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Dynamic ‘back-off’ analysis: use of piecewise
linear approximations
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SUMMARY

The operating point of a process is usually computed by optimizing an objective function, e.g. the profit,
subject to some plant characteristics. Typically, the resulting point lies on the boundary of the operating
region. At this point, the presence of disturbances can easily cause constraint violations and make the
process move to the unfeasible region. Then, it is necessary to move the operating point away into
the feasible region by considering the effect that the expected disturbances will have on the operation of the
plant. The purpose of this paper is to present an efficient algorithm to modify the operating point in order
to keep feasibility (both in steady-state and along transitory) in the process operation against the
disturbances. Copyright # 2003 John Wiley & Sons, Ltd.

KEY WORDS: optimizing control; canonical piecewise linear approximations; dynamic optimization;
back-off; coal-fired steam generator control

1. INTRODUCTION

The operating point of a chemical process is usually designed to maximize (or minimize) an
objective function, e.g. the profit, subject to constraints like the ones inferred from the
characteristics of the plant, operating conditions, product specifications and others. These
constraints define a feasibility set for the possible operating points, and in most cases, the
optimal operating point lies in the boundary of the set. In a second stage, a controller is designed
to regulate the behaviour of the plant around the designed steady-state value. The underlying
idea is that the controller provides ‘perfect control’, so that the plant remains at, or at least close
to, its nominal operating point against disturbances, parameter variations and uncertainties on
the plant characteristics.

The effect of the disturbances at such regulation level will perturb the operating point from
the previously designed one. Thus, this point will be surrounded by a region within which the
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plant will actually operate. Under these perturbed conditions, the plant operation may become
unfeasible (in steady-state and/or along transitory). A possible solution is to take a safety
margin by strengthening the constraints, i.e. by reducing the feasibility region, thereby designing
the operating point away from the actual plant constraints in order to compensate for the
unknown process characteristics. In the absence of information as to how disturbances or plant
uncertainties affect the steady-state point, such overdesign is hard to justify on economical
grounds.

The problem of ensuring feasible regions of operation in spite of plant uncertainty or
parameter variations had been addressed for Grossman et al. [1]. Their main objective was to
come up with ‘feasible’ chemical processes, i.e. plants that can operate in spite of significant
uncertainty in the values of some process parameters, under the assumption of perfect control
described above. This concept was extended to dynamic systems for Dimitriadis and
Pistikopoulos [2]. The driving idea was to provide the plant designer with tools to evaluate a
given design in terms of its flexibility and to provide a quantitative mean of studying design
trade-off, in the from of an optimization problem.

In this paper we will follow a different although related approach, suggested for different
authors (Bandoni et al. [3]; Figueroa et al. [4]; Perkins and Walsh [6]) to include operating
conditions (such as considerations of disturbances and model uncertainties) at the design stage
of the operating point.

The main idea of this strategy is to move the operating point away from the boundary of the
feasibility region by considering the effect that the expected disturbances could have on the
operation of the plant. This is called back-off, and it was originally calculated from the desire for
evaluating and comparing control strategies on the economical basis.

Bandoni et al. [3] proposed a method to compute the steady-state back-off by converting the pro-
blem to a semi-infinite programming. The disturbances are assumed to lie in a given bounded set.

In another context, Narraway and Perkins [6] propose a dynamic optimization problem to the
selection of process control structure based on economics, but this approach was limited to a
single disturbance. Simultaneously, Figueroa et al. [4] extended Bandoni’s approach to the
dynamics problem, but the results requires considerably large computational resources.

Lately, Figueroa and Desages [7] addressed the steady-state problem, using a canonical
piecewise linear approximation of the model, and developing an efficient algorithm for steady-
state back-off computation. In this paper, we study the dynamic back-off calculation for non-
linear systems using a similar approach.

2. PROBLEM FORMULATION

Consider the following system:

’xx ¼ fðx; u;wÞ ð1Þ

y ¼ hðx; u;wÞ ð2Þ

where the functions f and h are continuously differentiable with respect to their arguments,
x 2 Rnx is the system state vector, y 2 Rny is the system output vector, u 2 Rnl is the vector of the
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optimization variables (for example the reference values for controllers or other free variables)
that are considered as constant and w 2 Rnm is a vector of exogenous disturbances. In this
formulation we consider that the controller model is included in the model (i.e. in the functions f
and h). The exogenous inputs are assumed to be in the set of step functions (see Figure 1),

W ¼ wiðtÞ; i ¼ 1; ::;m; wiðtÞ ¼
*wwi if t50 with

%
wi4 *wwi4 %wwi

wi if t50 with
%
wi4wi4 %wwi

8><
>:

8><
>:

9>=
>;

where *wwi is the nominal value for the disturbance and
%
wi and %wwi are the lower and the upper

bounds over the disturbances.
In order to complete the description of our system, consider now a set of constraints, that

should be satisfied at any time:

zc ¼ pðx; u;wÞ40 ð3Þ

where the function p is continuously differentiable with respect to its arguments and zc 2 Rnc :
This set of inequalities normally follows from the physical analysis of the process (for

example, in a chemical process some temperatures, pressures or flowrates must not be exceeded),
but they could also be of a more general kind (e.g. product quality control, safety and
environmental regulations, etc.).

Let us suppose the uniqueness of the steady state in the region of operation of the process, i.e.
given vectors u and w, there is only one vector x satisfying the steady state condition. This means
that the equation

0 ¼ fðx; u;wÞ ð4Þ

has a unique solution in x. This is a classical assumption in optimization and it is included to
ensure that in the region of interest it is possible obtain a numerical solution for the steady state
model.

t = 0+

~wi

wi

Figure 1. Disturbance w(t) applied to the system.
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Given this system, the operating point it is usually computed by solving the following
problem.

Problem 1 (Steady-state optimization)

Given a constant fixed vector of disturbance inputs ( *ww) compute the set of free variables (u) so
that the following function will be optimized:

min
u

zo u;xð Þ

s:t:

f u;x; *wwð Þ ¼ 0

zc ¼ p u; x; *wwð Þ40

ð5Þ

where z0ðx; uÞ is an objective function with some economical meaning and the disturbances are
considered at their nominal value (i.e. w ¼ *ww).

When optimization (5) is solved, the operating condition is fixed by using the solution vector
u. We will consider now the case in which the vector of exogenous inputs (w) is in the set W. The
effect of the disturbances at this point is to move the plant away from this desired operating
point. Under this perturbed condition, the process operation may become unfeasible at any time
during the transient. This effect may require a displacement in the operating point away from
the one determined in the optimization (5) to maintain feasible operation. To compute the
magnitude of this movement, we will formulate the following optimization,

Problem 2 (Dynamic back-off)

We shall compute the set of control inputs (u) so that the following function will be optimized:

min
u

zo xð0Þ; uð Þ

s:t:

’xx� f x; u;wðtÞð Þ ¼ 0

zc ¼ p x; u;wðtÞð Þ40

)
8wðtÞ 2 W

ð6Þ

where the expression x(0) means the value of x(t) at the time t ¼ 0 and in conditions of nominal
disturbances (w ¼ *ww). Note that this optimization involves an infinite number of constraints
(one for each disturbance in the set W). An algorithm for the solution of this optimization
problem has been presented by Figueroa et al. [4]. This problem may not have a solution. In
practice, this means that it is not possible to operate the plant under some requirements of
performance for the disturbance magnitude defined by wðtÞ 2 W :

Note the difference between problems 1 and 2. In the former, the constraints need to be
verified for a specific wðtÞ ¼ *ww; in the latter, the constraints need to be satisfied for all wðtÞ in the
set W. It is important to point out that the dynamic system of equation (1) could include the
controller dynamics for almost all control structures.
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3. PROBLEM FORMULATION AS CPWL

Our strategy to find an appropriate solution for these problems, due to the computational
complexity present in the solution of the non-linear case, consists in finding a Canonical
Piecewise Linear Approximation (CPWL) of the system and constraints under consideration. A
description of these functions can be found in Appendix A.

3.1. Problem representation as CPWL

Let the sets X � Rnx ; U � Rl; W � Rm be the domains of the x, u and w variables
respectively, and consider the set

@ ¼ xT; uT; zT
� �T

: x 2 X ; u 2 U ;w 2 W
n o

on which we want to approximate the non-linear system. Consider also the following partition
in the set @ such that

@ ¼
[s
j¼1

@j

where @j is called the ‘jth partition’ or ‘jth region’ of the set @.
In each of these regions, (for example, if the system is constrained to the kth region (i.e.

ðx; u;wÞ 2 @k)) the non-linear representation of Equations (1) and (3), is approximated using
CPWL functions in the form

’xx ¼ nkxxx; n
k
xuuþ nkxwwþ gkx ð7Þ

zc ¼ nkcxx; n
k
cuuþ nkcwwþ gkc ð8Þ

and the objective function as

zo ¼ nkoxx; n
k
ouuþ Zko ð9Þ

That can be written in a unique expression for the complete domain as

’xx ¼ ax þ Bxxxþ Bxuuþ Bxwwþ
Xs
i¼1

cxijaxixþ auiuþ awiw� bij ð10Þ

zc ¼ ac þ Bcxxþ Bcuuþ Bcwwþ
Xs
i¼1

ccijaxixþ auiuþ awiw� bij ð11Þ

zo ¼ ao þ Boxxþ Bouuþ
Xs
i¼1

coijaxixþ auiuþ awiw� bij ð12Þ

where all the matrices and vectors have appropriate dimensions with elements in the real field.
We should make a clear distinction between the original description of the real system
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(Equations (1) and (3)) in a generic non-linear representation and the CPWL representation
(Equations (10)–(11)), that is an approximation to the real system.

It is also important to note that the approximation of the constraint functions has been made
within the feasible region, i.e. the CPWL approximation (zcpw of Equation (11)) of the function
(Zc of Equation (3)) satisfies zcpw � zc40 for all possible set of variables.

The coefficients of Equations (7)–(9) are related with the ones of Equations (10)–(12) are
related to the following inequalities:

nkxx ¼ Bxx þ
Xs
i¼1

cxi � axi � gki ; nkxu ¼ Bxu þ
Xs
i¼1

cxi � aui � gki

nkxw ¼ Bxw þ
Xs
i¼1

cxi � awi � gki ; gkx ¼ ax þ
Xs
i¼1

cxi:bi:g
k
i ; nkcx ¼ Bcx þ

Xs
i¼1

cci � axi � gki

nkcu ¼ Bcu þ
Xs
i¼1

cci � aui � gki ; nkcw ¼ Bcw þ
Xs
i¼1

cci � awi � gki ; gkc ¼ ac þ
Xs
i¼1

cci:bi:g
k
i

nkox ¼ Box þ
Xs
i¼1

coi:axi � gki ; nkou ¼ Bou þ
Xs
i¼1

coi � aui � gki ; gko ¼ ao þ
Xs
i¼1

coi � bi � g
k
i

with gki ¼ signðaxixþ auiuþ awiw� biÞ: From comparison of (9) and (12) it is clear that
Ps

i¼1

coi:awi:gki ¼ 0 for the complete domain @.
Note that the sign function in the last expression determines the Sector belonging condition,

i.e. the sign vector ck defined as ck ¼ gk1 ; g
k
2 ; . . . ; g

k
s

� �
is uniquely related to the kth partition

(Figueroa and Desages [7]). Consequently, a point (xj; u j;wj) will lie in @k if and only if it
satisfies the inequality

zk@ ¼ nk@x:x
j þ nk@u:u

j þ nk@w:w
j þ gk@40 ð13Þ

where nk@x
� �

i¼ �gki axi; nk@u
� �

i¼ �gki aui; nk@w
� �

i¼ �gki awi; gk@
� �

i¼ gki bi; and :½ �i means the ith row
in the matrix [.].

3.2. Steady-state solution for a CPWL model

Let us consider an algorithm to compute the steady-state solution for the system. Let us assume
that the inverse of each matrix nkxx exists. This implies that (in each sector) the equation

0 ¼ nkxxxþ nkxuuþ nkxwwþ gkx

has a unique solution in x (Note that the same condition was globally imposed for the non-
linear system). Then, it is possible to use the following algorithm to compute the steady-state
point (Figueroa and Desages [7]):

Algorithm 1: Steady-State Computation

Data: A set of external variables *uu; *wwð Þ and an initial guess x0. Set k ¼ 0:
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Step 1: Compute the positive lki that makes the ith entry of the following vector zero:

zk@ ¼ nk@xðx
k þ l nkxx

� ��1
zkxÞ þ nk@u *uuþ nk@w *wwþ gk@

for i ¼ 1; . . . ; s; where zkx ¼ nkxxx
k þ nkxu *uuþ nkxw *wwþ gkx:

Step 2: Compute lc¼ mini l
k
i and xkþ1¼xk�lc nkxx

� ��1
zkx with zkx ¼ nkxxx

k þ nkxu *uuþ nkxw *wwþ gkx:
Step 3: If lc is smaller than one, set k ¼ k þ 1 and return to Step 1. Otherwise, xkþ1 is the

steady-state value. Stop.

This is a version of the Katzenelson algorithm modified to our particular problem. Some
considerations about the existence and uniqueness of solutions for this algorithm could be found
in Figueroa and Desages [7]. Efficient versions of this algorithm can be found in the literature
[8, 9].

3.3. Dynamic simulation for a CPWL model

In this section we will analyse a way to obtain an expression for xðtÞ when a disturbance is
applied. Consider the system at the steady state point ðx0; u; *wwÞ 2 @0; (i.e. it satisfies x0 ¼
� n0xx
� ��1

: n0xu:uþ n0xw: *wwþ g0x
� �

: Then, a disturbance wðtÞ 2 W is applied to the system. While the
system is in sector @0, it is easy to see that the state vector will be

xðtÞ ¼ en
0
xxtx0 � I� ex

0
xxt

� �
n0xx
� ��1

: n0xu:uþ n0xw:wþ g0x
� �

ð14Þ

This expression will be valid till the moment in which the system reaches the next sector (called
@1). Suppose that this occurs at time t0; when the value of the state is

x1 ¼ xðt0Þ ¼ ex
0
xxt

0

x0 � I� ex
0
xxt

0
� �

n0xx
� ��1

: x0xu:uþ x0xw:wþ Z0
x

� �
¼ �ex

0
xxt

0

: x0xx
� ��1

: x0xu:uþ x0xw: *wwþ Z0
x

� �
� I� ex

0
xxt

0
� �

: x0xx
� ��1

: x0xu:uþ x0xw:wþ Z0
x

� �
¼ � x0xx

� ��1
x0xu:uþ I� ex

0
xxt

0
� �

x0xx
� ��1

x0xww� ex
0
xxt

0

x0xx
� ��1

x0xw *ww� x0xx
� ��1

Z0
x

and using this state as an initial condition for sector @1 it is possible to compute

xðtÞ ¼ ex
1
xxtx1 � I� ex

1
xxt

� �
n1xx
� ��1

: n1xu:uþ n1xw:wþ g1x
� �

expression that will be valid till the time in which the system reaches sector @2: Then, it is
possible to obtain an algorithm to perform the dynamic simulation.

Algorithm 2: Dynamic Simulation

Data: A set of external variables *uu; *wwð Þ; the magnitude of the step in the disturbance w and the
horizon (Tmax) to perform the simulation.

Step 0: Compute the steady-state solution for the model (i.e. x0) using Algorithm 1. Set k ¼ 0:
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Step 1: Determine in which sector, @k ; the point ðxk ; u;wÞ lies; and compute the linear model
valid in this sector.

Step 2: Using this linear model, perform the time simulation as

xðtÞ ¼ ex
k
xxtxk � I� ex

k
xxt

� �
nkxx
� ��1

: nkxu:uþ nkxw:wþ gkx
� �

until the time tk+1 for which the first entry of the vector

zk@ ¼ nk@xxðtÞ þ nk@uuþ nk@wwþ gk@

is zero (this means that the linear model does not longer represent the real process). The state at
this time is

xðtkþ1Þ ¼ ex
k
xxt

kþ1

xk � I� ex
k
xxt

kþ1
� �

nkxx
� ��1

: nkxu:uþ nkxw:wþ gkx
� �

Step 3: If tKþ1 is smaller that Tmax; set xkþ1 ¼ x tkþ1
� �

; make k ¼ k þ 1 and return to Step 1 to
proceed similarly in the next sector. Otherwise, Stop.

Using the results of this algorithm, a generic expression for xðtÞ when the system goes through
sectors ½@0;@1;@2; . . . ;@h� could be written as

xðtÞ ¼ UxuðtÞuþUxwðtÞwþ Fxðt; *wwÞ ð15Þ

where

UxuðtÞ ¼ � ex
h
xxt

Yh�1

j¼1

ex
j
xxt

j

 !
n0xx
� ��1

n0xu þ
Xh�1

i¼1

Yh�1

j¼iþ1

ex
j
xxt

j

 !
I� ex

i
xxt

i
� �

nixx
� ��1

nixu

 !
� � � �

� I� ex
h
xxt

� �
nhxx
� ��1

nhxu

UxwðtÞ ¼ �ex
h
xxt

Xh�1

i¼0

Yh�1

j¼iþ1

ex
j
xxt

j

 !
I� ex

i
xxt

i
� �

nixx
� ��1

nixw

 !
� I� ex

h
xxt

� �
nhxx
� ��1

nhxw

Uxðt; *wwÞ ¼ � ex
h
xxt �

Yh�1

j¼0

ex
j
xxt

j

 !
n0xx
� ��1

n0xu *wwþ
Yh�1

j¼1

ex
j
xxt

j

 !
n0xx
� ��1

g0x þ � � �

 

�
Xh�1

i¼1

Yh�1

j¼iþ1

ex
j
xxt

j

 !
I� ex

i
xxt

i
� �

nixx
� ��1

gix

!
� I� ex

h
xxt

� �
nhxx
� ��1

ghx

where ti is the time at which the system leaves sector @i. Note the dependence of the matrices
UxuðtÞ; UxwðtÞ; and Uxðt; *wwÞ on the sectors ½@0;@1;@2; . . . ;@h� and on the times ½t0; t1; t2; . . . ;
th�1�: This means that, in general, expression (15) is not longer valid if any change occurs in the
disturbance w or a new optimization variable u is applied. In this case, the simulation should be
repeated.
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Now, we can compute an expression for the constraints for a generic sector @h,

zc ¼ nhcx:xðtÞ þ nhcu:uþ nhcw:wþ ghc

¼ nhcx: U
h
xu:uþUh

xw:wþUh
x

� �
þ nhcu:uþ nhcw:wþ ghc

¼ nhcx:U
h
xu þ nhcu

� �
:uþ nhcx:U

h
xw þ nhcw

� �
:wþ nhcx:U

h
x þ ghc

� �
¼Uh

cu tð Þ:uþUh
cw tð Þ:wþUh

c t; *wwð Þ ð16Þ

4. SOLUTION TO THE DYNAMIC BACK-OFF PROBLEM

First, let us consider the constraints specified in Problem 2:

’xx� fðx; u;wÞ ¼ 0

zc ¼ pðx; u;wÞ40

)
8w 2 W

Our strategy is to determine the ‘worst case perturbation’ w2W in the sense of producing the
largest value of the entries of zc. To do so, for the jth entry of vector zc, a function ljðuÞ is
defined as

ljðuÞ ¼ max
w2W

max
t2 o;1½ Þ

zc½ �j

s:t:

x� fðx; u;wÞ ¼ 0

ð17Þ

or equivalently

ljðuÞ ¼ max
w2W

max
t2 o;1½ Þ

zc xðtÞ; u;wð Þ½ �j ð18Þ

where xðtÞ is the solution to ’xx� fðx; u;wÞ ¼ 0; computed by using algorithm 2; and the subscript
j means the jth row of the vector (or matrix). If we consider that the maximum of maxt2 o;1½ Þ

zc xðtÞ; u;wð Þ½ �j is in sector @h at time t ¼ tmax; then it is possible to write,

max
t2 0;1½ Þ

zc xðtÞ; u;wð Þ½ �j¼ Uh
cw tmaxð Þ:wþUh

cu tmaxð Þ:uþUh
c tmaxð Þ

� �
j ð19Þ

Now, given a fixed control input vector u, and assuming that the argument tmax, the sectors
½@0;@1;@2; . . . ;@h� and the times ½t0; t1; t2; . . . ; th�1� are not depending on w, the solution to the
problem (18) is for the disturbance

wmax ¼ wj ¼
%wwj if Fh

cwðt
maxÞ

� �
j50

%
wj if Fh

cwðt
maxÞ

� �
j50

8<
:

8<
:

9=
; ð20Þ
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However, this situation is unrealistic because when w changes, the values of t0; t1; t2; . . . ; th�1;
tmax; @0;@1;@2; . . . ;@h�1 and @h will also change. Then, in order to compute w

max we propose
the following algorithm:

Algorithm 3: Worst Disturbance Determination

Data: A set of external variables u; *wwð Þ; an initial disturbance w0 and the set W of possible
disturbances. Set k ¼ 1;

Step 1: Perform the simulation using algorithm 2, determine the time for which the jth entry
of vector zc (i.e. zc½ �j) is at maximum and compute the matrices Uh

cwðt
maxÞ; Uh

cuðt
maxÞ and Uh

c

ðtmaxÞ: Compute

lk�1
j ¼ Uh

cwðt
maxÞ:wk�1 þUh

cuðt
maxÞ:uþUh

cðt
maxÞ

� �
j

Step 2: Compute the argument, wk ¼ wmax; that maximizes the expression

max
w2W

max
t2 0;1½ Þ

zc xðtÞ; u;wð Þ½ �j

using equation (20), set lkj ¼ Uh
cwðt

maxÞ:wk þUh
cuðt

maxÞ:uþUh
cðt

maxÞ
� �

j; and adapt the limits for
the disturbance set as

%ww ¼ %wwj ¼
%wwj if Uh

cwðt
maxÞ

� �
j50

wk�1
j if Uh

cwðt
maxÞ

� �
j50

8<
:

8<
:

9=
;

and

w ¼
%
wj ¼

wk�1
j if Uh

cwðt
maxÞ

� �
j50

%
wj if Uh

cwðt
maxÞ

� �
j50

8<
:

8<
:

9=
;

Step 3: If lk�1
j =lkj ; make k ¼ k þ 1 and return to Step 1. Otherwise, lj ¼ Uh

cwðt
maxÞ:wkþ

�
Uh

cuðt
maxÞ:uþUh

cðt
maxÞ�j and #wwj ¼ wk is the argument for which it happened; Stop the

algorithm.

Note that the iterations in this algorithm are necessary due to the non-linear nature of the
original problem. This is due to the fact that in the solution proposes on (20); we cannot ensure
that the resulting point is in the same sector, or neither the system states are in a path on another
sectors than the computed in Step 1. This problem is equivalent to the solution of a global non-
linear optimization, where not convergence can be ensured. If the problem were linear, the
convergence of this algorithm will be guaranteed in one iteration.

To simplify the notation in the following, let us consider the following equality:

Uh
cwðt

maxÞ: #wwj þUh
cuðt

maxÞ:uþUh
cðt

maxÞ
� �

j¼ Ucu½ �j:uþ Ucw½ �j: #wwj þ Uc½ �j
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And then, it is possible to group these equations for j ¼ 1; 2; . . . ; nc; (where nc is the number of
constraints) as

l ¼ D:uþ E ð21Þ

where D ¼

Ucu½ �1

Ucu½ �2

..

.

Ucu½ �nc

2
6666664

3
7777775

and E ¼

Ucw½ �1: #ww
1 þ Uc½ �1

Ucw½ �2: #ww
2 þ Uc½ �2

..

.

Ucw½ �nc : #ww
nc þ Uc½ �nc

2
66666664

3
77777775

In this way, problem 2 is equivalent to

min
u

z0 xð0Þ; uð Þ

s:t:

ljðuÞ40 j ¼ 1; . . . ; nc

ð22Þ

Now, let us analyse the objective function z0 xð0Þ; uð Þ: If this problem is constrained to the kth
sector, the steady-state condition is nkxx:xþ nkxu:uþ nkxw: *wwþ gkx ¼ 0; or equivalently

x ¼ � nkxx
� ��1

: nkxu:uþ nkxw: *wwþ gkx
� �

ð23Þ

Introducing this expression in (12), the objective function constrained to the kth sector could be
written as

x ¼ Ak :uþ Bk ð24Þ

where Ak ¼ nkou � nkox: n
k
xx

� ��1
nkxu

� �
; Bk ¼ �nkox: n

k
xx

� ��1
nkxw

� �
: *wwþ Zko � nkox: n

k
xx

� ��1
gkx

� �
and *ww

is the disturbance considered as nominal.
Note that this expression of the objective function will be valid only for the steady-states

solution lying in the kth sector. Considering conditions (13) and (23), both constraints could be
written as a unique set of inequalities as,

zk@ ¼ nk@x: � nkxx
� ��1

nkxu:uþ nkxw: *wwþ gkx
� �� �

þ nk@u:uþ nk@w: *wwþ gk@40

¼Dk
c :uþ Ek

c40 ð25Þ

where Dk
c¼ nk@u�nk@x: n

k
xx

� ��1
:nkxu

� �
and Ek

c ¼ nk@w � nk@x: n
k
xx

� ��1
:nkxw

� �
*ww: This expression is con-

sidered as the Sector Belonging Condition for the steady-state solution.
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Then, problem (22) constrained to the kth sector, could be expressed as

min
u

Akuþ Bk

s:t:

D:uþ E40

Dk
c :uþ Ek

c40

ð26Þ

Note that in (26) the first set of constraints comes from the operative constraints in the
original system, while the second set comes from the specific sector belonging condition (i.e.
ðx; u; *wwÞ 2 @k). In this situation, the optimum will be either on the boundary of the sector @k or
in the ones defined by the operative constraints. If the solution to the problem (22) is on the
boundary of sector @k, at least one entry in the vector Dk

cuþ Ek
c will be zero. If this occurs, we

must change the sign of this entry (the rest remaining invariable) and, in this way, we go on with
the optimization in the next sector @kþ1: If no entry of Dk

cuþ Ek
c is zero, we are in the border

fixed by the operative constraints.
Also note that in the set of inequalities D:uþ E40 the matrices D and E are dependent on the

vector of optimization variables u; then, each time that the optimization software changes vector
u, we should check if the matrices D and E still valid. If not, they should be adapted. However,
this involves only a new simulation and our computational experience shows that it is performed
in less than three iterations.

Then we have solved the problem. In summary, we have the following algorithm:

Algorithm 4 (Dynamic Back-off Computation):

Data: An initial guess for u (u0) and a nominal disturbance *ww:
Step 0: Compute a steady-state point ðx0; u0; *wwÞ 2 @0 and the vector c0, which identifies this

sector, using Algorithm 1. Set k ¼ 0:
Step 1: Compute the matrices D and E, using Algorithm 3 and Equation (21).
Step 2: In the sector @k compute the optimization variable uk that solves the following

minimization problem

min
u

Akuþ Bk

s:t:

Duþ E40

Dk
cuþ Ek

c40

Step 3: Check if the model (D, E) still valid for this new uk, if not return to Step 2.
Step 4: If the solution is at the boundary of sector @k (i.e., if any entry in the vector Dk

cuþ Fk
c

is zero), identify the next sector @kþ1: Set k ¼ k þ 1 and return to Step 1. Otherwise (i.e. if no
entry of Dk

cuþ Fk
c is zero), continue.

Mathematically, if any entry in the vector Dk
cuþ Fk

c is zero (e.g. jth-entry) change the sign of
the correspondent entry in the vector gk to obtain the new vector gkþ1 (i.e. vector gkþ1ðiÞ ¼ gkðiÞ
for i=j and gkþ1ð jÞ ¼ �gkð jÞ).
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Step 5: Compute the worst disturbance (using Algorithm 3). If any entry in the vector k is
larger than zero return to Step 1. Otherwise, Stop.

In this algorithm, the loop between Steps 3 and 2 is the most time demanding. However,
usually a solution is found in few iterations and demands only few seconds of processing. In
Step 4 there might be a problem of determining which region (close to @k) could be chosen as
@kþ1: Suppose that the optimum in region @k is at the intersection of l hyperplanes. This means
that l entries of Dk

cuþ Fk
c are zero. This makes it difficult to continue with the optimiza-

tion algorithm in the sector @kþ1; because this new sector may be obtained by changing the sign
of either of these entries of gk ; or any combination of them. This gives (2l � 1) possibilities. It is
obvious that the convergence of the algorithm depends on our choice. Figueroa and Desages [7]
present three possible search methods to avoid this problem.

As is typical in non-linear optimization, the convergence of this algorithm towards the global
optimum cannot always be guaranteed. However, our computational experience shows that the
algorithm usually converges to the same optimal point that the one obtained using non-linear
optimization algorithms. The use of the CPWL approximation does not introduce extra
limitations and makes the solution of the back-off problem more efficient.

5. EXAMPLE

In this section, the algorithms presented above are analyzed by means of an example. Our
attention has been focused to determine the feasibility of operation while ensuring no constraint
violations, for a given set of process disturbances.

Power and steam systems, in which the boiler is a fundamental part, are a good
application example due to their large operating cost and their need of satisfying specific
energy demands. Despite these facts, utility systems have not received the same degree of
attention as other process units when dealing with disturbance effects. One reason for this
situation has been the uneasy availability of simple reliable mathematical models for boilers in
the open literature. The steam-generating unit studied in this paper consists of five pulverizers
supplying fuel to a 200 MW drum type boiler. Ray and Majumder [10] have developed the
model for this unit.

5.1. Pulverizer model

Primary air required for this unit is supplied by two P.A. fans and then bifurcated into hot air
and cold air flows for pulverizer units. A non-linear model for a single pulverizer has been
developed having as inputs the feeder speed, the hot air damper opening, the cold air damper
opening and the P.A. fans speed. The states for each unit are the fuel output of the pulverizer,
the hot air flow and the cold air flow. The output variable is the fuel outlet from pulverizers,
supplied to the boiler. Simulation of a single pulverizer unit can be performed using the
following set of equations:

dF i

dt
¼ ci1 u

i
2 H

i þ ci2 u
i
3 C

i þ ci3 F
i þ ci4ðH

i þ CiÞui7
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dHi

dt
¼ ci5 u

i
1 þ ci6 u

i
6 � Hiui2 � Ciui3

dCi

dt
¼ ci7 u

i
1 þ ci8 u

i
6 þ ci9 H

iui2 þ ci10C
iui3

where F is the fuel output of the pulverizer, H is the hot air flow, C is the cold air flow, u1 and u6
are the P.A. fan speed (nominally 24.7252 rad/s), u2 is the hot air damper opening (0.8), u3 is the
cold air damper opening (0.2) and u7 is the feeder speed (3 r.p.m.). The parameters are included
in Table I.

Rest of the units will be having similar kind of dynamics. In this analysis (and for the only
proposes of the algorithm demonstration) we will consider the feeder speed in each pulverizer as
a disturbance, because it depends on the coal characteristics.

The manipulated variables are the hot air damper opening and the speed of the two P.A. fan
units. Also, we consider that the hot and the cold air damper openings are normalized, then they
should verify the following relation u3 ¼ 1� u2:

5.2. Boiler model

The states of the non-linear drum type coal-fired boiler model are the drum pressure (P), the
steam flow to the H.P. turbine (S) and the drum level (L). It has two optimization variables,
there are the fuel input from the pulverizer (F) and the feed water input (wc; nominally 193 Kg/s).
The disturbance inputs are the feed water temperature (Te, nominally 288oC) and the control
valve setting (cv, nominally 0.8). The model is as follows

dP
dt

¼ �0:00193SP 1=8 þ 0:014524F � 0:000736wc þ 0:00121Lþ 0:000176Te

dS
dt

¼ 10cvP 1=2 � 0:785716S

dL
dt

¼ 0:00863wc þ 0:002F þ 0:463cv � 6� 10�6P 2 � 0:00914L� 8:2� 10�5L2 � 0:007328S

Table I. Pulverizer parameters.

i 1 2 3 4 5

ci1 10 9 11 10 11
ci2 2 1.8 2.2 2.1 1.9
ci3 �0.073591 �0.07 �0.075 �0.071 �0.072
ci4 0.057306 0.06 0.063 0.059 0.055
ci5 0.001413 0.0013 0.0015 0.0014 0.00125
ci6 0.001413 0.0013 0.0015 0.0014 0.00125
ci7 0.003 0.0027 0.0033 0.0031 0.0028
ci8 0.003 0.0027 0.0033 0.0031 0.0028
ci9 �1.903016 �1.88 �1.93 �1.9 �1.89
ci10 �3.0 �2.9 �3.1 �3.1 �3.0
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The purpose of this model is to describe the gross behaviour of the plant. The control variables
for the boiler are the fuel input (from the pulverizers) and the feed water input. The disturbances
are the feed water temperature and control valve setting. The last one represents the variation on
the steam demand to the service units.

5.3. Control scheme

The control scheme for this system is composed of two control structures:

A control system for the boiler control. It involves two SISO loops, controlling the pressure
and the drum level by using the fuel and the water feed inputs, respectively, as manipulated
variables. These loops are closed for PI controllers with parameters as in Table II.

A control system for the pulverizers. In this case, the manipulated variable is the hot air
damper opening (u2) and the controlled variables are the fuel outputs of the pulverizer (F). It is
important to remark that the value of the reference of these loops are computed using a divisor,
and each of these controllers are a slave controller which master is the pressure loop of the boiler
(i.e. F spi ¼ 0:2F sp; i ¼ 1; . . . ; 5: These controllers are proportional ones with parameter Kp ¼
100:00:

In order to study the complete system operation, we consider the five pulverizers supplying
fuel to the boiler plus the controllers, so we have a total of 20 non-linear differential equations.
There are 16 freed variables considered, these are the hot air damper and the two P.A. fan
speeds for each pulverizer and the feed water input at the boiler. The disturbances considered
are the feeder speed for each pulverizer, the control valve displacement and the feed water
temperature.

The operative constraints came from physical limitations of the process:

Minimal steam flow; S4110

Bounds on the drum pressure; 1404P4200

Bounds on the drum level; 454L466

Bounds on the fuel output on each pulverizer; 54Fi49

The objective function is to minimize the operating cost (fuel and water). In this point we will
assume that all pulverizers have the same operative cost.

zobj ¼ 0:25 wc þ
X5
i¼1

10Fi

Table II. PI controllers.

Loop 1 (P-F) Loop 2 (L-wc)

P 0.75 0.05
I 50000 10
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The set of free variables are allowed to move in the following ranges:

0:84u240:95 ðfor each pulverizerÞ

224u1425:5 ðfor each pulverizerÞ

224u6425:5 ðfor each pulverizerÞ

175:04wc4210:0

and also we allow free value for disturbances between the following limits (with the nominal
value between parenthesis):

280:04Te ð2888CÞ4292:0

2:94u7 ð3 r:p:mÞ43 ðfor each pulverizerÞ

0:84cv ð0:8Þ40:85

To solve this non-linear optimization a CPWL approximation for the problem is used. To
perform this CPWL model a direct unconstrained optimization algorithm was used on each
individual non linearity of the model, and then, they are joined in a complete CPWL model. The
variable domain results divided in 140 regions. This number of sectors had been chosen to
obtain a CPWL model with enough accuracy respect to the non-linear expressions.

The optimal objective function is Zobj¼ $358:1295 (for nominal disturbance) and it is obtained
for optimized variables ui2 ¼ 0:8 for i ¼ 1; . . . ; 5; ui1 ¼ 22:00 for i ¼ 1; . . . ; 5; ui6 ¼ 22:00 for i ¼
1; 3; 4; 5; u26 ¼ 24:41 and wc ¼ 175:0:

When we allow free values for disturbances between the bounds, the optimum operating point
becomes not feasible, due for example, to a increase in the drum level. We used Algorithm 3 to
identify the worst disturbance for each constraint and compute matrices D and E (Step 1 of
Algorithm 4). Using these disturbances the optimization problem of (22) is solved (Step 2 of
Algorithm 4). This optimization is performed in five sectors before converges to the optimum
back-off objective function Zobj¼ $356:39: The values of the manipulated variables are ui2 ¼ 0:8
for i ¼ 1; . . . ; 5; ui1 ¼ 22: for i ¼ 1; 2; 3; 5; u41 ¼ 22:56; ui6 ¼ 22: for i ¼ 1; 2; 4; 5; u36 ¼ 22:25 and
wc ¼ 175:0: It is important to remark, as a conclusion of this example that the convergence is
obtained in a few minutes, using a Pentium processor.

6. CONCLUSIONS

There is a notable trend towards the use of non-linear dynamic optimization as a tool for design/
control integration. In this paper, efficient methods to solve the problem of dynamic simulation
and optimization are presented in the context of back-off calculation. The solution is carrying
out by using an approximation of a generic non-linear model for the system. The algorithms
studied are generic and could be used in a wide number of applications.

Copyright # 2003 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2003; 24:103–120

J. L. FIGUEROA AND A. C. DESAGES118



APPENDIX A: CANONICAL PIECEWISE LINEAR FUNCTIONS

The general formulation of piecewise lineal functions allows us to write a non-linear function
as several linear expressions, each of them valid in a certain region. In mathematical terms, this
can be described as follows:

Let f ðxÞ : Rn ! Rm be a nonlinear function with x 2 @ � Rn: The domain @ is partitioned in
s non-empty regions, @i, such that @ ¼

Ss
i¼1 @

i: In each of these regions, @i, the function f ðxÞ is
approximated by a linear representation in the form

gðxÞ ¼ J ðiÞxþ jðiÞ ðA1Þ

where J ðiÞ 2 Rmxn; jðiÞ 2 Rm and jjf ðxÞ � gðxÞjjx2@i5e:
Using this procedure the non-linear function can be rewritten in an alternative form.
If we impose additional conditions regarding to the continuity of the linear approximation

through the boundary of the region @i (as the ones used by Chua and Ying [11]; Chua and Deng
[8]), a compact expression can be obtained for all the regions as

gjðxÞ ¼ aþ B:xþ
Xs
i¼1

ci ai; xh i � bi
�� ��

where gjðxÞ is the jth entry in the vector gðxÞ; a, ci and bi are scalars, and B, and ai are vectors of
appropriate dimensions. An expression like this is called a Canonical Piecewise Linear (CPWL)
function.

Note that

1. the domain @ is divided into a finite number of polyhedral regions bounded by a set of
hyperplanes of the type ai; xh i � bi with dimensions not lower than s� 1;

2. the CPWL function is continuous in any boundary of neighboring regions, namely, the
piecewise linear function is continuous on the planes ai; xh i � bi:

Note also that it is easy to determine a region containing a given point x, using the sign of the
functions ai; xh i � bi: Thus, the vector sign ai; xh i � bi

� �
establishes a one-to-one mapping with

the defined partitions.
It has been shown (see Chua and Ying [11], Chua and Deng [8]) that the number of

parameters involved in this canonical representation is far lower than the one used in the
classical linear representation. The problems associated with the determination of these regions
and the CPWL approximations have been extensively studied in the literature. For example, Lin
and Unbehahuen [12] proved that CPWL models can approximate as much as it is desired a
continuous non-linear function on a compact set of variables. Lin and Unbehahuen [13]
proposes an algorithm for adjust a CPWL model of one variable, this method could be applied
in conjunction with the algorithm due to Yamamura [14] that allows the representation of a
general non-linear function as a superposition of non-linear terms of one variable. Juli!aan
[15] presents an algorithm for the CPWL approximation of smooth functions. The
CPWL representation uses in this paper presents some lack of flexibility that higher order
models [15, 16] achieve. However, this flexibility involves a more complex description for
non-linearities.
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