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Surface grown by the deposition of rigid and wetting clusters has been investigated using Monte Carlo simula-
tions in 1 + 1 dimensions. Dynamic scaling exponents were determined using the time evolution of the rough-
ness, the local width, the height–height correlation function, and the power spectrum. The values obtained
for the roughness exponent clearly reflect the growth mechanism adopted for deposition. In the case of wetting
clusters, the roughness exponent corresponds to that of random deposition, but a correlation appears for low
window size, with a crossover that is related to the average cluster size and cluster size distribution. On the
other hand, rigid cluster deposition belongs to the KPZ universality class. However, determined scaling exponents
converge very slowly to those corresponding to KPZ.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The kinetic roughening of thin-film growth fronts under non-
equilibrium conditions has attracted considerable interest due to their
wide application in critical components for electronic, magnetic, and
optical devices [1]. The functionality of these films is determined by
their physical structure, in particular the surface roughness and the
grain size distribution in the case of polycrystalline films. A complete
characterization of the surface and the microstructure can provide a
deeper understanding of the processes that drive the physical evolution
during film formation. In many cases, the dynamics of the growing film
leads to spread correlations over the whole system and produce scale
invariant surfaces that are described by the Family–Vicsek ansatz
[2–5]. Depending on the growing mechanisms, the resulting surface
evolution can be determined as belonging to distinct universality clas-
ses. Thus, measuring the set of scaling exponents for a particular system
allows to associate it with some universality class and consequently
with a dominant growing mechanism.

Randomdeposition of agglomerated particles (clusters) is one of the
commonly usedmethods in the fabrication of nanostructuredmaterials.
Since clusters at the surface occupy more than one unit size, depending
on the deposition mechanisms, a porous bulk can be generated. This
property is desirable in manufacturing nanostructured materials for
many applications, such as magnetic storage and solar cells [6,7]. In
the past, a lot of work has been devoted to study the deposition of par-
ticles. However, less attention has been paid to the cluster incorporation
process, but at least two different universality classes were reported
[8–10].

In the present work, we report a dynamic scaling analysis of a sur-
face formed by deposition of clusters onto a one-dimensional substrate.
We studied two types of cluster incorporation mechanisms, one in
which the clusters fall randomly and wet the surface copying its profile,
and the resulting aggregate is not porous. Hereafter, wewill refer to this
model as wetting cluster deposition (WCD). The second model deals
with rigid clusters that stick at the first point of contact and do not
change their shape after their incorporation to the substrate, generating
a porous deposit. Hereafter, we will refer to this model as rigid cluster
deposition (RCD).We also studied the effects of the cluster size distribu-
tion on the scaling exponents.

Hellmut Haberland and co-workers have investigated the structure
of thin films grown by energetic cluster impact deposition [11]. In this
technique, ionized metal clusters are electrically accelerated onto the
substrate. It has been observed that the final film morphology depends
on the deposition parameters, such as the size and the incident energy
of the clusters. In particular, the increase of the cluster impact energy
leads to the formation of more compact films. They found a transition
from a porous film with multiple voids to a dense film with a nearly
bulk density as the incident energy is increased from 0.1 eV/atom
to 10 eV/atom [12]. For low kinetic energies, clusters stick at the first
point of contact, resembling a ballistic deposition. For high-impact en-
ergies, incident clusters lead to a redistribution of atoms in which the
substrate atoms are involved, a smoother resulting surface, and then
the Edwards–Wilkinson class is expected. At intermediate energies, im-
pinging clusters wet the surface without affecting the substrate atoms,
as seen in Ref. [12] for Mo clusters. In this case, we expect that this
technique resembles the WCD. Softer metals are prone to wet the sur-
face after landing. Indeed, in Refs. [13] and [14] it can be seen that Al
and Cu clusters with very low kinetic energy incorporate to the surface
without the generation of voids and no intermixing resembling the
WCD.

To obtain the scaling exponents for the rigid cluster deposition
(RCD), we calculated the interface width, W(L,t) and also the local
width (LW), the height–height correlation function (HHCF), and
the power spectrum (PS). The local surface roughness w(l,t), which
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represents height fluctuations in different length scales, shows a cross-
over related to the cluster lateral size, giving rise to a small-scale
roughness exponent that differs from the global one [15,16]. Also, for
distances smaller than the mean cluster size, we found different values
for the roughness exponents, obtained from HHCF and LW, whereas for
large distances, the exponents have the same values and are determined
by the growthmechanism adopted for deposition, as reported in Refs. 9
and 10. For rigid clusters, the scaling exponents converge very slowly to
those of KPZ universality class for very large system sizes [8], whereas
forwetting cluster deposition (WCD), the scaling exponents correspond
to those of random deposition but a correlation appears at small scale
due to cluster finite size.

2. Dynamic scaling framework

Themost obvious quantitative characteristic of a rough surface is the
root-mean square of the height field, known as the surface width or
roughness

W L; tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

XL
i¼1

h i; tð Þ−h tð Þ
h i2vuut ; ð1Þ

where h(i,t) is the surface height measured from the flat substrate of

size L at the position i at the time t, and hðtÞ is the mean height of the
interface at the same time.

Family and Vicsek proposed a scaling relation that connects the sur-
face roughness with the linear size of the lattice and time [3]. This scal-
ing relation, applicable to a large number of growthmodels, iswritten as

W L; tð Þ � Lα f t=Lz
� �

; ð2Þ

where the scaling function f(u) is a function that behaves asuβ for u b b1
and as a constant for uN N 1. The parameters α and β are the roughness
and growth exponents, respectively, and z= α/β is the dynamic scaling
exponent. α and β constitute a pair of numbers that can be used to clas-
sify quantitatively the spatial and temporal scaling of growing surfaces
and then to identify the growth process.

On the other hand, quantitative information about the height fluctu-
ations and lateral correlation is given by the height–height correlation
function HHCF

C l; tð Þ ¼ h xþ l; tð Þ−h x; tð Þð Þ2
D E1=2

: ð3Þ

C(l) constitutes a quantitative description of how the heights at dif-
ferent points of the surface are correlated as a function of their separa-
tion. For a self-affine surface, C(l,t) scales with l as

C l; tð Þ≈ lα f t=lz
� �

; ð4Þ

Another important quantity to characterize the surface growing pro-
cess is the local interface width w(l,t) defined as

w l; tð Þ ¼ 1
l

h2 x; tð Þ− h x; tð Þh i
� �2

� �1=2

: ð5Þ

It is well known that w(l,t) scales as

w l; tð Þ � tβ ; for t bb lz; and
w l; tð Þ � tα ; for t bb lz;

ð6Þ

where l is the window size.
Finally, other convenient way of summarizing data is the spectral

power density or structure factor

S k; tð Þ ¼ h k; tð Þh −k; tð Þh i; ð7Þ
being h(k,t) the kth Fouriermode of the surface height deviation around
its spatial average for a given time t

h k; tð Þ ¼ 1

L1=2
X
x

h x; tð Þ−h tð Þ
h i

exp ikxð Þ: ð8Þ

The structure factor scales as

S k; tð Þ ¼ k− 2αþ1ð Þg t=k−zÞ� �
: ð9Þ

For u b b1 g(u) = u(2a + 1)/z and for uN N 1 g(u) = constant, and
then

S k; tð Þ � k− 2αþ1ð Þ u bb1
S k; tð Þ � t 2αþ1ð Þ=z u bb1

ð10Þ

Surface structures that preserve a similarmorphology upon a change
of magnification are termed self-affine and obey the well-known
Family–Vicsek (FV) scaling ansatz, which plays a central role in growth
theories [2–4]. However, not all systems exhibit FV scaling. For instance,
it has been reported that the formation of features during etching orfilm
growth by grains leads to a more complex roughening process [16,17].
On the other hand, an evolving pattern can show different scaling at
the global and at the local length scales. Thus, a common set of scaling
parameters is no longer adequate to characterize the dynamic behavior
at different scales and additional exponents are needed to fully charac-
terize the observed growth [18–21].

3. Monte Carlo modeling

We performed simulations using the standard Monte Carlo method
in 1D. The surface is represented by a one-dimensional vector where
each element corresponds to the height at each site. To study the
dynamic scaling exponents, we used clusters of size N × N (a square)
and 1 × N (a horizontal rod). The deposition process starts building a
cluster and choosing a site at random (i) over de surface. We evaluated
two types of aggregationmechanisms. One inwhich the arriving cluster
can disassemble, and it changes its shape by copying the surface profile.
All sites between i and i + N grow the cluster original height, and the
growth is conservative (WCD model). The second model corresponds
to rigid clusters in which they land atop of the highest surface site be-
tween i and i + N, giving rise to a non-conservative growth. If the site
j, with i ≤ j ≤ i + N, presents the local highest site h(j), then the cluster
incorporation at the surface, for a horizontal rod, takes place changing
the heights of all sites, from i to i+N to h(j)+ 1 (RCDmodel). A similar
process is used for the deposition of a cluster of size N × N but finally
the heights of all sites from i to i+N are changed to h(j)+N. Other pro-
cesses, such as rearrangement of surface particles (diffusion) or detach-
ment, are not allowed.

Fig. 1 depicts the studied models. In the RCDmodel, once a cluster is
in contact with a particle of the substrate, it is incorporated without
changing its shape. In Fig. 1a, two clusters consisting of four particles,
of 2 × 2 and 1 × 4, are shown after arriving to the surface in their final
position. Conversely, in the WCD model, arriving clusters are incorpo-
rated to the aggregate by wetting the surface. This means that the
particles of the cluster can move down until making contact with a
particle of the substrate. In Fig. 1b, the final aggregate morphology is
depicted after the incorporation of two clusters as in Fig. 1a but using
the rules of the WCD model.

The simulation starts from a flat substrate configuration and evolves
with successive deposition of clusters until it approaches steady state.
One Monte Carlo time corresponds to the deposition of one monolayer
of particles. We checked that steady state was reached by assessing
the evolution of the surface roughness. Monte Carlo simulations were



Fig. 1. Studied models. (a) Rigid cluster deposition model in which clusters are incorpo-
rated to the aggregate keeping their shape, as they make contact with the substrate. This
type of deposition leads to a non-conservative growth as voids develop. (b) Wetting
cluster deposition model in which every particle of the cluster can move down until
making contact with the substrate.
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carried out for systems of different lengths and periodic boundary
conditions were used to avoid edge effects.

4. Results and discussion

Fig. 2 shows the HHCF and LW for the WCD model after the depo-
sition of 1000 ML through clusters of size 1 × 10 on a substrate of
L = 2000. As can be seen, both functions present a crossover that de-
fines two regimes with different growth exponents, which is due to
the cluster lateral size. For large window sizes, both functions have
zero slope (uncorrelated), they are independent of l, as expected for a
random deposition. At small scale the initial slopes are χ1 = 0.5 and
Fig. 2.Height–height correlation function and local roughness for theWCDmodel after the
deposition of 1000 ML in rods of size N = 10 on a substrate of L = 2000. Crossovers are
related to the rod size; the one corresponding to the HHCF matches it. The inset shows
the resulting morphology that is correlated at short distances.
α1 = 0.6 for HHCF and LW, respectively. Interestingly, for the WCD
model, this is not the result of a geometric effect of the grainy surface
and the sliding window method, but due to the fact the surface sites
under the cluster grow simultaneously [11]. Note that the crossover in
the HHCF directly reflects the size of the clusters while for the LW the
determined crossover is about 26, more than twice the cluster size.

The inset of Fig. 2 shows the resulting surface morphology (not in
scale). As rodswet the surface, there is no trace of them at first sight. In-
terestingly, the HHCF and the LW show that close sites are correlated
because the deposition is not random for distances smaller than the
cluster size. In Ref. 15, a clustered surface is obtained by growing the
film using a random deposition and then enlarging the size of each par-
ticle by a factor l. The resulting substrate ends up with a collection of
terraces of size l. It is then obvious to see the correlationwith a direct as-
sess of the profile. Conversely, the resulting surface profile for the WCD
does not seem to be correlated. However, the typical analysis used in
growth dynamics reveals that we are dealing with a correlated surface.
Interestingly, the local roughness exponent reported in Ref 15 α1 = 1 is
not the same for the WCD α1 ≈ 0.6.

Given the direct relation between the cluster size and the crossover
in the HHCF, we studied the effect of having a mixture of clusters with
two different sizes. In Fig. 3, we present the HHCF for the WCD model
after the deposition of a mixture of rods of size 10 and 20. We define
the parameter ρ, the ratio between the probability of depositing clusters
of size 20 over the probability of depositing clusters of size 10. For
comparison, we reproduce the results of Fig. 2, rods all of the same
size N = 10, curve for ρ = 0. The curve for ρ = 0.5 corresponds to the
deposition of a cluster mixture having 50% of rods with size N = 10
and 50% of rods with size N= 20. A first analysis shows that the cross-
over appears at lc≈ 18, which indicates a strong influence of large rods.
However, a more careful examination of Fig. 3 shows that there are two
defined slopes for l ≤ 20 and that lc ≈ 20 for any value of ρ. It was found
that for l ≤ 10, the slope is χ1 = 0.5, as for ρ = 0, while in the range
10 ≤ l ≤ 20, the HHCF adopts a smaller slope that directly depends
on ρ. This is apparent in the left inset of Fig. 3 showing the HHCF nor-
malized to the same final value in the range (10, 20) for three different
mixtures of rods of sizes 10 and 20. In the right inset, the value of the
slope in the range 10 ≤ l ≤ 20 as a function of the mixture parameter ρ
is presented.
Fig. 3. Height–height correlation function for the WCD model after the deposition of a
mixture of rods of size 10 and 20 for three values of ρ, the ratio between the probability
of depositing clusters of size 20 over the probability of depositing clusters of size 10. An
effective crossover of 18 can be determined for ρ = 0.5. The left inset shows that, in
fact, there are two defined slopes for l ≤ 20 and that lc ≈ 20 for any value of ρ. The
right inset shows the value of the slope in the range 10 ≤ l ≤ 20 as a function of the mix-
ture parameter ρ.



Fig. 5. Temporal evolution of the surface roughness W(t), for a random deposition of
1 × 10 clusters and different system sizes ranging from L = 130 up to 4000. As can be
seen, there are two regimes before saturation cause by system finite size, one for short
times where β1 = 0.51 corresponding to random deposition, and a second β2 = 0.28.
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We also studied for theWCDmodel the effects of depositing rods of
different size. Fig. 4 shows the HHCF after the deposition of clusters
with an exponential size distribution and average size equals to 10.
Interestingly, the effective crossover adopts a value of about 15, higher
than that corresponding to the average cluster size of N = 10 (curve
labeled Rods 1). This indicates that the presence of large clusters, de-
spite their shorter number, clearly affects the crossover.

Fig. 4 also shows the HHCF after the deposition of square clusters
with an exponential size distribution. It can be though that the only
difference in using clusters of size N × N instead of rods is a factor N in
the height of the aggregate, so nothing different than an N scale factor
in W(L,t) could be expected. However, the value of the crossover is
about 28, much larger than that corresponding to the deposition of
rods. Note that the deposition of a cluster of size N × N is equivalent to
the deposition of N rods of size N. This could be equivalent to the depo-
sition of rods with a size distribution of the form x.exp(−x/x0), where
x0=10. To check if this is the reason for the observed value of the cross-
over,we deposit rods using this size distribution. The curve labeled Rods
2 is the corresponding HHCF. Interestingly, the value of the resulting
crossover is about 21. It is higher than that for the exponential distribu-
tion size (Rods 1) but smaller than that corresponding to the square de-
position. This indicates that the simultaneous rod deposition involved in
square deposition has a measurable effect. Note that the deposition of a
cluster of size N is equivalent to the deposition of N rods at the same
place.

In Fig. 5, we present the temporal evolution of the surface roughness
W(t) for a randomdeposition of rods ofN=10, averaged over 100 sam-
ples, and different system sizes ranging from L=130 up to 4000 for the
RCD model. The results of the simulations show that the roughness
evolves in time following two different regimes and then it reaches
the saturation value. At earlier times the growth exponent takes a
value β1 = 0.51 that is very close to a random deposition model, for
which β = 1/2 as correlation is absent. At intermediate times, the
growth exponent takes a value β2 = 0.27 close to β = 1/3, expected
for a ballistic deposition (BD) corresponding to the KPZ universality
class. This is expected because, in contrast to particle randomdeposition
that is uncorrelated, every cluster occupies several lattice sites and then
correlation between neighboring columns emerges. The value of the
roughness exponent obtained from the saturation values of the inter-
face width is αglobal = 0.41. This value is different from αglobal =1/2
Fig. 4. Height–height correlation function for the WCDmodel after the deposition of rods
and squares. Rods 1 refers to the deposition of rods with an exponential size distribution
having an average size x0= 10. Rods 2 refers to the deposition of rodswith a size distribu-
tion of the form x.exp(−x/x0). Squares refers to the deposition of squares with an expo-
nential size distribution and average side equals to 10. Arrows indicate different
crossovers for the three depositions.
that corresponds to the KPZ universality class, and also lower than
the value reported in Ref. 8 (αglobal ≈ 0.45), as determined from the re-
ported results.

Fig. 6 shows the height–height correlation function for 1 × 10 cluster
deposition as a function of the correlation distance l for different sub-
strate sizes. Not a very large substrate is needed to clearly observe two
regimes with slopes tending to 0.5 and 0.35, as dashed lines indicate.
As also observed in the WCD model, the crossover length directly re-
flects the clusters size, lC ~ 10. [16]We also checked the effects of depos-
iting clusters of different sizes on the scaling exponents. The inset of
Fig. 6 shows the local width (LW) for different rods size distributions:
(a) all of size 10, (b) Gaussian distribution with standard deviation
equals 4, and (c) exponential distribution. In all cases the average rod
size equals 10. Two different roughness exponents are clearly detected:
α1, at short scale (below the cluster size), and α2, at long scale that is
Fig. 6. Height–height correlation function for 1 × 10 cluster deposition as a function of
the correlation distance l for different substrate sizes. Note that the crossover length
directly reflects the clusters size. The inset shows the local width for different rod size
distributions: (a) all rods are of size 10, (b) Gaussian distribution with standard deviation
equals 4, and (c) exponential distribution. In all cases, the average rod size equals 10,
L = 1000 after a deposition of 1000 ML.



Fig. 8. Localwidths for the RCDmodelwith rods of sizesN=2, 10, 20, and 40. As expected,
the roughness decreases and the crossover moves to higher values of l as rods are larger.
Also, as N increases, α1 can be determined more accurately, and we found that it tends
to 1. On the contrary, it is easier to determine α2 for smaller values of N. For N = 2,
α2 = 0.37.
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identified with the growing dynamics. α1 ≈ 1 for the three cases, while
α2 ≈ 0.39, 0.41, and 0.43 for cases a, b, and c, respectively. The cross-
overs show similar sensitivity to rod size distributions as in the WCD
model. We can determine that lC ~ 15 for cases a and b and lC ~ 18 for
case (c). The analysis for the HHCF shows the same trends, but it is
more difficult to determine the crossovers due to the close values of
χ1 and χ2. However, as pointed out above, the local crossover points
for the HHCF match the size of the deposited clusters, whereas the LW
tends to overestimate it [17].

The spectral power density or structure factor for different substrate
lengths for 1 × 10 rods are presented in Fig. 7. Two slopes can be ex-
tracted, from low and high valued of k. The slope for large k's does
not vary much as a function substrate length and an average value of
0.42 is determined, consistent with the value of αglobal obtained from
the roughness saturation values. Conversely, for low k's, α2 monotoni-
cally increases with the substrate length matching the trend shown in
the height–height correlation function, with a value of 0.33 extracted
from results corresponding to L = 4000.

The cluster size influence on the short and long range of the HHCF
and the LW was studied after the deposition of clusters of different
sizes. Fig. 8 shows the influence of the cluster size on the roughness ex-
ponent obtained from the LW for rodswith sizesN=2, 10, 20, and 40. It
is observed that the total roughness decreases with N since the surface
tends to flatten as the rod size increase. The roughness exponent α1 is
about 0.64 for N = 2 to rapidly converge to α1 ≈ 1 for N ≥ 10. On the
other hand, the exponent roughness α2 does not show any dependence
on the cluster size.

In Fig. 9, we plot the values for the large-scale roughness exponents
obtained from the LW (α2) and from the HHCF (χ2) aswell as the large-
scale growth exponent β2 obtained from the roughness evolution for a
cluster size of 1 × 10. Both α2 and χ2 seem to tend to a common value
below 0.4, slightly smaller than the αglobal determined from the satura-
tion roughnessW(L,t) shown in Fig. 4. This value is far fromαglobal= 1/2
expected for KPZ universality class in 1D [22].

The KPZ equation was long ago proposed as the continuous coun-
terpart of ballistic deposition. However, numerical simulation failed
systematically in finding a clear connection between them. Indeed,
scaling exponents for BD have been regularly found smaller than
those corresponding to KPZ. The agreement was achieved using enor-
mously large-scale simulations [23]. Previously, strong finite-size cor-
rections were considered responsible for the discrepancies and then
the use of effective exponents was recommended [24]. More recently,
scaling exponents for BD were brought into agreement with the KPZ
Fig. 7. Spectral power density or structure factor for different substrate lengths. Values for
α1 and α2 can be extracted.
class by tracing down corrections to fluctuations in the height incre-
ments along deposition events with resulting surfaces having narrow
and deep valleys [25].

Surface heights after cluster deposition are similarly correlated as in
BD due to the inherent lateral growth present in both mechanisms.
Then, we expect that the exponents for the RCDmodel should converge
to those corresponding to the KPZ universality class. In Ref. [25], the au-
thors proposed a method to suppress corrections consisting in dividing
the surface in bins and then using themaximal height inside each bin to
do the statistics. We found that for small clusters of size 2, the surface
presents deep valleys that are eliminated with this method and the ex-
ponents become much closer to those of KPZ. Interestingly, surfaces
after the deposition of clusters of size 10 do not show such valleys,
and we found that the proposed method produces no effect on the de-
termined scaling exponents.
Fig. 9.Values of the intermediate regime scaling exponents as a function of the system size
L. Growth exponent β2 and roughness obtained fromW, and α2 and χ2 obtained from LW
and HHCF, respectively. We found that the exponents are affected by finite-size effects as
they should converge to BD exponents (β = 0.33, α = 0.5).



Fig. 10. Localwidths for the RCDmodel after the deposition of 1000ML of rods and squares
for L = 1000. The clusters size distribution is exponential with average size equals 10 for
both cases. Note that the local width corresponding to square clusters is not simply the
corresponding to rods multiplied by a factor.
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Finally, we studied, for the RCD model, the difference between rods
and squares clusters deposition. We found that when squares of size
N × N and rods of size 1 × N are deposited, the absolute value of the
roughness, as expected, is N times larger since each time a cluster of
size N × N is deposited the surface height locally increases N times re-
spect to the deposition of a 1 × N cluster. However, this is not the case
when clusters of different sizes are deposited. For example, as shown
in Fig. 10, for an exponential cluster size distribution of mean size 10,
the roughness do not simply differ by a factor of 10. In fact, different
values for the roughness exponents results slightly different α2, 0.42
for rods and 0.46 for squares, and the crossovers lC ≈ 14 for rods and
20 for squares. The reason for this can be those discussed for the WCD
model. Also, for the RCD model, the aggregation of squares of different
sizes leads to structures that not only differ by a factor in the height re-
spect to the aggregation of rods, and this also can be responsible for the
above findings.

5. Conclusions

Using the Monte Carlo simulations in 1D, we studied two surface
growth models with random deposition of clusters using two types of
aggregationmechanisms: one inwhich clusters wet the surface copying
its profile (WCD), and other using rigid clusters that stick at the first
point of contact and do not change their shape (RCD). Depending
on the type of deposition mechanism imposed, the system exhibits
different scaling. In thewetting cluster depositionmodel, the systemex-
hibits the usual random deposition exponents for large window sizes,
but a correlation appear for windows up to about the cluster size. We
found that the crossover length is affected by the cluster size and also
by the cluster size distribution, while the local roughness exponents
are only affected by the substrate finite size. The rigid cluster deposition
model behaves as a BD process due to lateral correlations introduced
through the finite size of the clusters. Results for the RCD model
show two different behaviors in time before the saturation value is
reached. Initially growing is uncorrelated, then roughness increases
with a smaller exponent to finally reach saturation. In space, two dif-
ferent roughness exponents are detected, at scales below and above
the cluster size. By analyzing systems of different sizes using various
indicators it can be found that the model slowly converges to the KPZ
universality class.
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