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INTRODUCTION

The Patagonian shelf supports a rich and diverse
community of resident top predators as well as sea-
sonal migrants that either winter in the region or that
travel to tropical and Northern Hemisphere wintering
grounds (Croxall & Wood 2002). The Argentinean con-
tinental shelf system is strongly affected by different
types of water masses that promote the recycling of nu-
trients, accounting for its high productivity (Podesta et
al. 1991, Carreto et al. 1995). Several studies of marine
mammals and seabirds highlighted the extraordinary
importance of this system in sustaining populations
breeding at the Patagonian coast, Malvinas/Falkland

Islands and South Georgia Island (Croxall & Wood
2002, Quintana & Dell’Arciprete 2002, Campagna &
Croxall 2003). Regions visited by top predators during
their foraging phase are assumed to be characterised
by higher productivity (Bradshaw et al. 2004), but the
energy content of potential food resources is currently
unknown. 

The nutritional quality of marine organisms is often
estimated by the lean mass of commercial species,
while nutritional information about whole specimens
of commercial and non-commercial species is gener-
ally scarce. Therefore, there is a lack of knowledge
about the energetic values of potential prey, which are
needed, for example, to develop models of energy
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transfer between trophic levels. This study provides
the relative dietary values of whole teleost, elasmo-
branch and cephalopod specimens from the SW
Atlantic Ocean for the incorporation into trophic eco-
logical studies, such as the foraging behaviour of
predators, the assessment of energy transfer between
trophic levels (Croxall & Prince 1982, Tierney et al.
2002) and the shifting energetic values of the spectrum
of prey species.

MATERIALS AND METHODS

The sampling area was located in the area 39 
to 51° S, 55 to 65° W (Fig. 1). Fish and squid samples
from the SW Atlantic Ocean were collected in autumn
(May–June 2001) and summer (January–February
2002) by commercial fishing vessels operating with
bottom trawls. Non-parametric Mann-Whitney U rank
tests were performed to test for a difference in the
depth of hauls between the 2 seasons (Siegel &
Castellan 1995, Conover 1999). Collected material
was frozen on board and later analysed in the labora-
tory. Thirty-nine species (27 teleosts, 3 sharks, 7 rays
and 2 squids) were identified, weighed and mea-
sured. When smaller and larger specimens were
observed, samples were sorted according to size, and
size-classes were identified as juvenile or adults if
appropriate literature was available (Brunetti et al.
1998, Bezzi et al. 2000, Cosseau & Perrota 2000).
Besides, we assigned each species to an ecological

group (pelagic, demersal, demersal-pelagic, demer-
sal-benthic, benthic) according to their habitat and
vertical distribution (Brunetti et al. 1998, Bezzi et al.
2000, Cosseau & Perrota 2000).

Proximate composition and energetic value were
determined for 76 samples (44 from autumn and 32
from summer). Samples were dried at 100° C until a
constant weight was reached. Moisture content was
calculated by the difference between wet and dry
mass, and then expressed as a percentage of the orig-
inal mass (Horwitz 1960). Total lipids were extracted
with a Soxhlet equipment, using an ether–ethylic sol-
vent. Protein content was determined by the Lowry
method (Lowry et al. 1951). Ash content was mea-
sured using a muffle furnace at 550° C (AKE 1337
1100° C). Since carbohydrate content is generally low
in fish and its contribution to the energetic value is
practically zero (Márquez et al. 1996, Payne et al.
1999, Anthony et al. 2000), this component was not
measured. The energetic value was determined indi-
rectly — using Rubner’s coefficients for aquatic organ-
isms: 9.5 kcal g–1 for lipids, 5.65 kcal g–1 for proteins
(Winberg 1971) — and expressed in kJ g–1 wet mass.
All presented nutritional values are means of tripli-
cate determinations (average standard deviation was
less than 3%).

A multivariate analysis (correspondence analysis)
was performed to investigate the association be-
tween species and nutritional variables (Digby &
Kempton 1987, Ludwig & Reynolds 1988, Hair et al.
1999) using a statistical software package (STATIS-

TICA; StatSoft 2001). Non-parametric Kruskal-
Wallis and Mann-Whitney U rank tests were
performed to test for seasonal differences, dif-
ferences between adults and juveniles, and
differences between ecological or taxonomic
groups (Siegel & Castellan 1995, Conover 1999).
In the case when more than 2 groups were com-
pared, we perfomed post-hoc tests in order to
determine in more detail how groups differed,
using a pairwise comparison method that calcu-
lates a statistic (T ) based on the differences
of ranks of pairs and a critical value (CV;
Conover 1999). If T > CV, pairs are assumed to
be different (Conover 1999).

RESULTS

Fifty-two catches were performed at a depth
range of 73 to 370 m (Fig. 2). Twenty-seven of
these catches were done in autumn (82 to 370 m)
and 25 in summer (73 to 119 m). There was 
no significant difference in the depth of cat-
ches between seasons (Mann-Whitney U-test,
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Fig. 1. Locations of catches of teleosts, elasmobranches and
cephalopods during autumn 2001 ( ) and summer 2002 ( ) from 

vessels operating with bottom trawls
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U27,25 = 265.5, p > 0.05). Of all
observed species (n = 39), 51% was
caught in both seasons (n = 20),
31% only in autumn (n = 12), and
18% only in summer (n = 7).

Wet mass ranged from 17 to
4475 g for teleosts, from 175 to
2425 g for sharks, from 260 to 3550
g for rays and from 72 to 1250 g for
squids (Table 1). Total length was
14 to 99 cm for teleosts, 48 to 84 cm
for sharks and 34 to 65 cm for rays
(Table 1). Mantle length of squids
ranged from 17 to 42 cm (Table 1).

Moisture content ranged from
60.5 to 82.5% and showed an in-
verse relation with lipid content
(n = 39, Spearman R = –0.8, p < 0.01).
Lipid and protein content varied
among species (Table 2). Ash
content was more constant; mean
values were 3.1, 2.6 and 2% for
teleosts, elasmobranches and squids
respectively (Table 2).

The correspondence analysis
showed an association of species
with 3 biochemical variables. Two
main groups associated with lipid
(1) or protein (2), and 1 tiny group
of teleosts (3) represented by Prio-
notus nudigula and Cottunculus
granulosus stands out mostly due
to the contribution of ashes (main
dimension = 83% of variance
explained; Fig. 3). The group of
species closely associated with
lipid is represented by Dissostichus
eleginoides, Stromateus brasilien-
sis, Parona signata, Seriolella
punctata, Bathyraja brachyurops,
Shroederichthys bivius, Squalus
acanthias, and Macruronus magel-
lanicus. The group of species more
associated with protein included
teleost and ray species, the elasmo-
branch Callorhynchus callorhyn-
chus and the squids Illex argenti-
nus and Moroteuthis ingens.
According to the results, lipid con-
tent was higher in the group of spe-
cies associated with lipid (Kruskal-
Wallis test H2,39 = 19.18, p < 0.01;
Group 1 vs. Group 2: T = 27.11,
CV = 13.06; Group 1 vs. Group 3:
T = 17.71, CV = 6.40), but there
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Fig. 2. Distribution of depths of geo-referenced hauls in autumn and summer in 
the SW Atlantic Ocean

Species n Wet mass Mean Length Mean
(g) (range) (cm) (range)

ELASMOBRANCHES
Squalidae
Squalus acanthias (DB) 22 893.2 (175–2425) 60.4 (47.5–75)

Scyliorhinidae
Schroederichthys bivius (DB) 10 825.7 (447.7–1122.4) 67.2 (57.5–75.5)

Torpedinidae
Discopyge tschudii (B) 1 795 41.2

Rajidae
Dipturus chilensis (B) 8 630 (320–950) 50.4 (41–58.5)
Psammobatis scobina (B) 5 874 (260–2000) 47 (33.5–64.5)
Psammobatis normani (B) 8 627.5 (387.5–872.1) 45.7 (39.5–51.2)
Bathyraja brachyurops (B) 2 (2900–3550) (51.5–54)
Bathyraja macloviana (B) 5 595 (300–800) 42.8 (34.5–48)
Bathyraja scaphiops (B) 3 466.7 (350–600) 44.3 (40–50)

Callorhynchidae
Callorhynchus callorhynchus (B) 1 1700 84

TELEOSTS

Congridae
Bassanago albescens (DB) 22 357.9 (212–625) 63.6 (56–71)

Moridae
Salilota australis (DB) 5 1381.9 (295–4475) 54.4 (32.4–74)
Austrophycis marginata (DP) 3 38.9 (17–62) 17.8 (15–21)

Gadidae
Micromesistius australis (DP) 4 943.8 (110.3–1375) 47.5 (27–57)

Macruronidae
Macruronus magellanicus (DP) 5 1095 (300–1725) 71.7 (49–88)

Merlucciidae
Merluccius australis (DP) 9 2447.8 (725–3625) 74.9 (61.5–86)
Merluccius hubbsi (DP) 20 536.7 (175–1457.3) 42 (33–64)

Macrouridae
Coelorhynchus fasciatus (DB) 16 496.7 (187.3–1137) 45.9 (37–59)

Ophidiidae
Genypterus blacodes (DB) 10 1303.3 (240–3500) 65.1 (42–98.5)

Table 1. Mean wet mass (g) and length (cm) of species from the SW Atlantic Ocean.
The ecological group for each species is shown in parentheses (D = demersal, DP =
demersal-pelagic, DB = demersal-benthic, P = pelagic, B = benthic), n = number of
specimens measured; for species with n < 3, wet mass and length are presented in 

the range column

(Table 1 continued on next page)
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were no significant differences in protein content
between the group of species associated with protein
and the other groups.

However, teleost fishes showed higher protein
values than elasmobranches (Kruskal-Wallis test H3,76 =
14.88, p < 0.01; teleosts vs. rays: T = 25.49, CV = 13.84;
teleosts vs. sharks: T = 20.83, CV = 16.15). Rays pre-
sented the highest moisture contents (H3,76 = 15.53,
p < 0.01; rays vs. teleosts: T = 28.32, CV = 13.77;
rays vs. sharks: T = 33.37, CV = 19.71; rays vs. squids:
T = 32.00, CV = 21.91) and the lowest lipid contents
(H3,76 = 10.86, p < 0.05; rays vs. teleosts: T = 17.85,

CV = 14.30; rays vs. sharks: T =
31.81, CV = 20.41; rays vs. squids:
T = 30.10, CV = 22.75). Comparing
ecological groups (Table 1), benthic
species showed the lowest lipid con-
tents (H3,66 = 12.67, p < 0.05; benthic
vs. demersal-pelagic: T = 23.08,
CV = 12.44; benthic vs. demersal-
benthic: T = 12.56, CV = 11.90;
benthic vs. pelagic: T = 22.05, CV =
18.55), the lowest energetic values
(H3,66 = 15.91, p < 0.01; benthic vs.
demersal-pelagic: T = 26.77, CV =
12.04; benthic vs. demersal-benthic:
T = 16.64, CV = 11.52; benthic vs.
pelagic T = 21.56, CV = 17.96)
and the highest moisture contents
(H3,66 = 15.43, p < 0.01; benthic vs.
demersal-pelagic: T = 26.17, CV =
12.10; benthic vs. demersal-benthic:
T = 18.55, CV = 11.58; benthic vs.
pelagic: T = 21.87, CV = 18.05).
Demersal-benthic species showed
lower lipid values than demersal-
pelagic species (T = 10.52, CV =
10.26).

Lipid contents of demersal-benthic
and demersal-pelagic groups did
not differ between adults and juve-
niles: 5 vs. 4% in demersal-benthic
(Mann-Whitney U-test, U9,9 = 29.00,
p > 0.05), 10 vs. 7% in demersal-
pelagic (U5,5 = 10.00, p > 0.05). Al-
though formal statistical testing was
impossible with only 2 samples, it
was striking that Nemadactylus
bergi adults showed a lipid content
of 22%, while juveniles showed a
lipid content of only 5%. Protein con-
tent was similar between adults and
juveniles: 16 vs. 14% in demersal-
benthic (U9,9 = 23.00, p > 0.05) and 
13 vs. 14% in demersal-pelagic

(U5,5 = 12.00, p > 0.05). Demersal-benthic species
showed an increase in protein content in autumn
(U9,9 = 18.00, p < 0.05; Table 3).

DISCUSSION

This work reports the nutritional values of several
species cited as prey of some marine mammals and
seabirds from the Patagonian coast (Table 4) and that
are more frequently caught by commercial fishing
vessels. Despite the diversity of potential prey and
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Species n Wet mass Mean Length Mean
(g) (range) (cm) (range)

Scorpaenidae
Sebastes oculatus (D) 8 486.6 (113.9–806.1) 33.3 (24.3–38.5)

Triglidae
Prionotus nudigula (DB) 7 119.1 (113–140) 26 (25–28)

Congiopodidae
Congiopodus peruvianus (D) 14 322.3 (50–727) 26.5 (18–35)

Serranidae
Acanthistius brasilianus (DB) 7 603.6 (410–1000) 34.4 (31–41)

Bramidae
Brama brama (DP) 9 3471.1 (3015–3920) 61.5 (57–63)

Zoarcidae
Iluocoetes fimbriatus (D) 7 687.5 (450–925) 45.5 (41–53)

Bovichtidae
Cottoperca gobio (D) 10 795.2 (353–2175) 38.7 (31–62)

Carangidae
Parona signata (DP) 1 860 73.40

Cheilodactylidae
Nemadactylus bergi (DB) 13 150.2 (43–400) 21.6 (16–33)

Nototheniidae
Dissostichus eleginoides (DP) 1 3700 66.5
Patagonotothen ramsayi (DB) 23 154.1 (23.2–387.3) 23.4 (14–33)

Pinguipedidae
Pseudopercis semifasciata (DB) 13 349.4 (95–900) 30.3 (21–43)

Scombridae
Scomber japonicus (DP) 4 590 (380–725) 39.9 (35–43)

Centrolophidae
Seriolella punctata (DP) 8 771.8 (200–1281) 37.3 (28–44)

Stromateidae
Stromateus brasiliensis (DP) 13 320.2 (191–380) 29.1 (25–32)

Psychrolutidae
Cottunculus granulosus (D) 1 131.7 19

Paralychthyidae
Paralichthys patagonicus (B) 1 491.4 37

Achiropsettidae
Mancopsetta maculata (B) 4 384.6 (273.7–463.8) 34.5 (29.3–39)

CEPHALOPODS
Ommastrephidae
Illex argentinus (P) 22 316.9 (71.9–625) 24.7 (16.5–33)

Onychoteuthidae
Moroteuthis ingens (P) 1 1250 41.5

Table 1 (continued)
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the nutritional quality of different species
in the SW Atlantic Ocean system, only
the Ar-gentine hake Merluccius hubbsi
and the Argentine shortfin squid Illex
argentinus were described as important
contributors to the diet of most predators,
with a relative importance index greater
than 10% (Table 4).

Thirty-eight percent of the species
analysed here are commercially important.
Only the Argentine hake Merluccius
hubbsi was a target species for bottom
trawler vessels, and the remaining 62% of
the species are by-catch (Bezzi et al. 2000,
Cosseau & Perrotta 2000). Seasonal migra-
tion of some species and the seasonal dis-
tribution of catches may explain why some
species were sampled in only 1 season, e.g.
Dissostichus eleginoides and Moroteuthis
ingens, which are targeted in autumn with
specific fishing gear, or Micromesistius
australis, whose summer distribution is
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Species Moisture Ash Lipid Protein Energetic
value

ELASMOBRANCHES
Squalidae
Squalus acanthias 72.79 2.31 8.55 12.79 6.42

Scyliorhinidae
Schroederichthys bivius 72.21 3.35 9.36 11.12 6.34

Torpedinidae
Discopyge tschudii 82.50 3.05 1.58 8.67 2.68

Rajidae
Dipturus chilensis 78.06 2.75 4.42 10.51 4.23
Psammobatis scobina 77.73 2.36 2.05 12.56 3.79
Psammobatis normani 77.90 3.31 1.87 12.13 3.61
Bathyraja brachyurops 75.41 1.92 10.00 11.66 6.72
Bathyraja macloviana 77.64 2.69 3.22 11.68 4.04
Bathyraja scaphiops 78.39 2.65 2.97 11.79 3.97

Callorhynchidae
Callorhynchus
callorhynchus 77.18 2.09 3.89 10.79 4.09

TELEOSTS
Congridae
Bassanago albescens 75.78 2.58 4.76 14.14 5.25

Table 2. Mean proximate composition (% wet mass) and energetic value 
(kJ g–1 wet mass) of species from the SW Atlantic Ocean

Table 2 continued on next page
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centred around the Falkland Islands, but
whose distribution during autumn–winter
is much wider (Cosseau & Perrotta 2000).
Another case is Scomber japonicus, which
migrates to coastal waters during summer
(Cosseau & Perrotta 2000), coinciding with
the displacement of the catches during
summer (see Fig. 1). Besides their tempo-
rally variable geographic distribution,
these species have the capacity to move
vertically between intermediate and super-
ficial water layers, making them potential
prey of both deep-water-feeding and
surface-water-feeding predators. Many of
these species are distributed in close rela-
tion to the cold waters of the Malvinas/
Falkland Current, which is also where
petrels, albatrosses and elephant seals for-
age (Campagna et al. 1998, 1999, Nicholls
et al. 2002, Quintana & Dell’Arciprete
2002, Campagna & Croxall 2003).

One of the 2 main prey species for top
predators, Merluccius hubbsi, is one of the
most abundant resources in the area, but
also one of the most targeted species by
fisheries. In fact, it is an over-fished re-
source that is near to collapse (Bezzi et al.
2000). Hence, it is useful to have data on
nutritional values of other species, since it
can help us to understand changes in
trophic responses of predators as conse-
quence of seasonal changes in food avail-
ability. Trites & Donelly (2003) have shown
strong evidence for a relationship between
the decline of Steller’s sea lions Eumetopias
jubatus in the Gulf of Alaska and Aleutian
Islands between the late 1970s and 1990s
and the reduced availability of suitable
prey, which may have been caused by a re-
duced abundance of several key species of
high nutritional quality. In the SW Atlantic
Ocean, there is no evidence for declining
populations of top predators, perhaps be-
cause this system is offering a broader
spectrum of prey of high energetic value.
Teleost fish species in the SW Atlantic
Ocean have higher energetic values than
those from the Gulf of Alaska in the
Northern Pacific Ocean (Kruskal-Wallis
test H2,61 = 11.16, p < 0.05; T = 11.15, VC =
9.46; Table 5). Our energetic values for
teleosts were similar to values of Myctophi-
dae species reported in other Southern
Ocean studies (Atlantic Ocean: 6.6 to 9.1 kJ
g–1, Clark & Prince 1980; Indian Ocean: 7.4
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Species Moisture Ash Lipid Protein Energetic
value

Moridae
Salilota australis 77.40 3.15 2.62 14.39 4.44
Austrophycis marginata 73.48 3.95 4.15 16.26 4.91

Gadidae
Micromesistius australis 73.88 2.47 5.55 13.42 5.38

Macruronidae
Macruronus magellanicus 72.82 2.07 8.59 13.14 6.51

Merlucciidae
Merluccius australis 76.08 2.03 4.48 15.66 5.48
Merluccius hubbsi 77.27 2.84 3.65 14.65 4.91

Macrouridae
Coelorhynchus fasciatus 76.44 3.44 4.00 13.34 4.74

Ophidiidae
Genypterus blacodes 76.67 2.59 5.02 15.28 5.60

Scorpaenidae
Sebastes oculatus 73.88 3.85 2.99 16.61 5.12

Triglidae
Prionotus nudigula 70.29 6.94 3.62 13.36 4.63

Congiopodidae
Congiopodus peruvianus 74.33 4.00 5.26 12.21 5.00

Serranidae
Acanthistius brasilianus 76.36 2.79 2.27 12.41 3.82

Bramidae
Brama brama 67.66 2.09 10.85 18.38 8.65

Zoarcidae
Iluocoetes fimbriatus 78.15 3.00 3.22 8.82 3.36

Bovichtidae
Cottoperca gobio 74.78 3.36 2.49 13.93 4.28

Carangidae
Parona signata 62.43 2.49 16.24 16.23 10.27

Cheilodactylidae
Nemadactylus bergi 62.83 4.98 13.25 15.13 8.83

Nototheniidae
Dissostichus eleginoides 61.42 2.50 17.06 15.64 10.46
Patagonotothen ramsayi 73.06 3.10 7.36 17.07 6.88

Pinguipedidae
Pseudopercis semifasciata 73.94 3.70 3.84 14.56 4.97

Scombridae
Scomber japonicus 69.66 2.62 8.13 16.23 7.06

Centrolophidae
Seriolella punctata 63.96 2.15 14.78 14.83 9.36

Stromateidae
Stromateus brasiliensis 67.25 1.86 17.48 12.48 9.92

Psychrolutidae
Cottunculus granulosus 77.76 6.08 0.97 11.01 2.99

Paralychthyidae
Paralichthys patagonicus 76.17 4.05 2.27 12.11 3.77

Achiropsettidae
Mancopsetta maculata 60.55 1.06 11.29 27.90 11.45

CEPHALOPODS
Ommastrephidae
Illex argentinus 72.52 2.05 7.90 13.88 6.42

Onychoteuthidae
Moroteuthis ingens 77.24 1.34 6.54 12.81 5.64

Table 2 (continued)
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to 13.3 kJ g–1, Lea et al. 2002; Pacific Ocean: 5.4 to
10.9 kJ g–1, Tierney et al. 2002).

We found that rays had the lowest nutritional value,
due to their lower lipid and energy contents. Compared
with teleosts and in correspondence with the rest of the
elasmobranches, rays also showed a poor protein con-
tent. This low nutritional value fits well with the low in-
dex of relative importance of elasmobranches in the
diet of marine mammals (0.4%; Koen Alonso et al.
2000). However, and with relevance to biases associ-
ated with the techniques commonly implemented in
diet reconstruction, shark species had lipid and ener-
getic values that were as high as teleosts and squids.

Typical lean fish species are those that are associated
with the sea floor, while pelagic fishes are usually
referred to as ‘fatty fishes’ due to their high lipid con-
tent (Murray & Burt 1969). Our results agree with this

general picture. Benthic species were
the lowest in lipid content and con-
sequently had the lowest energetic
values and highest moisture contents
(although most of them were rays);
demersal-pelagic fishes were higher
in lipid and energetic values. An
exception to this pattern is the ben-
thic flounder Mancopsetta maculata,
which showed a high lipid content but
a low moisture content. In all cases,
we found a general inverse relation-
ship between moisture and lipid
content. Some studies have reported
this same trend (Clarke et al. 1994,
Márquez et al. 1996, Anthony et al.
2000) and have related this to buoy-
ancy adjustments in some cases, but
the main reason for the relationship
could be the fact that, unlike proteins
and carbohydrates, lipids can be
stored almost ‘dry’ (Stryer 1995).

For marine organisms, body compo-
sition is variable with respect to geo-
graphical location, time of year, size,
maturity condition, sex, and feeding
regime or ecological habits (Saadettin
et al. 1988, Lawson et al. 1998). Some
authors have found a reduction of the
protein component during the spawn-
ing season (Ando & Hatano 1986).
Since spawning is a process of high
energy demand and fish generally do
not feed during spawning, lipid stores
fall as spawning progresses, and
the protein component can also be
depleted for this purpose. During
intensive feeding seasons, the protein

levels rise back to normal values. Reinitz et al. (1979)
consider that the nutritional composition of food is the
most important factor affecting the proximal com-
position of fish. Unfortunately, knowledge is not com-
plete for all species from the SW Atlantic, and avail-
able information is still insufficient to relate autumnal
increases in protein and energetic values in demersal-
benthic species with spawning or feeding regimes.
Another factor affecting proximal components is the
gravid condition. Croxall & Prince (1982) have found in
krill that lipid and energetic value was 42% higher for
gravid females than for mature males. The flounder
Mancopsetta maculata showed high average lipid,
protein and energetic values: this can be explained by
the fact that it was the only benthic species whose sam-
ple included gravid specimens. In some studies, larger
size (or adult) categories tended to have higher lipid
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Species n Season Moisture Ash Lipid Protein Energetic
value

ELASMOBRANCHES
Squalus 15 Autumn 71.47 2.43 9.20 13.51 6.85
acanthias 7 Summer 74.11 2.18 7.92 12.07 5.99

Schroederichthys 5 Autumn 71.83 3.49 11.62 10.44 7.07
bivius 5 Summer 72.59 3.20 7.11 11.80 5.61

TELEOSTS (DEMERSAL-BENTHIC)
Bassanago 15 Autumn 74.18 2.99 5.23 17.63 6.27
albescens 7 Summer 77.39 2.16 4.29 10.66 4.22

Salilota 1 Autumn 76.02 3.69 3.88 16.41 5.42
australis 3 Summer 79.67 2.83 1.17 11.37 3.15

Genypterus 1 Autumn 75.55 2.72 9.99 13.69 7.20
blacodes 4 Summer 78.22 3.15 1.23 12.48 3.44

Nemadactylus 1 Autumn 60.08 5.52 13.41 17.57 9.47
bergi 4 Summer 56.32 4.58 21.63 15.94 12.34

Patagonotothen 11 Autumn 71.30 3.33 10.44 18.9 8.46
ramsayi 12 Summer 75.14 2.86 4.27 15.24 5.30

Mann-Whitney U-test, U9, 9 20.00 26.00 22.00 18.00 16.00

Significance ns ns ns p < 0.05 p < 0.05

TELEOSTS (DEMERSAL-PELAGIC)
Merluccius 5 Autumn 74.74 1.15 6.68 15.02 6.20
australis 2 Summer 77.43 2.91 2.28 16.29 4.76

Merluccius 12 Autumn 76.4 2.36 5.36 12.91 5.18
hubbsi 8 Summer 78.14 3.26 1.94 16.38 4.64

Brama brama 7 Autumn 67.61 2.06 10.96 17.59 8.51
2 Summer 67.71 2.12 10.74 19.16 8.79

Seriolella 4 Autumn 60.98 2.20 15.13 15.93 9.76
punctata 4 Summer 66.93 2.11 14.44 13.72 8.96

Stromateus 7 Autumn 65.56 1.94 17.09 12.13 9.64
brasiliensis 3 Summer 65.09 1.63 22.28 11.80 11.76

Mann-Whitney U-test, U5, 5 9.00 5.00 10.00 12.00 11.00

Significance ns ns ns ns ns

Table 3. Seasonal comparison of mean proximate components (% wet mass) 
and energetic values (kJ g–1 wet mass) of demersal-benthic and demersal-
pelagic species (n = total number of specimens included in the samples); ns = 

not significant
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and energetic values than smaller size (or juvenile) cat-
egories (Croxall & Prince 1982, Clarke et al. 1994,
Anthony et al. 2000). However, other studies have not
found such a relationship between size and proximate
composition (Payne et al. 1999), and yet another even
found the opposite pattern: smaller size-classes
showed higher energy contents (Tierney et al. 2002). It
seems that we cannot use general rules, and proximal
composition depends strongly on the conditions for
each species.

The data presented in this study cover a broad spec-
trum of species and give practical and useful informa-
tion about the nutritional values of regional species.
Since differences in lipid and protein contents have
important implications for digestive efficiency, forag-
ing behaviour and dietary preferences of predators
(Lawson et al. 1998), further sampling of individual
species is needed for the establishment of detailed
standards for composition of potential prey.

Feeding habits, foraging movement patterns, and
energy and time expenditure are a predator’s inte-

gration of its requirements and perceptions of the
nutritional resources (Robbins 1983). It is also well
known that the distribution of marine predators at
sea is closely related to food availability and produc-
tivity conditions. Bathymetry has been shown to
strongly affect the amount and types of fish avail-
able for some top predators, and shelves with a
higher surface area offer a greater opportunity for
demersal foraging (Green & Burton 1993). These
circumstances, plus high productivity conditions
such as frontal zones, could help explain why, even
while breeding at South Georgia, wandering alba-
tross, giant petrel and white-chinned petrel forage
over the Patagonian shelf (Croxall & Wood 2002).
Predators can compensate for variation in prey
availability through adjusted selection of prey as
a function of their nutritional quality (Krebs &
Davies 1978, Anthony et al. 2000). Knowledge of the
nutritional value of food items turns into an impor-
tant tool when trying to comprehend these adjust-
ments.
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Predators Prey species Sources

MARINE MAMMALS
Cetaceans
Cephalorhynchus Merluccius hubbsi Bastida et al. (1988), Crespo et al. (1997)
commersonii Patagonotothen ramsayi
(Commerson’s dolphin) Stromateus brasiliensis Crespo et al. (1997)

Illex argentinus Bastida et al. (1988), Crespo et al. (1994, 1997)
Macruronus magellanicus Bastida et al. (1988)

Lagenorhynchus obscurus Merluccius hubbsi Koen Alonso et al. (1998)
(Dusky dolphin) Stromateus brasiliensis

Notothenia sp.
Illex argentinus Crespo et al. (1994), Koen Alonso et al. (1998)

Delphinus delphis Illex argentinus Crespo et al. (1994)
(Common dolphin)
Globicephala melaena Illex argentinus Crespo et al. (1994)
(Long-finned pilot whale) Moroteuthis ingens
Physeter macrocephalus Illex argentinus Clarke et al. (1980), Crespo et al. (1994)
(Sperm whale) Moroteuthis ingens Crespo et al. (1994)

Pinnipeds
Otaria flavescens Merluccius hubbsi Koen Alonso et al. (2000)
(South American sea lion) Genypterus blacodes

Pseudopercis semifasciata
Stromateus brasiliensis
Acanthistius brasilianus
Seriolella punctata
Iluocoetes fimbriatus
Nemadactylus bergi
Illex argentinus

MARINE BIRDS
Diomedea exulans Illex argentinus Croxall & Prince (1994)
(Wandering albatross)
Spheniscus magellanicus Merluccius hubbsi Scolaro et al. (1999)
(Magellanic penguin) Illex argentinus Clarke et al. (1980), Scolaro et al. (1999)

SHARKS
Galeorhinus galeus
(Tope shark) Stromateus brasiliensis Cosseau & Perrotta (2000)

Table 4. Top predators in the SW Atlantic Ocean and their key prey species
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Northern Ocean
Species Pacific Pacific

(Gulf of Alaska) (Bering Sea)

Osmeridae
Thaleichthys pacificus 10.05 10.90
Mallotus villosus 5.30 6.50
Hypomesus pretiosus 7.25 –
Osmerus mordax – 6.90

Ammodytae
Ammodytes hexapterus 5.23 6.12

Trichodontidae
Trichodon trichodon 5.11 5.30

Stichaeidae
Lumpenus spp. 5.40 –

Gadidae
Theragra chalcogramma 3.93 –

Zaproridae
Zaproa silenus 3.00 –

Hexagrammidae
Pleurogrammus
monopterygius 4.94 –

Clupeidae
Clupea pallasii 3.43 –

Table 5. Energy content (kJ g–1 wet mass) of teleost species of
the Northern Pacific Ocean calculated from the lipid and
protein values in Payne et al. (1999). Energetic values were 
calculated using the same coefficients as used in this 

study (see ‘Materials and methods’)
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