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a b s t r a c t

In the postgenome era many efforts have been dedicated to systematically elucidate the
complex web of interacting genes and proteins. These efforts include experimental and
computational methods. Microarray technology offers an opportunity for monitoring gene
expression level at the genome scale. By recourse to information theory, this studyproposes
a mathematical approach to reconstruct gene regulatory networks at a coarse-grain
level from high throughput gene expression data. The method provides the a posteriori
probability that a given gene regulates positively, negatively or does not regulate each one
of the network genes. This approach also allows the introduction of prior knowledge and
the quantification of the information gain from experimental data used in the inference
procedure. This information gain can be used to choose those genes that will be perturbed
in subsequent experiments in order to refine our knowledge about the architecture of an
underlying gene regulatory network. The performance of the proposed approach has been
studied by in numero experiments. Our results suggest that the approach is suitable for
focusing on size-limited problems, such as recovering a small subnetwork of interest by
performing perturbation over selected genes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Gene expression is regulated by proteins that enhance or block polymerase binding at the promoter region. These
biochemical reactions constitute the edges of the gene regulatory networks. One of the key issues in modern biology is the
elucidation of the structure and function of gene regulatory circuits at the system level [1]. To address this challenge many
efforts have been devoted to the task of developing computational methods capable of inferring the interaction between
genes from expression levels both on small pathways [2,3] and on the genome-wide scale (see [4] for a review). Several
models for gene regulatory networks have been proposed in order to infer network interactions [5–8], such as Bayesian
networks [9–11], Boolean networks [12] and linear models [13,14,16]. Once a regulatory network model has been chosen,
it is possible, in principle, to recover its parameters with some accuracy. Of course, more detailed models will require
more extensive experimental data. In general, these data are not available for the genome-wide scale assuming complex
model. However, we can concentrate on a simpler task, such as: Who is regulating whom? and, Is that an up-regulation
or a down-regulation? The idea behind restricting our questions to this qualitative information level is to reduce the
amount of data needed to infer valuable and robust biological knowledge even when dealing with noisy data. In any case,
the detailed information offered by more detailed modeling is not useful without a careful significance analysis of these
predictions. In this sense, this study proposes a mathematical approach to infer gene networks at the coarse-grain level.
The inference process is to be accomplished according to the information theory (IT) in the framework of the maximum
entropy principle [17,18]. IT has proved to be suitable for devising techniques for analyzing gene expression and network
reconstruction [19,20,7], where gene expression levels were regarded as random variables. Here, complementing these
previous studies, each putative interaction has been considered as a random variable. In numero experiments show that, in
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this case, the IT parlance also provides a powerful framework to discuss questions related to the modeling process such as:
(i) how to incorporate a priori information about gene interaction; (ii) how to assess the likelihood of the inferred paths;
(iii) how to quantify the information provided by the experimental data; and (iv) how to design experiments in order to
identify subnetworks.

2. Methods

2.1. Network reverse engineering

In general, a genetic network can bemodeled by a set of nonlinear differential equations ẋi = fi (x1(t), . . . , xN(t)), where
xi(t) is the expression level of gene i at time t , and fi is the regulatory function governing the expression of gene i [21]. Near
a steady state, the nonlinear system can be approximated by a set of linear differential equations, ẋ = Wx, where W is a
weighted connectivity matrix [22]. In order to uncover the connectivity matrix, an external perturbation can be applied to
the level of transcripts b = (b1(t), . . . , bN(t))T By repeating the procedure M times, a measurement matrix X is obtained,
where columns denote the experiments and rows indicate individual genes. Thus, the dynamics can be approximated by

Ẋ = WX + B (1)

where Ẋ and B follow the same notation as X.
Usually, inferring a genetic network attempts to retrieve the weight matrix W using time-series RNA expression data

or steady state data. Algorithms that use time-series data have two alternatives: (i) estimate the rates of change of the
transcript level (Ẋ) from the time series; (ii) convert the model to a discrete dynamic system [14,15]. On the other hand,
there are algorithms that use steady-state data [3,6], in this case

− B = WX. (2)

In principle, the inference method presented here can deal with time-series RNA expression data or steady-state data,
because both equations are equivalent. Here, themore general casewill be derived, i.e. Eq. (1), but the numerical simulations
presented in the Results section only consider the steady-state case for simplicity. Experimental details about how to obtain
steady-state expression-level data are in [3,6].

2.2. Entropy maximization

In the present work, the maximum entropy principle is applied to obtain the probability distribution P (W|DM) from
the data DM =


X, Ẋ, B


. After that, using a maximum a posteriori criterion, the gene interaction matrix I is selected.

The elements Iij can take only three values, depending on the type of influence of gene j on gene i, Iij = 1 for activation
(direct or indirect), Iij = −1 for repression and Iij = 0 when gene j does not have any influence on gene i. In order to infer
weights consistent with DM , it is assumed that each set of weightsW is realized with probability P (W|DM). In other words,
a normalized probability distribution is introduced over the possible setsW, which satisfy

⟨W⟩ =

∫
P (W|DM)WdW. (3)

The relative entropy related to an a priori probability distribution P0, is given by

Hr (DM |P0) = −

∫
P (W|DM) ln

[
P (W|DM)

P0(W)

]
dW, (4)

where P0 (W) is an appropriate a priori distribution. The negative relative entropyHr , known as Kullback–Leibler divergence
[23], defines the information gained afterDM has beenused in the inference procedure. Thus, in this framework, the inference
process takes place through a modification of the probability distribution on weight space due to incoming data.

Thus, following the central tenets of the maximum entropy principle, relative entropy is maximized subject to the
constraints Eq. (3). Thus, the a posteriori probability distribution yields

P (W|DM) = exp (− (1 + λ0)) exp (−W · Γ ) P0 (W) , (5)

where λ0 is the Lagrange multiplier associated with the normalization condition, and Γ the Lagrange multipliers associated
with the constraints of Eq. (3), which are determined once P0 is properly selected.

In order to select P0, it is assumed that the weights are restricted to the values of Iij, i.e. wij = 0, ±1, and then a three-
peaked a priori distribution is used, which is described by

P0 (W) = (2πa)−N/2
N∏
ij


p0ije

−
w2
ij

2a + p+

ij e
−

(wij−1)
2

2a + p−

ij e
−

(wij+1)
2

2a


, (6)



Author's personal copy

2200 L. Diambra / Physica A 390 (2011) 2198–2207

where pxi,j is the a priori probability for gene j to regulate positively (x = +), negatively (x = −) or to not regulate (x = 0)
gene i. Of course, p0ij +p+

ij +p−

ij = 1 for each pair i, j. The parameter a can be regarded as a constraint smoothness parameter.
By replacing this choice in Eq. (5), the a posteriori probability distribution is obtained as a sum of three Gaussians,

P (W|DM) =
1

(2πa)N/2

N∏
ij


p̂0ije

−
(wij+aΓij)

2

2a + p̂+

ij e
−

(wij+aΓij−1)
2

2a + p̂−

ij e−
(wij+aΓij+1)

2

2a


(7)

where p̂xij is the a posteriori probability for gene j to regulate positively (x = +), negatively (x = −) or to not regulate
(x = 0) gene i. These probabilities are defined by p̂+

ij = p+

ij e
−Γij/zij, p̂−

ij = p−

ij e
Γij/zij and p̂0ij = p0ij/zij, where zij =

1+p+

ij


e−Γij − 1


+p−

ij


eΓij − 1


guarantees normalization. Furthermore, the relative entropy of the a posteriori distribution

Eq. (4) is given by

Hr (DM , P0) = −

N−
i

Ig (i|DM , P0) , (8)

where Ig(i) is the information gain of gene i with respect to P0 obtained from using the data DM that is defined by

Ig (i|DM , P0) =

N−
j

[
a
2
Γ 2
ij − ln


zij


−

1
zij


p+

ij Γije−Γij − p−

ij ΓijeΓij
]

. (9)

The multipliers Γij are obtained after solving the equation

⟨wij⟩ = −aΓij + z−1
ij


p+

ij e
−Γij − p−

ij e
Γij


(10)

where ⟨wij⟩ are subject to the constraints imposed by DM .

2.3. Network inference and IT

Our central idea is that of reinterpreting, following information in DM in a particular fashion,

Ẋ − B = ⟨W⟩X. (11)

Thus, all of the possible networks that are consistent with Eq. (11) can be written as

⟨W⟩ =

Ẋ − B


· U · diag(s−1

j ) · VT
+ C · VT (12)

C = (cij) is an N ×N matrix, where cij is zero if sj ≠ 0 and is otherwise an arbitrary scalar coefficient. U, S and V correspond
to the singular value decomposition of matrix XT , i.e. XT

= U · S ·VT , where U is a unitaryM ×N matrix of left eigenvectors,
S is a diagonal N × N matrix containing the eigenvalues {s1, . . . , sN}, and V is a unitary N × N matrix of right eigenvectors.
Without loss of generality, let all nonzero elements of sj be listed at the end, and s−1

j in Eq. (12) are taken to be zero if sj = 0.
The general solution (12) can be written as

⟨W⟩ = WL2 + C · VT , (13)

where WL2 is the particular solution with the smallest L2 norm. If M < N , many weights W are compatible with the
available information. The information contained in the data set DM can be used in different ways. Each of these leads to
a different probability distribution that exhibits diverse properties. In this sense, following the prescription ⟨W⟩ = 0 in
Eq. (13), the knowledge that gene regulatory networks are sparse can be made use of. Thus, we have C · VT

= −WL2 , which
is an overdetermined problem [22]. This equation is solved by the interior point method for L1 regression. The ci,j values
thus obtained are replaced in Eq. (13) and have a particular solution. This solution will be denoted as WL1 . Of course Γ is
obtained by solving Eq. (10) using ⟨W⟩ = WL2 or ⟨W⟩ = WL1 . In the following sections these alternatives will be considered
independently. Notice that forM ≥ N , WL2 = WL1 .

After determining the a posteriori distribution, the gene interaction matrix I must be selected. In order to do that, the
maximum a posteriori criterion is taken into account, i.e. the selection is accomplished by choosing the highest a posteriori
probability from {p̂0ij, p̂

+

ij , p̂
−

ij } for each pair i, j. For example, if p̂+

ij is greater than p̂0ij and p̂−

ij , then Iij = 1, indicating that gene
j activates gene i.

In order to achieve the best model, the idea is to use the information contained in DM and the knowledge that gene
regulatory networks are sparse. The formalism presented here offers an alternative to the prescription that selectsWL1 from
all possible solutions (12). This alternative consists in setting p+

ij = p−

ij ≪ p0ij. In this way, the knowledge that the gene
regulatory network is sparse can be introduced by assigning a much lower value to the a priori probabilities of interaction
than that of a priori probabilities of absence of interaction. Furthermore, as the inference processes occur row by row, any
other relevant a priori information about the gene in consideration (such as known interactions, type of gene, etc.) could be
included in these probabilities. For example, if gene k encodes a helix-turn-helix or a zinc finger protein, high probabilities
can be assigned for column k (p+

ik and p−

ik ).
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Fig. 1. Performance. (A) Prediction error ε as a function of the ratio α = M/N for gene networks with 60 genes (squares), 120 genes (circles) and 240
genes (triangles), averaged over 50 networks. (B) The information gain Ig curves associated with each performance. In all cases the performances were
obtained using WL1 prescription, equal a priori probabilities (i.e. p+

ij = p−

ij = p0ij = 1/3 for all i and j), k/N = 0.05 and a = 0.01.

3. Results

In order to systematically benchmark the inference performance of this method, the linear data-generating model of
Eq. (2) was used. The M random state (the columns of matrix X) were generated in the range [−1, 1] and the perturbation
B was computed as −W · X, where W is the matrix to be reconstructed in a coarse-grained sense. Thus the pair B,X
constitutes the available information DM . First, we use two different network architectures: random network (RN) and
scale-free network (SFN). To build the connectivity matrix W of sparse RN the following procedure was used: for each
matrix element a random number r between [0, 1]was sorted; if r < k/2N , a negative random value chosen from a uniform
distribution in the range [−2.0, −0.1]was assigned to thematrix element; if r > 1−k/2N , thematrix elementwas a positive
randomnumber in the range [0.1, 2.0], and otherwise thematrix elementwas zero. In the case of SFN the connections follow
a preferential attachment scheme, as described in [24], where at every step a new gene with k regulatory entries is added.
The probability to choose regulatory genes to act on this new gene depends linearly on the number of regulatory interactions
of those genes. After generating the adjacency matrix, each nonzero element of this matrix is replaced by a random number
uniformly distributed. Both procedures result in networkswhere the total number of connections is kN . The condition k ≪ N
ensures sparseness.

After defining which prescription was used for the mean values ⟨wij⟩, the set of uncoupled nonlinear equation (10) was
solved and the a posteriori probability for each putative interaction was evaluated. A finite value of parameter a is necessary
to find a numerical solution of Eq. (11) when the amount of data is small (α < 0.2) and/or noisy. In this paper, a = 0.01 has
been used, because this value was sufficiently large to guarantee the solution of Eq. (11) in the numerical experiments. No
significant difference was detected for a = 0.05; however, higher values lead to a worse performance. After this procedure
the most likelihood I can be selected. The performance of the inference procedure, was measured by the prediction error
ε = N−2 ∑N

ij eij, where eij is defined by

eij =


0 if sign (wij) = Iij
1 otherwise. (14)

Fig. 1(A) depicts the prediction error ε as a function of α defined as the ratio of number of experiments and number
of genes, i.e. α = M/N . These have been tested in three different size networks with k/N = 0.05, in which all a priori
probabilities are assumed to be equal (i.e. p+

ij = p−

ij = p0ij = 1/3) and a = 0.01. For small values ofM , themethodmistakenly
infers a percentage of interactions that depends on the network’s size N and on k. The ε function does not have a monotonic
decreasing behavior at low α, which is more apparent at higher N . However, a solution obtained with lower α always has
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Fig. 2. Size and node degree. (A) Prediction error ε as a function of the k for gene networks with N = 120 genes and M = 24 measurements averaged
over 50 networks. Filled squares correspond to RN and open circles correspond SFN. (B) The critical number of measurements needed to reconstruct the
matrix I without errors as a function of the network size N with k = 0.04N . In all cases the performances were obtained using WL1 prescription, equal a
priori probabilities (i.e. p+

ij = p−

ij = p0ij = 1/3 for all i and j), and a = 0.01.

a smaller number of predicted interactions, at a given significance level, than solutions obtained with higher α, even when
comparing solutions with a similar prediction error. Fig. 1(B) depicts the associated information gain Ig =

∑
i Ig(i|DM) as

a function of α. These curves almost follow the prediction error in a complementary way, i.e. Ig increases when the error
decreases, and saturates when the prediction error reaches zero, but it increases monotonically with α for large networks.
This fact suggests that Ig can be used to illustrate the performance of a given data set DM in the network inference process,
since its computation (see Eq. (9) does not require one to know the interactionmatrixW, in opposition to the ε computation.
The prediction error decays rapidly as α increases and the gene interaction matrix is completely recovered with a α value
that decreases with the network’s size. This performancewas obtained using theWL1 prescription. Similar simulations (data
not shown) performedwith theWL2 prescription reveal that, in these cases, the prediction error ε remains close to unit until
α = 1, where it decays abruptly. In the simulations it was observed that the mean performance depends on the network
size and the degree of connectivity k. Fig. 2(A) shows the dependence of the prediction error ε over the node degree k of two
kinds of networks: RN (filled squares) and SFN (open circles). Since no dependence on the network type was observed, for
the following steps, the RN type was used, which has a smaller variability than the SCN. In Fig. 2(B), we depict the critical
number of measurementMc required to recover the matrix I without error as a function of the network’s size N .

Many times, when dealingwith an incomplete data setM ≪ N , only a percentage of the interactions is inferred correctly.
If the likelihood of the inferred paths cannot be assessed, this partial reconstruction has a small predictive value in real
life. The methodology proposed here can assess the likelihood of the predicted interaction straightforwardly through the a
posteriori probability. In this sense, only those predicted interactions with an a posteriori probability that is greater than
some significance level can be selected. To illustrate this point, a networkwith 60 geneswith k/N = 0.05was simulated. The
related connectivitymatrixW is represented in Fig. 3(left), row i corresponds to the genes that regulate the activity of gene i,
while column j corresponds to the genes regulated by gene j. Theweight valueswij are depicted following a linear gray scale,
where white(black) corresponds to the maximum(minimum) values of weights, and the gray background represents the
absence of interaction. This network is randomly perturbedwithM = 20different experiments (α = 1/3).With this amount
of data, ε is usually around ∼0.03 (see Fig. 1). Nevertheless, in a real world problem one does not knownwhich interactions
were inferred correctly and which were inferred incorrectly. By means of the information theory approach, the a posteriori
probabilities were computed and the inferred interaction matrix I and the associated likelihood were derived. Fig. 3(right)
represents the inferred connectivitymatrix I, by assuming that all a priori probabilities are equal (i.e. p+

ij = p−

ij = p0ij = 1/3).
Circles indicate the interactionswith an a posteriori probability greater than 0.99. In this case there are 79 interactionswhose
associated a posteriori probabilities are greater than 0.99, and all these predictionswere correct. Fig. 4(A) depicts the number
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Fig. 3. Likelihood assessment. Left: connectivity matrix W representation related to a random network of 60 genes with k/N = 0.05. Rows correspond
to regulated genes, while columns correspond to the genes acting as regulators. The interaction weights wij are represented following a linear gray scale,
where white corresponds to wij = 2, while black to wij = −2. The gray background represents the absence of interaction, i.e. wij = 0. Right: gene
interaction matrix I inferred after 20 random perturbation experiments, using WL1 prescription, a = 0.01 and p+

ij = p−

ij = p0ij = 1/3. Circles indicate the
76 interactions with an a posteriori probability greater than 0.99. Wrong predictions (51, ∼1.5% of the putative interactions), which in this case correspond
to the regulatory inputs of three genes.

of interaction calls predicted correctly, with an a posteriori probability greater than a given threshold, relative to the total
number of interaction calls in the regulatory network as a function of the threshold for two different values of M (squares
M = 20 and circlesM = 10). These results suggest that gene networks can be partially recovered even with small amounts
of data, mainly for those genes that interact strongly. The a posteriori probabilities associated with the noninteraction were
slightly greater than 1/3 in most of the cases. In Fig. 4(B) we can see the number of noninteraction calls predicted wrongly,
with an a posteriori probability greater than a given threshold, relative to the total number of noninteraction calls in the
regulatory network as a function of the threshold for two different values ofM . We note that the performance of predictions
is different depending on whether it is an effective interaction or not.

Unfortunately, allmeasurements are subject to observational noise. Consequently, it is important to assess towhat extent
the performance of the inference procedure is affected by noise. To simulate this condition in the numerical experiment, the
available informationDM (both input and output) was corrupted by an additive Gaussian noisewithmean zero and standard
deviationη. This inference procedurewas performed for networkswithN = 60, under the same condition as for the previous
assessment (p+

ij = p−

ij = p0ij = 1/3 and a = 0.01). However, in this case the method based on the prescription of sparseness
assumed inWL1 could not correctly recover the gene interactionmatrix Iwhen the noise level was η = 0.3 (even for smaller
η). Left panels of Fig. 5 indicate the prediction error by using bothWL1 (black squares) andWL2 (gray circles) assuming that
the a priori probabilities for activation, repression or absence of interaction are equal. We have considered the prediction
error relative to interaction calls and to noninteraction calls separately in the top and bottom panels of Fig. 5, respectively.
For the nonsparse P0 (left panels) the prediction error of the interaction calls decreases as more data become available,
clearly theWL2 prescription has better performance thanWL1 in this case. On the other hand, the prediction power relative
to the noninteraction calls becomes worse when more data are added in the case of WL1 prescription and is null for the
WL2 prescription. However, the network can be partially reconstructed by using an alternative constraint of sparseness. This
alternative consists in introducing the knowledge of sparseness of the interaction matrix through the a priori probabilities.
This is achieved by setting p±

ij ≈ 0 in the inference procedure. Right panels of Fig. 5 depict the prediction error as a function of
α when the a priori probabilities were set to p±

ij = 0.025. The sum of these probability values corresponds to the percentage
of genes that are regulated by one gene. With such a priori information, it is possible to notably improve the performance
prediction of a false interaction at the expense of some performance in the prediction of the interactions. The mean node
degree of the network is generally not known in advance. However, the prediction ability is robust for underestimations of
the a prioriprobabilities. Simulations using sparser a prioriprobabilities, p±

ij = 0.01 for example, give almost the same results
(data not shown) as the last one. This implies that it is possible to partially recover the interaction matrix even with noisy
data, by setting low values for the a priori probabilities p±

ij . In the right panels of Fig. 5, the overall prediction performance
obtained by the WL2 prescription is comparable with that obtained by WL1 prescription using p±

ij ≈ 0, in contrast to the
case that deals with clean data. This is relevant because at low α values, the computational cost ofWL1 solution is very high.
Furthermore, when data are corrupted by noise, it was observed that the prediction error has a peak aroundα = 1. This peak
arises because, as consequence of additive noise, the pair X − B does not satisfy Eq. (2). Some values of the diagonal matrix
S become very small or zero as a consequence of the inconsistency in the equation system. Similar effects were reported in
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Fig. 4. Likelihood assessment corresponding to the example of Fig. 3. (A) Rate of interactions predicted correctly, with an a posteriori probability greater
than a given threshold, as a function of the threshold for M = 20 (squares) corresponding to the example of Fig. 3, and M = 10 (circles). (B) Rate of
noninteractions predicted wrongly, with an a posteriori probability greater than a given threshold, as a function of the threshold forM = 20 (squares) and
M = 10 (circles).

neural network learning [25]. One alternative to avoid this low performance could be the use of a technique borrowed from
the data compression field, which consists in approximating the matrix XT by a lower rank matrix [26,27].

The partial recovery referenced above does not pursue to recover a subnetwork, which mainly infers strong interactions
around the whole network. However, in many cases this is crucial to recovering the complete subnetwork associated with a
given gene or path of interest. Here the term subnetwork refers to a network formed by nodes connected between them, but
not connected, or weakly connected, to the other nodes of the whole network. The inference approach and information gain
tool presented in this study could be used to establish new relationships between genes and to propose new experiments.
By means of cycles of experiments-datamining, the knowledge about the subnetwork can be refined until its complete
recovery, even in the presence of observational noise. For that purpose the following protocol could be used: (i) perform
an initial perturbation where the gene of interest is overexpressed, and obtain the genome expression profile; (ii) compute
the information gain for each gene with these experimental data; (iii) select the genes for which the information gain is
greater than a given threshold; (iv) iterate the first two steps, perturbing each one of the genes that were selected in the
third step and have still not been perturbed, until no new gene has an information gain greater than the threshold. Fig. 6(A)
illustrates the result of three of these experiments-datamining cycles. First, the gene that belongs to the subnetwork of
interest, gene g1, is initially overexpressed (with a level of 10.0, while the other gene levels are randomly selected in the
range [−0.5, 0.5]). Then the input–output network ismeasured and thismeasurement is subject to observational noisewith
η = 0.30. The information gain of this experiment is computed for each geneusing p+

ij = p−

ij = 0.01 as an a prioriprobability.
Subsequently, those genes with Ig greater than 1.0 are selected. Ig suggests that gene g6 is regulated by g1. By repeating the
above step with gene g6, the results indicate that genes g2 and g3 are regulated by g6. The above step is repeated with gene
g2 and subsequent genes with high information gain values in ensuing experiments, until no new gene with an information
gain greater than the threshold appears. Fig. 6(B) illustrates a list of experiments where the first column corresponds to the
gene that was perturbed in the experiment, and the second column corresponds to the genes that appear to be regulated
by the perturbed gene. In the last two experiments no new regulated genes appeared (which were not indicated in the first
column list). The above analysis provides a causal link between two genes, but it does not indicate whether the regulation is
positive or negative. In order to extract this information, the inference analysis was performed using the ten overexpression
experiments pooled inDM (M = 10).When the inference procedurewas appliedwith these data, 19 out of 24 interactions in
the subnetwork were inferred correctly, 10 of themwith the a posteriori probability greater than 0.99. However, the a priori
probabilities provided by the information contained in the list of Fig. 5(B) are included. By setting p+

ij = p−

ij = 0.5 (or 1/3)
for all the pairs i, j indicated in the list, and p+

ij = p−

ij = 0.01 for the rest, 23 out of 24 interactions in the subnetwork
are inferred, 19 of them with an a posteriori probability greater than 0.99 (Fig. 6(C)). The performance obtained above
does not differ significantly if the inference procedure is implemented using WL2 or WL1 prescriptions. Nevertheless, WL2
is computationally cheaper than WL1 since the latter requires linear programming optimization. The above example about
subnetwork inference suggests that this novel scheme canbe reused to infer additional subnetworks until thewhole network
is recovered withM ≃ N experiments.
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Fig. 5. Inference using noisy data. Prediction error ε as a function of the ratio α for gene networks with 60 genes with k/N = 0.05. Both input and output
data are subject to observational noise of η = 0.30. The performances were obtained using both WL1 (black squares) and WL2 (gray circles) prescriptions
and a = 0.01. Top panels correspond to interaction calls while bottompanels correspond to noninteractions calls. In the left panels the a priori probabilities
are equal, i.e. p+

ij = p−

ij = p0ij = 1/3 for all i and j, while the a priori probabilities are set to be p+

ij = p−

ij = 0.025 and p0ij = 0.95 for all i and j.

4. Discussion and conclusions

Information theoretic principles have been applied to infer connections between the nodes of a gene regulatory network.
In particular it was postulated that estimating pairwise gene expression profiles can be useful to identify candidate
interactions. In this sense, the expression levels are considered as stochastic variables and used to compute the mutual
information between each pair of gene expression profiles. The prediction of this kind of approach (known as association
network approach) is limited to predicting an undirected graph [7]. Thus, this approach indicateswhether two genes interact
or not, but it is not able to determine who the regulated (or regulator) gene is, or whether the regulator is an activator
or an inhibitor. Between this kind of approach we can mention ARCANE [28]. The approach represented here is one step
further, because it allows predicting who the regulator is and which the nature of this regulation is (activator or repressor).
Interestingly the new approach could also integrate results previously obtained with ARACNE, by setting to zero all a priori
probabilities corresponding to putative interactions that were not predicted by ARACNE.

A novel approach for regulatory network inference is presented in this study. Unlike to other methods, this approach
pursues to infer the type of interaction rather than a weight that characterizes the interaction quantitatively. Three
main features of the proposed method are pointed out. First, it allows introducing global a priori information about the
network, such as sparseness and other gene-dependent available information, as illustrated in the last example (Fig. 6(C)).
Second, the information theory formalism provides a way to quantify the likelihood of the inferred paths, by using the a
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Fig. 6. Subnetwork identification. A: Information gain Ig obtained for three ‘‘overexpression experiments’’. First, the gene that belongs to the subnetwork
of interest, gene g1, is initially overexpressed, then the input–output network is measured, and this measurement is subject to observational noise of
η = 0.30. The information gain of this experiment is computed for each gene, and genes with Ig greater than a given threshold are selected. Ig suggests
that gene g6 is regulated by g1. Repeating the above step with gene g6, it appears that genes g2 and g3 are regulated by g6. The above step is repeated
with gene g2 and subsequent genes with high information gain values in subsequent experiments. B: List of experiments, the first column corresponds
to the gene that was overexpressed in each experiment, the second column corresponds to the genes that appear to be regulated by the overexpressed
gene. C: The subnetwork inferred 23 out of 24 interactions correctly (solid edges) by this inference procedure using WL2 prescription and the above ten
‘‘overexpression experiments’’ together. The information contained in list B was included as a priori probabilities, i.e. they were set to p+

ij = p−

ij = 0.5 and
p0ij = 0.0 for all i, j pairs indicated in the list, and p+

ij = p−

ij = 0.01 otherwise.

posteriori probabilities computed with the method. Last, but not least, the information theory formalism also quantifies the
information gained with the set of data to be used in the inference procedure. Furthermore, the present IT approach offers a
promising perspective as a network inference protocol, and themethodology presented here introduces an information gain
measure as a bonus. This study illustrates the way in which this quantity could be a useful tool to identify the downstream
regulated genes in overexpression experiments. This feature allows a datamining-assisted way of unravelling the whole
network with a number of experiments equal to the number of genes, even when dealing with a high level of observational
noise. This IT approach enables the effective use of all the available information, in which each experiment is used as an
individual constraint. Thus, the ensuing observation level becomes much richer than the standard one, where all the data
define a fitness function to be optimized. Efficient management leads to more realistic results in inference.

The learning protocol presented here constitutes an additional inference technique of interest not only for basic research
but also as an application for an very interesting real world problem without paying an excessive computational cost.

Acknowledgements

The author thanks Christina McCarthy for critical review of the manuscript. L.D. is researcher of CONICET (Argentina).

References

[1] T. Ideker, T. Galitski, L. Hood, A new approach to decoding life: systems biology, Annu. Rev. Genomics Hum. Genet. 2 (2001) 343–372.
[2] I.M. Tienda-Luna, Y. Yin, M.C. Carrion, Y. Huang, H. Cai, M. Sanchez, Y. Wang, Inferring the skeleton cell cycle regulatory network of malaria parasite

using comparative genomic and variational Bayesian approaches, Genetica 132 (2008) 131–142.
[3] T.S. Gardner, D. Di Bernardo, D. Lorenz, J.J. Collins, Inferring genetic networks and identifying compound mode of action via expression profiling,

Science 301 (2003) 102–105.



Author's personal copy

L. Diambra / Physica A 390 (2011) 2198–2207 2207

[4] J. Tegnér, J. Björkegren, Perturbations to uncover gene networks, TIG 23 (2007) 34–41.
[5] N.S. Holter, A. Maritan, M. Cieplak, N.V. Fedoroff, J.R. Banavar, Dynamic modeling of gene expression data, Proc. Natl. Acad. Sci. USA 98 (2001)

1693–1698.
[6] J. Tegnér, M.K. Yeung, J. Hasty, J.J. Collins, Reverse engineering gene networks, integrating genetic perturbations with dynamical modeling, Proc. Natl.

Acad. Sci. USA 100 (2003) 5944–5949.
[7] J.J. Faith, B. Hayete, J.T. Thaden, I. Mogno, J.Wierzbowski, G. Cottarel, S. Kasif, J.J. Collins, T.S. Gardner, Large-scalemapping and validation of Escherichia

coli transcriptional regulation from a compendium of expression profiles, PLoS Biol. 5 (2007) e8.
[8] J. Zola, M. Aluru, S. Aluru, Parallel Information Theory Based Construction of Gene Regulatory Networks, in: Lecture Notes in Computer Science, vol.

5374, 2008, pp. 336–349.
[9] D. Pe’er, A. Regev, G. Elidan, N. Friedman, Inferring subnetworks from perturbed expression profiles, Bioinformatics 17 (2001) S215–S224.

[10] D. Husmeier, Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks,
Bioinformatics 19 (2003) 2270–2282.

[11] M.J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, D.L. Wild, A Bayesian approach to reconstructing genetic regulatory networks with hidden factors,
Bioinformatics 21 (2005) 349–356.

[12] T. Akutsu, S. Miyano, S. Kuhara, Inferring qualitative relations in genetic networks an metabolic pathways, Bioinformatics 16 (2000) 727–734.
[13] P. D’haeseleer, S. Liang, R. Somogyi, Genetic network inference: from co-expression clustering to reverse engineering, Bioinformatics 16 (2000)

707–726.
[14] P. DH́aeseleer, X.Wen, S. Fuhrman, R. Somogyi, Linearmodeling ofMMA expression levels during CNS development and injury, Pac. Symp. Biocomput.

41 (1999) 52.
[15] E.P. van Someren, L.F. Wessels, M.J. Reinders, Linear modeling of genetic networks from experimental data, Proc. Int. Conf. Intell. Syst. Mol. Biol. 8

(2000) 355.
[16] E.P. van Someren, L.F.A. Wessels, E. Backer, M.J.T. Reinders, Genetic network modeling, Pharmacogenomics 3 (2002) 507–525.
[17] C.E. Shannon, W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Chicago, 1949.
[18] E.T. Jaynes, Information theory and statistical mechanics II, Phys. Rev. 108 (1957) 171–190.
[19] T. Lezon, J. Banavar, M. Cieplak, A. Maritan, N.V. Fedoroff, Using the principle of entropymaximization to infer genetic interaction networks from gene

expression patterns, Proc. Natl. Acad. Sci. USA 103 (2006) 19033–19038.
[20] O.Martínez, M.H. Reyes-Valdés, Defining diversity, specialization, and gene specificity in transcriptomes through information theory, Proc. Natl. Acad.

Sci. USA 105 (2008) 9709–9714.
[21] Y. Wang, T. Joshi, X.-S. Zhang, D. Xu, L. Chen, Inferring gene regulatory networks from multiple microarray datasets, Bioinformatics 22 (2006)

2413–2420.
[22] M.K. Yeung, J. Tegner, J.J. Collins, Reverse engineering gene networks using singular value decomposition and robust regression, Proc. Natl. Acad. Sci.

USA 99 (2002) 6163–6168.
[23] R.D. Levine, M. Tribus, The Maximum Entropy Principle, MIT Press, Boston MA, 1978.
[24] A.L. Barabasi, R. Albert, H. Jeong, Mean-feld theory for scale-free random networks, Physica A 272 (1999) 173–187.
[25] T. Watkin, A. Rau, M. Biehl, The statistical mechanics of learning a rule, Rev. Mod. Phys. 65 (1993) 499–556.
[26] C.D. Cantrell, Modern Mathematical Methods for Physicists and Engineers, Cambridge University Press, Cambridge, 2000, page 514.
[27] J.J. Wei, C.J. Chang, N.-K. Chou, G.J. Jan, ECG data compression using truncated singular value decomposition, IEEE Trans. Inform. Technol. Biomed. 5

(2001) 290–299.
[28] J. Watkinson, K.C. Liang, X. Wang, T. Zheng, D. Anastassiou, Inference of regulatory gene interactions from expression data using three-way mutual

information, Ann. NY Acad. Sci. 1158 (2009) 302–313.


