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Abstract
We explore quantum uncertainty relations involving the Fisher information
functionals Ix and Ip evaluated, respectively, on a wavefunction �(x) defined
on a D-dimensional configuration space and the concomitant wavefunction
�̃(p) on the conjugate momentum space. We prove that the associated Fisher
functionals obey the uncertainty relation IxIp � 4D2 when either �(x) or
�̃(p) is real. On the other hand, there is no lower bound to the above
product for arbitrary complex wavefunctions. We give explicit examples of
complex wavefunctions not obeying the above bound. In particular, we provide
a parametrized wavefunction for which the product IxIp can be made arbitrarily
small.

PACS number: 03.65.Ta

1. Introduction

The application of Fisher’s information measure to the analysis of diverse physical systems
and processes has been an active field of research in recent years [1–25]. Fisher’s measure
has been applied to the study of a variety of subjects, ranging from black hole physics [5] and
the characterization of the arrow of time in irreversible processes [6, 7] to avoided crossing
phenomena [23] and the information–theoretical aspects of chemical reactions [24]. Various
recent developments indicate that Fisher’s information plays a fundamental role in quantum
mechanics and its applications [1–4, 10–25]. In particular, it allows for the formulation of
new quantum uncertainty principles [17–21].

Uncertainty relations have played a distinguished role in the historical development of
quantum mechanics and constitute a basic ingredient of its conceptual foundations [26–28].
In addition to the standard variance-based uncertainty relations, new uncertainty relations
formulated in terms of Shannon’s and other entropic measures (such as Rényi’s and Tsallis’)

1751-8113/11/065301+09$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/44/6/065301
mailto:pablos@ugr.es
mailto:arplastino@ugr.es
mailto:dehesa@ugr.es
http://stacks.iop.org/JPhysA/44/065301


J. Phys. A: Math. Theor. 44 (2011) 065301 P Sánchez-Moreno et al

have been proposed (see [29–31] and references therein). Uncertainty relations entirely based
upon Fisher’s information have also been advanced, but most of them apply only to the
eigenstates of particular systems [17–21]. The main motivation behind these undertakings is
the following. The form of Fisher’s functional distinguishes it as a very special uncertainty
measure. In contrast to ‘global’ ways of characterizing uncertainty (such as those provided by
the variance, or by Shannon’s entropy), Fisher’s information depends not only on the relevant
probability density ρ, but also on its gradient. Consequently, Fisher’s information is strongly
sensitive to the local oscillatory character of ρ. It would be of considerable interest to obtain
universal uncertainty relations based upon the Fisher informations Ix and Ip, respectively,
evaluated on the conjugate position and momentum spaces. A first step towards this end was
recently done in [21], where it was proved that all real, even, one-dimensional wavefunctions
�(x) comply with the uncertainty relation:

IxIp � 4. (1)

The aim of this effort is to establish a substantial generalization of that result. We are
going to prove that quantum states described by a wavefunction �(x), x ∈ R

D , satisfy the
uncertainty relation:

IxIp � 4D2, (2)

when either �(x) or the corresponding momentum–space wavefunction �̃(p) is real. We shall
also prove that this result cannot be extended to general (complex) wavefunctions.

This paper is organized as follows. In section 2, we briefly review the main expressions
for the Fisher measures position and in momentum spaces. In section 3, we derive an
uncertainty principle based on the above-mentioned Fisher functionals. This principle is
valid for quantum states of a spinless particle in D dimensions and having a real position
wavefunction or, alternatively, a real momentum wavefunction. In section 4, we provide
examples of complex wavefunctions not complying with this Fisher uncertainty principle.
Finally, some conclusions are drawn in section 5.

2. Fisher’s information in position and momentum spaces

The Fisher information Iθ corresponding to a family of probability densities F(x; θ) defined
on R

D and depending on a parameter θ is given by [1, 2]

Iθ =
∫

1

F(x; θ)

(
∂F

∂θ

)2

dx, (3)

where dx = ∏D
k=1 dxk is the volume element in R

D . When dealing with a probability density
F(x; θ̄ ) depending on a set of parameters θ̄ = (θ1, . . . , θm) one defines a Fisher matrix with
matrix elements:

Ijk =
∫

1

F
(
x; θ̄

) (
∂F

∂θj

)(
∂F

∂θk

)
dx. (4)

Of special importance are the translational families of probability densities having the form

F(x − θ̄ ), (5)

with θ̄ ∈ R
D . All the members of such a family of probability densities share the same shape

and differ only on a shift given by the vector θ̄ . In this case the elements of the Fisher matrix
are Ijk = ∫

1
F

(
∂F
∂xj

)(
∂F
∂xk

)
dx. The trace of this Fisher matrix, given by

I =
∫

1

F

[
D∑

k=1

(
∂F

∂xk

)2
]

dx (6)
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is of particular relevance for the study of information theoretical aspects of wavefunctions in
quantum mechanics. This information measure proved to be a very useful indicator of the
uncertainty of the probability densities associated with quantum mechanical wavefunctions,
because it takes into account local features of these densities [17–25]. The Fisher measure
(6), and the analogous measure defined in momentum space, are the natural ones for the
formulation of uncertainty relations for quantum systems with a D-dimensional configuration
space, and are the ones that we are going to consider in this study.

Let us consider a normalized wavefunction �(x) defined on a D-dimensional configuration
space characterized by the vector position x ∈ R

D . The corresponding momentum–space
wavefunction is then given by

�̃(p) = 1

(2π)D/2

∫
exp(−ix · p)�(x) dx, (7)

where we have set h̄ = 1. The associated probability densities in both position and momentum
spaces are, respectively,

ρ(x) = |�(x)|2,
ρ̃(p) = |�̃(p)|2, (8)

with the corresponding Fisher measures respectively given by

Ix =
∫

1

ρ
[∇xρ]2 dx = 4

∫
[∇xu]2 dx (9)

and

Ip =
∫

1

ρ̃
[∇pρ̃]2 dp = 4

∫
[∇pũ]2 dp, (10)

where ∇x = (
∂

∂x1
, . . . , ∂

∂xD

)
and ∇p = (

∂
∂p1

, . . . , ∂
∂pD

)
are, respectively, the D-dimensional

∇-operators in position and momentum space, dp = ∏D
k=1 dpk , u(x) = |�(x)|, and

ũ(p) = |�̃(p)|. From here on we shall drop the subindex ‘x’ from the ∇-operator in position
space.

3. An uncertainty relation based upon Fisher’s information

In this section we are going to derive an uncertainty principle based upon the Fisher measures
Ix and Ip. More specifically, we are going to show that the product IxIp admits a non trivial
(that is, non zero) lower bound when either �(x) or �̃(p) is real. We shall assume that all the
integrals appearing in the derivations that follow converge. In particular, we shall assume that
Ix and Ip adopt finite values.

Let us consider first the case of a real momentum wavefunction:

�̃(p) = �̃∗(p). (11)

The momentum Fisher measure is then

Ip = 4
∫

[∇p�̃]2 dp = −4
∫

�̃∇2
p�̃ dp, (12)

where the last equality was obtained by integrating by parts (we assume that �̃ → 0 fast
enough when |p| → ∞, so that the surface terms appearing when integrating by parts vanish).
Now, in the momentum representation (7) the position observable xk is represented by the
operator

i
∂

∂pk

. (13)

3



J. Phys. A: Math. Theor. 44 (2011) 065301 P Sánchez-Moreno et al

Therefore, taking (11) into account, it is plain that the last expression for Ip appearing in
equation (12) is proportional to the expectation value of the Hermitian operator corresponding
(in the momentum representation) to the observable

x2 =
D∑

k=1

x2
k . (14)

That is,

Ip = 4〈x2〉. (15)

Consequently, the minimum value Gmin. adopted by the functional

G = 4〈x2〉Ix = 16

[∫
u2(x)x2 dx

] {∫
[∇u]2 dx

}
, (16)

when minimized over all functions u(x) complying with the normalization condition∫
u2(x) dx = 1, (17)

provides a lower bound for the possible values adopted by the product IxIp when �̃(p) is real.
Before considering the minimization of (16) under constraint (17) it is important to realize

that the functional G is invariant under the re-scaling transformation:

u(x) −→ uλ(x) = λD/2u(λx). (18)

Indeed, under transformation (18) the quantities 〈x2〉 and Ix scale as

〈x2〉[uλ] = λ−2〈x2〉[uλ=1]

Ix[uλ] = λ2Ix[uλ=1],
(19)

which leaves the product 〈x2〉Ix invariant. Due to this invariance, the minimum value adopted
by G does not change if, besides normalization, we incorporate a second constraint of the form∫

x2u2(x)dx = b, (20)

where b is some constant. But now, the minimization of G under constraints (17) and (20) is
tantamount to the minimization of Ix under these two constraints. This constrained variational
problem can be tackled with the method of Lagrange multipliers, which leads to the variational
equation:

δ

{
4
∫

[∇u]2 dx + α

[∫
u2(x) dx − 1

]
+ β

[∫
x2u2(x) dx − b

]}
= 0, (21)

where α and β are the Lagrange multipliers corresponding to the normalization and 〈x2〉
constraints, respectively. The Euler–Lagrange equations associated with the variational
problem (21) are

D∑
k=1

∂

∂xk

(
∂L
∂wk

)
− ∂L

∂u
= 0, (22)

where (wk, k = 1, . . . , D) are the components of the vector w = ∇u and the Lagrangian
density L is given by

L(u, w, x) = 4w2 + αu2 + βx2u2. (23)

The Euler–Lagrange equations (22) can be cast under the guise of a Schrödinger equation:

− 1
2∇2u(x) + V (x) u(x) = − 1

8 αu(x) (24)
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characterized by the potential function

V (x) = 1
8βx2. (25)

The optimum function um(x) (that is, the one minimizing the quantity G defined in equation
(16) under the normalization constraint or, equivalently, the one minimizing Ix under the
constraints given by normalization and 〈x2〉) corresponds to the ground state of potential (25):

um(x) = 1(
π1/2a

)D/2 exp[−x2/(2a2)], (26)

where

a =
(

4

β

)1/4

. (27)

Note that the Lagrange parameter β must be positive in order to obtain a function that complies
with the normalization constraint. Finally, for the Gaussian wavefunction (26) we have

Ix[um]Ip[um] = 4D2. (28)

Consequently, if �̃(p) is real we have IxIp � 4D2. It is clear that, due to the dual relationship
between the x-representation and the p-representation, a similar argument holds in the case
that the position–space wavefunction �(x) is real. Note that, in order to obtain the lower
bound for IxIp, we only need to consider the ground state solution of the Schrödinger
equation (24). Any solution corresponding to an excited state leads to a larger value of
IxIp.

Summing up, we have proved that if either the momentum–space wavefunction �̃(p) or
the position–space wavefunction �(x) is real, then the associated Fisher measures satisfy the
Fisher-based uncertainty relation:

IxIp � 4D2. (29)

By recourse to the identity Ix + Ip � 2
√

IxIp one can see that relation (29) also implies the
uncertainty inequality

Ix + Ip � 4D. (30)

Finally, let us say for the sake of completeness that the uncertainty relation (29) was
previously found to hold for the particular case of eigenfunctions of central potentials
[17–20].

4. General wavefunctions

The results reported in the previous section suggest the natural next step of considering the
behaviour of the product Ix Ip for general wavefunctions. As we will soon see, this product can
be made arbitrarily small in the general case. We are now going to consider some particular
examples where the aforementioned product does not comply with the uncertainty inequality
(29).

4.1. Linear combinations of a finite number of Hermite wavefunctions

As a first example let us consider the bi-parametric family of wavefunctions:

ψ(x) = 1

π
1
4

e− x2

2

(
a0H0(x) + a1

1√
2
H1(x)

)
, (31)
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where the Hn(x) stand for the Hermite polynomials and

a0 = ε0 + i
√

3
4 − ε2

0 ,

a1 = ε1 + i
√

1
4 − ε2

1 ,

(32)

with ε0 and ε1 real. Note that |a0|2 + |a1|2 = 1 (that is, wavefunction (31) is properly

normalized) if ε0 �
√

3
4 and ε1 � 1

2 . It is possible to find values of ε0 and ε1 such that
IxIp < 4. For instance, if ε0 = 0.3 and ε1 = 0.4, we obtain Ix 
 2.22, Ip 
 1.68, and

IxIp 
 3.73 < 4. (33)

Let us consider now the linear space spanned by n one-dimensional Hermite
wavefunctions. That is, we consider wavefunctions of the form

ψn(x) = 1

π
1
4

e− x2

2

n∑
k=0

ak

1√
2kk!

Hk(x), (34)

where ak are complex coefficients such that
∑n

k=0 |ak|2 = 1. Wavefunctions of the form
(34) are not solutions of any specific, single Schrödinger equation. They constitute a linear
subspace of the general space of normalized wavefunctions �(x) with x ∈ R. Our purpose
now is to determine the fraction Fn of states in this space that do not satisfy inequality (29)
(with D = 1).

To evaluate the fraction Fn we use a numerical Monte Carlo approach. We generate
random states in the above space, uniformly distributed according to the Haar measure (see
[32, 33] and references therein) and compute, for different values of n, the fraction Fn of states
satisfying IxIp < 4. In other words, we generate a large number An of n-tuples (a1, . . . , an)

(that is, a large number An of states of the form (34)) and determine how many of them
do not comply with the inequality IxIp � 4. The numerical estimate of Fn is then given
by Fn ≈ Bn/An, where Bn is the number of generated states violating this inequality (one
always has, of course, that 0 � Bn � An). The details of the procedure for generating
the aforementioned An sets of coefficients ak are as follows. Let us first write the complex
coefficients ak as ak = rk exp(iαk), with rk, αk real, rk � 0, and αk ∈ [0, 2π). To generate
each set of complex coefficients (a1, . . . , an) we have to generate the n moduli (r1, . . . , rn) and
the n phases (α1, . . . , αn). The n numbers (r1, . . . , rn) can be regarded as the coordinates of a
point on the positive hyperoctant of the hypersphere defined by the equation r2

1 + · · · + r2
n = 1.

To generate a set (r1, . . . , rn) is tantamount to generating a point on the above hyperoctant.
On the basis of this geometric representation, the n-tuples (r1, . . . , rn) are generated randomly
according to a uniform distribution on the surface of the above-mentioned hyperoctant. On the
other hand, each of the phases αk are randomly generated according to a uniform distribution
on the interval [0, π).

The values of Fn corresponding to different values of n are given in table 1. An interesting
trend observed in this table is that Fn decreases quickly as n increases. Indeed, the results of our
Monte Carlo study suggest that Fn decreases exponentially with n. This numerical evidence
motivates us to make the conjecture that the fraction Fn of states violating the uncertainty
relation (29) actually tends to zero when n → ∞.

6



J. Phys. A: Math. Theor. 44 (2011) 065301 P Sánchez-Moreno et al

Table 1. Ratio Fn as a function of n.

n Fn

2 0.33 ± 0.01
3 0.092 ± 0.009
4 0.030 ± 0.005
5 0.0093 ± 0.0009
6 0.0025 ± 0.0006

4.2. Time-dependent Gaussian wavepacket

Now we are going to discuss a particular example where the product Ix Ip adopts arbitrarily
small values. Let us consider a time-dependent, one-dimensional Gaussian wavepacket �(x, t)

evolving according to the free-particle time-dependent Schrödinger equation:

i
∂�

∂t
= −1

2

∂2�

∂x2
, (35)

corresponding to a particle of unit mass (for a detailed discussion on time-dependent Gaussian
wavepackets see [34]). We assume the following initial (that is, corresponding to t = 0)
wavefunctions in position and momentum spaces:

�(x, 0) =
(

1


√

π

)1/2

exp(−x2/(22))

�̃(p, 0) =
(

√
π

)1/2

exp(−2p2/2),

(36)

with  > 0. The time-dependent solution �(x, t) to Schrödinger’s equation (35)
corresponding to the initial conditions (36) is then

�(x, t) =
(

1


√

π(1 + it/2)

)1/2

exp

(
− x2

22
(
1 + it/2

)
)

. (37)

The time-dependent wavepacket (37) has group velocity equal to zero. The corresponding
probability density in position space is

ρ(x, t) = 1


√

π(1 + t2/4)
exp

(
− x2

2
(
1 + t2/4

)
)

. (38)

On the other hand, due to the fact that momentum is conserved during free particle motion,
the probability density in momentum space remains constant in time and is given by

ρ̃(p) = √
π

exp(−2p2). (39)

Evaluating now the product of the Fisher information associated with the probability densities
(38) and (39) we obtain

IxIp = 4

(
1 +

t2

4

)−1

. (40)

We can see that IxIp < 4 when t > 0. In other words, wavefunction (37) does not satisfy the
uncertainty relation IxIp � 4D2 when t > 0. Moreover, IxIp → 0 when t → ∞.
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5. Conclusions

We have investigated quantum uncertainty relations expressed in terms of the Fisher
information measures Ix and Ip, respectively, evaluated on a wavefunction �(x) defined on a
D-dimensional configuration space and on the associated wavefunction �̃(p) on the conjugate
momentum space. Generalizing previous results recently presented in the literature, we proved
that the above-mentioned Fisher functionals satisfy the uncertainty relation IxIp � 4D2 when
either �(x) or �̃(p) is real. On the other hand, we have shown that the product IxIp does not
admit a non-trivial lower bound in the case of arbitrary, complex wavefunctions. In point of
fact, we provided an explicit example of a parameterized wavefunction for which the product
IxIp can be made arbitrarily small.

Our present findings unify and generalize previously reported results that apply only to
the eigenfunctions of particular systems [17–21], or to real wavefunctions satisfying special
requirements (such as, for instance, being even [21]). It is worth stressing, however, that in
some special cases it is possible to obtain lower bounds to IxIp that are stronger than the
general ones derived here. Indeed, in the case of the eigenfunctions of spherically symmetric
potentials there is a better (that is, higher than 4D2) bound to the product of the Fisher measures
in position and momentum spaces [17–20].

As a final remark, it is worth mentioning that the real-valued character of either the
wavefunction in position space or the one in momentum space that we assumed in order to
derive the inequality IxIp � 4D2 is, strictly speaking, only a sufficient condition to have this
relation, but not a necessary one. In fact, the numerical study described in section 4.1 indicates
that there are actually plenty of complex wavefunctions complying with the above inequality.
Consequently, it may be the case that the validity of our present uncertainty relation may be
extended to incorporate more general (complex) wavefunctions satisfying some appropriate
(yet to be discovered) conditions. This means that our inequality IxIp � 4D2, as referred to
real �(x) or real �̃(p), may not be the most ‘universal’ uncertainty relation expressible as a
lower bound to the product of the Fisher measures Ix and Ip. Any further research conducted
along these lines will be welcomed.
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