))

≤ c{tr(γ̇γ†γ̇γ†) + 2tr(κ(γ)γ̇γ†γ̇)},

because tr(γ̇γ†γ̇γ†) ≥ 0 and c ≥ 1. That is,

‖cγ̇‖2γ ≤ c‖γ̇‖2γ ,

which proves the assertion. 2
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