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Abstract

Chemical processes are usually designed to work under a specified set of conditions; therefore the first
goal of a regulatory control scheme is to keep the controlled variable at or near these conditions in the
presence of disturbances and model uncertainty. In this paper, we present some control schemes to deal with
some special problems of disturbance rejection. The usefulness of these alternatives is discussed within the

context of controlling a simple flowsheet example.

1. Introduction

The main objective of any regulatory feedback
control scheme is to keep the controlled outputs
“close” to their desired value. What is meant by
“close” can be defined in terms of various stability and
performance requirements for the closed-loop system.
However, some process characteristics make it
difficult. One of these factors is the presence of
disturbances (often called load changes). The
suppression of the impact that disturbances have on
the operating behavior of processing units is one of the
main reasons for the use of control in the chemical
industry (Chang and Yu, 1992). In the last years
systematic tools for quantifying the effect of
disturbances, either on a simple unit or on a plant-wide
level, have been introduced by several authors
(Stanley et al., 1985; Luyben, 1988; Skogestad and
Morari, 1987; Chang and Yu, 1992, Skogestad and
Wolff, 1992; Yi and Luyben, 1995; Belanger and
Luyben, 1996).

The design of compensators to produce closed-
loop systems with certain disturbance attenuation
capabilities has also been treated in the literature in
terms of optimizing the sensitivity function using a
feedback control strategy (for example Bhattacharyya
et al. (1983), Vidyasagar (1986), etc.). Figueroa et al.
(1996) propose a loop-shaping methodology to adjust
compensators with the same control scheme. Lewin
and Scali (1988) introduce the idea of robustness in a
feedforward scheme. Later, Lewin (1991) used the
concept of disturbance condition number to define a
feedforward scheme. But, unfortunately, it is
necessary to manipulate the disturbance signal to
apply this scheme. Recently, Belanger and Luyben
(1997) propose a design for feedback control in order
to improve the disturbance rejection of a system with
sluggish disturbance using a double integral or a lag
compensator.

In this paper, several control schemes are discussed
to design controllers with disturbance rejection
specifications for diverse level of knowledge of the
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process. In all cases, the problem is solved as an A,
optimal control problem in order to have a common
reference of parameter setting for the controllers. All
schemes are compared in their application to a simple
where their

example robustness properties are
discussed.
The paper is organized as follows. The next

section will highlight some ideas about the disturbance
rejection problem and will present some control
schemes in a general formulation. The usefulness of
these techniques will be discussed within the context
of a flowsheet example in section 3. Some general
conclusions are included in section 4.

2. Problem Assessment

Consider the process model of Fig. 1, where the
signal w contains all external inputs (including
disturbances, sensor noise, etc.), the output z is an
output signal, y is the measured variable, u is the
control input and P(s) is the process model. Note that
this process could be a simple unit or a plant sector. In
general the signal w could be divided into two
categories: measurable (w,) and non measurable (w,)
disturbances.

Fig.1. Process Model

The objective is to explore the use of alternative
control schemes to obtain good disturbance rejection
properties, depending on the information that can be
obtained from the process. All controllers are designed
with an A, criterion (a brief description about this
criterion can be found in Appendix A) to have a
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common reference for schemes comparison. The goal
is to find a stabilizable controller K(s) that solves

Tzw”ac’ where 7, is the closed loop transfer

min
K(s)
function from w to z.

The main control objective in this paper is to reject
disturbances.  We are not trying to obtain a
decentralized scheme. In some cases the response of
the system to load changes can be degraded by using
decoupling control schemes (Luyben, 1988). In this
sense, the H, criterion provides a quasi optimal
control in the sense of minimizing the disturbance
effect in the process output. In general, the proposed
schemes can be applied to a single unit as well as to
complete plant sectors.

2.1 Feedback Scheme

Feedback is the most popular scheme for control
systems. In feedback control, the information of the
output y is used to modify the control action u, as is
shown in Fig. 2. This scheme is quite insensitive to
modeling errors or parameter changes. In this case,
the generalized plant G(s) in the Linear Fractional
Transformation setup is given as

G(s)

Ye

K(s)
Fig. 2. Feedback Scheme

2.2 Feedforward Scheme

The largest disadvantage of the feedback control is
that it takes control action only when the effect of the
disturbance is observed at the process output;
consequently it can be unsatisfactory for slow
processes with large disturbances. When information
from the disturbances is available, an alternative
scheme to the classic feedback configuration is the use
of a feedforward scheme (see for example
Stephanopoulos, 1984; Skogestad and Postlethwaite,
1996). In this case the available (measurable)
information from the disturbances is used to modify
the control action u, as is shown in Fig. 3. In this case,
the generalized plant G(s) in the Linear Fractional
Transformation setup is given as
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where the ém is a matrix with as many rows as the
number of measurable disturbances. This matrix
produces the mapping from the set of disturbances w,
into the w, (ie., w, = Emwc ). Usually, this scheme
presents good disturbance rejection properties and it is
inherently stable, but it is sensitive to the presence of
non measurable disturbances and error in the models.
The use of a feedback loop in combination with the
feedforward scheme is a common practice to avoid
these problems.

w

T

Z¢ <at— s

G(s)

K(s)

——
Ye

u

(4

Fig. 3. Feedforward Scheme

2.3 Feedback - Feedforward Scheme

The combination of feedback and feedforward loops is
shown in Fig. 4. This scheme combines the
advantages of previous schemes. The idea is to use a
feedforward compensator to reduce the influence of
the disturbances on the outputs and a feedback
controller to reduce the effect of non measurable
disturbances or model errors. It requires the
measurement of process outputs and disturbances.
The control quality will be better as more information
from the process is available. In general, the
controller is not square because it has as many inputs
as the number of the measurable variables (y,) plus the
number of measurable disturbances (w,,). In this case

w

the control variable is %, = K{ m} .
Ye

Z, i W
6 | o Tkl=E. |
yc | uc 1
4 | B, B,
Gis)=| ¢, | D,, D,

le)llon] 1)

Fig. 4. Feedback-FeedForward Scheme

2.4 Disturbance Estimation Scheme

The quality of the feedforward schemes (Sections
2.2 and 2.3) will be as good as the knowledge of the
disturbances is complete. Then, to improve the
performance of these controllers, it is possible to use
an estimator to complete the information of the non
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measurable disturbances (Colantonio et al. 1995;
Muske and Edgar, 1997). Consider the model for the
estimator as it is shown in Fig. 5 and let us assume that

w,

u

the disturbance vector is partitioned as , — {W'"} :

-] -
O(s)

- —— [

y, U,
4| B, B,
2w Ta

Oks)=\|C, | D,, D,
G, | Dy D,

Fig. 5. Process Model

We can design an estimator scheme using the
configuration of Fig. 6. The control objective of the
estimator is to compute the non measurable
disturbances (i.e., u. will follow w,) to reduce the
difference between the outputs of the process and its
model (z, =z-z ) using the information of the
In this
case, the matrices £, and E, are defined to equate

=E w,+Eu_. The disturbance vector for the
observer comprises information from measurable
disturbances (W, = E, w,) and estimation of the
unmeasurable ones (W, = E u_).

difference in measured variables y =y-y .

In this way, the
Linear Fractional Transformation setup is given as:

{Z‘ :l - G(S){W‘} The advantage of this structure is
yC uC

that it allows us to complete the disturbance
information using the output measurements. The
quality of this estimation strongly depends on the
quality of the model.

B, 0

B,E, B,E, |

G(s)=|[c. -¢]|| D, -D,E, -D,bE,
[c, -¢]|Dp,-eD,E, -eD,E,

Fig. 6. Estimator Scheme
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To verify the conditions of existence of the H,,
controllers (A2 in Appendix A) it is necessary to
consider an arbitrarily small variable 0<g<</ that
represents the model error. Now, we can use this
scheme to estimate the complete set of disturbances to
introduce a complete feedforward scheme.

2.5 Complete Feedforward Scheme

When a slow process is subject to large non
measurable disturbances, we can use the disturbance
estimator previously developed (section 2.4) to
introduce a complete feedforward scheme as is shown
in Fig. 7. In this case, the control variable affects both
the disturbance input of the observer (i.e., w,) to
estimate the unmeasurable ones and the control inputs
(u and u,) to minimize the effect of the disturbances in
the process output variable (z). Note that the control
objective will be to minimize the vector

z, = [(z - z‘,)T z’]T to both perform the estimate and

reject the disturbances simultaneously. The measured
variables in this scheme are a combination of the
difference of the measured variable of the process and
the measured disturbances (ie.,

ve=lo-2) wf, where w,=Ew). The
quality of this scheme depends on the quality of the

disturbance estimation; hence, a good model for the
process is necessary.

r4 [ B. o B
{ { B,E,| |B,E, B,
—C
G(s)= o 0 Dy, D,
€,
0 0 D21 DZZ
D,,-D,E D,E, D,-¢D
D=l T p, ‘2=L o b,
D, -&D,E, &D, E, D, —¢D
DE]_ En J D22 \‘ 0 0
Z, W
z

P(s)

Ois)

Fig. 7. Complete Feedforward Scheme
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3. Example

The control structures discussed previously will
now be tested with a flowsheet example. The case
study consists of two stirred tank reactors (Fig. 8) in
series, with an intermediate mixer introducing a
second feed (de Hennin and Perkins, 1993; de Hennin
et al, 1994). A linear model for this process is

defined in Appendix B, where u:[Fc‘w Fjv]l,

w=[G; 2 ¢ E|, 2=l T ] and
yz[T' TZ]T. In this process the critical control

objective is the disturbance rejection. The interaction
between both reactors is not a control problem.

In this example, only the disturbances associated
with  the temperature are measurable (ie.,

W, = [TF' T, ]T ). The expressions for z and y are very
good approximations of those given in Appendix B.

\V T;!CZ
~.| CSTR#I Mixer
7.6
TFE9C; / i -
v o CSTR#2 | T8¢
A
F2

Fig. 8. Flowsheet Example

In order to normalize the variables (Rossi and
Figueroa, 1997), we include two weighting matrices.
The following variable transformations are considered

for design purposes; W, w > w Wz z,
4
20 0 0 0
where 1 0 %O 0 0 and
* T s+0001 0 0 %o 0
0o 0 0 %,

Mo 0 0 0

0 My 0 0

o 0o Y, o

o 0o o My

Note that the quasi integrator term in W, is

W, =

included to allow the H,, optimal controllers to
manage step disturbance inputs. In a similar way, we
can include a “double” integrator to reject “ramp”
disturbances.  The performance of the following
control schemes are analyzed: Feedback,
Feedforward, Feedback-Feedforward, Disturbance
Estimation and Complete Feedforward.

3.1 Feedback Scheme
In this case the manipulated variables are the

cooling water flow in both reactors (i.e. #, = u), the
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measured output is y and the control objective is z. In
this scheme three settings are considered:

3.1.a. Ziegler — Nichols. Two simple PID controllers
are tuned using the classical Ziegler - Nichols settings.
The performance of the closed-loop system is shown
in Fig. 9, where simulation response for steps of
amplitude 2 and 20 applied to (. and [
respectively, are presented. From this plot, it is clear
that the behavior of the controllers is poor when load
changes are present. Other alternatives, such as those
presented by Belanger and Luyben (1997), are not
useful because the disturbances do not have large low
frequency components.

08

0.6 T
0.4
0.2

0

-0.2

-0.4

A

0

20

Fig. 9: Time simulation responses for Feedback
Ziegler - Nichols Controller

3.1.b. Decentralized 7, controller; Two individual
decentralized #,, controllers are tuned. For these
controllers, we obtain a closed loop norm of
HTszm =056. Fig. 10 shows a simulation response for

steps applied to C} and T}, respectively. From this
plot, it is clear that the behavior of these controllers is
significantly better than the ones presented in Section
3.l

3.1.c. Multivariable ,, controller: A complete #,
controller is tuned. In this case a closed loop norm of
I7.,]. = 02340 is obtained. This value is smaller than

the one obtained with the decentralized controller.
Fig. 11 shows a simulation response for steps applied
to C, and T, respectively. Note that simulation
results are close to the ones obtained for the
decentralized controller. However, the lower value of
the norm implies that, for a general disturbance, the
behavior of this controller will be preferred.
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Fig. 10: Time simulation responses for decentralized
#H,. Controller

3

x10°

0.07
006
005
0.04 . o
003 '
002

0.01
0
-0.01

. ce

05 1 15 2

Fig. 11: Time simulation responses for Complete £,
Controller

3.2 Feedforward

In the Feedforward scheme the manipulated
variables u are modified using information of the
measurable disturbances (w,,). For this compensator

‘we obtain a closed loop norm of NTJ =73074

while a time simulation for steps applied in C} and

T} is shown in Fig. 12. The value of “T'w” is larger

than the one obtained for the feedback controller.
Also, the performance of the simulation for a C}. input
is worse than the one obtained in the feedback scheme.
This is due to the fact that C} is not a measurable
disturbance; then the controller does not record the

presence of a disturbance (this is an open loop
scheme). However, when the disturbance is within the

set of measurable ones ( TF‘ ), the performance of this
loop is excellent.

1.2

1

0.8f

0.8

0.4+

0.2

Q

-0.2 L
0 05 1 1.5 2
10°
l
25 c!
2
15 T
1
0.5 c?
0
05 £
-1
0 0.5 1 15 2

Fig. 12: Time simulation responses for Feedforward-
Controller

3.3 Feedback - Feedforward

In this case we try to obtain the benefits of the
Feedback and Feedforward schemes working together.
The manipulated variables « are modified using
information of the measurable disturbances (w,,) and
the measured variables (y). For this controller we

obtain a closed loop norm of ;‘Tw“ = 02278 while a
time simulation for steps applied in C} and T, is
shown in Fig. 13. The value of |7, | is smaller than
the one obtained for the feedback controller. This is
due to the fact that we are using information from
. T a
measurable disturbances (w, =[TF' Tz] ) to reject

them. In this case the system’s response to a
disturbance in C}, is similar to that obtained for a

feedback scheme, while the response to a step in 7}, is

close to the behavior of the feedforward scheme. We
obtain the benefits of both control schemes.
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Fig. 13 Time simulation responses for Feedback-
Feedforward Controller

3.4 Disturbance Estimation

In order to make good use of the advantages of the
feedforward control in response to non measured
disturbances, we will try to reproduce the values of
these variables making 4 = [C;_ CZ]T and using as
measurable inputs the difference between the
measured variables of the process model and of the
observer. For this estimator, we obtain a closed loop
norm of 'lTw“ = 78516 while a time simulation of

the states C’ and 7’ and their estimation for steps
applied in C} and T, are shown in Fig. 14. There is

no appreciable difference of the process states and
their estimation.

3.5 Complete Feedforward

In this case we will use the results of the state
estimator studied in the last section to perform a
complete feedforward. To do this, we will try to
reproduce the values of the non measurable
disturbances, and to wuse this result to reject
disturbances. We will use the difference between the
measured variables of the process model and the
observer and the measurable disturbances as
measurable output (y,). Then, we will use this
information to modify the manipulated variables,

defined as y, =[C;‘r c, F. F[i,]T-
This controller is shown in Appendix C. We
T\ =0.2354. This

value is larger than in the case of Feedback-
Feedforward, because it also includes information

obtain a closed loop norm of

ol
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about the estimation. Time simulations of the states
C'and T’ for steps applied in C.. and T, are shown in
Fig. 15. Note the excellent disturbance rejection
properties of this control scheme.

T,

0 10 20 30 40 50

Fig. 14 Time simulation responses for Disturbance
Estimator
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Fig. 15 Time simulation responses for Complete
Feedforward
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3.6 Robustness Analysis

At this point, it is important to perform a
robustness analysis to determine the behavior of these
control schemes when model uncertainties are
considered. An input multiplicative uncertainty (A,) is
introduced to the model as is shown in Fig. 16, where
s+12
205 +6
performance measure a weighting constant y is

included, where , - % " . As a measure of
Tz“' ©

u

and HAu“ < 1. In order to normalize the

robust performance the p-test is analyzed (Zhou et al.,
1996) for the control schemes studied above.
Numerical results are shown in Fig. 17. From the plot
(A) it is clear that the feedback controller, which has a
good nominal performance, presents a high value at
high frequencies. This peak is due to the incapability
of the controller to deal with uncertainties at this
frequency range. The same problem is present in the
combination of feedforward-feedback. This peak is
not present in plots (B) and (D). In plot B the value of
the u function is small because in this case y=7.3054.
However, plot (D) shows a value larger than one at
low frequencies. This is specifically due to the robust
performance analysis (i.e., it is not a stability
problem). Moreover, this value is larger than one only
because the normalization constant y=0.2354 used in
this analysis. In conclusion, from this analysis we can
appreciate the good performance of the complete
feedforward scheme.

» Y AP >
Z, < G We
Ye —e—
uC
L K >
—* Au P Yu

Fig. 16. Block Diagram for Robustness Analysis

4. Conclusions

In this paper, we studied the problem of
disturbance rejection in the frequency domain.
Several control schemes to design controllers with
disturbance rejection specifications are discussed and
their robust stability properties are analyzed. In all

cases, the design problem is solved as an H,,, optimal
control problem. The so called complete feedforward
scheme presented excellent properties as regards time
and frequency domains analysis. The usefulness of
this technique was discussed in terms of controlling a
flowsheet example where some robustness aspects
were also discussed.
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(a)

(b)

)

(d)

Fig. 17. p as function of the Frequenr for (a)
Feedback, (B) Feedforward, (c) dback-
Feedforward and (d) Complete Feedforw

References

Bhattacharyya, S.P., Del Nero Gomes A.C. and J.W.
Howze, “The Structure of Robust Disturbance
Rejection Control”, [EEE Transaction on
Automatic Control, 26, 874-881 (1983).

Belanger P.W. and W.L. Luyben, “A New Test for
Evaluation of the Regulatory Performance of
Controlled Processes”, /nd. Eng. Chem. Res., 35,
3447-3457 (1996).

Belanger P.W. and W.L. Luyben, “Design of Low-
Frequency Compensators for Improvement of



Latin American Applied Research

Plantwide Regulatory Performance”, Ind. Eng.
Chem. Res., 36, 5339-5347 (1997).

Chang, J.W. and C.C. Yu, “Relative Disturbance Gain
Array”, AIChE Journal, 38, 521-534 (1992).
Colantonio, M.C., A.C. Desages, J.A. Romagnoli and

A. Palazoglu; “Nonlinear Control of a CSTR:
Disturbance Rejection Using Sliding Node
Control”, Ind. Eng. Chem. Res., 34, 2383-2392

(1995).

de Hennin, S.R. and J.D. Perkins, "Structural decisions
in on-line optimisation", Technical Report B93-
37, Imperial College, London (1993).

de Hennin, S., J.D. Perkins and G.W. Barton,
“Structural decisions in on-line optimisation”,
Proc. PSE '94, Korea., 297-302 (1994).

Figueroa, J.L., O.E. Agamennoni and J.A. Romagnoli,
"Disturbance rejection with bounded control
action: A Loop Shaping Methodology", AIChE
Journal, 42, 466-476 (1996).

Lewin, D.R. and C. Scali, “Feedforward Control in the
Presence of Uncertainty”, Ind. Eng. Chem. Res.,
27,2323-2331 (1988).

Lewin, D.R.,, “Feedforward Design Using the
Disturbance  Condition = Number”, [FAC
Symposium on Advanced Control of Chemical
Processes, Toulouse, France, 14-16 (1991).

Luyben, W.L., “The concept of “Eigenstructure” in
process control”, /nd. Eng. Chem. Res., 27, 206-
208 (1988).

Muske, K.R. and T.F. Edgar, ‘“Nonlinear State
Estimation”.  In: Henson & Seborg (Eds.)
Nonlinear Process Control. Chapter 6 (311-
370), Englewood Cliffs, NJ, Prentice Hall (1997).

Rossi, A.P. and JL. Figueroa, “Economic
Performance of Optimal Linear Control in
Process Industries: A Case Study”, Latin
American Applied Research, 27, 235-244,
(1997).

Skogestad, S. and M. Morari, “Effect of Disturbance
Directions on Closed-Loop Performance”, Ind.
Eng. Chem. Res., 26, 2029-2035 (1987).

Skogestad, S. and 1. Postlethwaite, Multivariable
Feedback Control: Analysis and Design, John
Wiley and Sons (1996).

Skogestad, S. and E. Wolff, “Controllability Measures
for Disturbance Rejection”, [FAC Workshop on
Interactions between Design and Process
Control, Imperial College, London, Sept. 6-8
(1992).

Stanley, G., M. Marino-Galarraga and T. Mc. Avoy,
“Shortcut Operability Analysis. 1. The relative
Disturbance Gain”, Ind. Eng. Chem. Des. Dev.,
24, 1181-1188 (1985).

Stephanopoulos, G., Chemical Process Control: An
Introduction to Theory and Practice, Prentice
Hall (1984).

56

31:49-57 (2001)

Vidyasagar, M, “Optimal Rejection of Persistent
Bounded Disturbances”, /[EEE Transaction on
Automatic Control, AC-31, 527-534 (1986).

Yi, CK. and W.L. Luyben, “Evaluation of Plant-Wide
Control Strategies by Steady-State Disturbance
Sensitivity Analysis”, Ind. Eng. Chem. Res., 34,
2393-2405 (1995).

Zhou K., J.C. Doyle and K. Glover, Robust and
Optimal Control, Prentice Hall (1996)

Appendix A: Optimal Control Theory
Consider now the linear system described by the
block diagram of Fig. Al,

Z

c

|

A

Ye

K

-
|

Fig. Al: Linear Fractional Representation

where G(s) = is the generalized

plant, K is the controller and the diagram in Figure Al
is referred to as a linear fractional transformation
(LFT). The resulting closed loop transfer function
from w, to z, is denoted by 7, =F,(G,K). G and K
are assumed to be real rational and proper with K
constrained to provide internal stability, such a
controller is called admissible.

Moreover, the following assumptions (Zhou et al.,
1995) are made about the system G:
(A1) (4,B) is stabilizable and (C),4) is detectable.
(A2) D,, is full column rank and D,; is full row
rank.

(A3) [A il } has full column rank for all w.
Cl 12
(Ad) {A . ] tiss Al sovw mak-for all @.
2 21

and we will also suppose that D, = D,, = 0.

Suboptimal H,, Control. Given y>0, find all
admissible controllers K(s), if there are any, such that

1Tl <7

The H,, solution involves the following
Hamiltonian matrices,

_{A
|

B _C;Cl
J[

y BB, - B,B,
-4

7_2C£C1 —C;CZ
- A

H

Py
~BlBII
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Then, for a given y value it is possible to determine
whether or not a solution exists. The conditions for
existence of a solution are (Zhou ez al,, 1996),

(1) H, and J_ must have no
eigenvalues.

(i1) Eigenvalues of X = Ric(H_) and Y_ = Ric(J_)
must be greater than zero, where X _ and Y, are the
solutions to the Riccati equations related to the

matrices H _ and J

imaginary-axis

respectively.

(i) p(X,Y,)<y?, where p() is the spectral radius.
Moreover, when these conditions hold, one such
controller is
A |l-rxx)'re
BX, | 0

with 4= 44y ?BBX, - BBX, - (- V.x ] Y.C.C,
Conditions (i)-(iii) are necessary and sufficient for the
existence of an admissible controller K(s) such that

7|, <7 foragiveny. If y_ =min{T,,|_:K adm.
is the optimum value for y, then it is obvious that y
must be larger than Vo for the existence of H,

Kop(s) =

suboptimal controllers. Moreover, conditions (i)-(iii)
allow us to formulate a bisection method to compute a
value of y close to its optimal value Yopi®

Appendix B: Linear Model for the CSTR System
In this example, we consider four states (C’, T, C°

and T°), two control inputs (F! and F?2) and four

disturbances (C},T;, C, and T,). The model is as
follows,

[¢ -8.5297 -0.0647 0 0 c']
| 7 _|423122 02229 0 o | .
c? 0.0655 0 -3.9510 -0.0485 || C?
7 0 0.0655  19.2008  0.0829 || 72
[0.0655 0 0 0 ch
| 0 00655 0 o 7|,
0 0 0.0453 0 ¢,
[ 0 0 0  0.0453 || T,
0 0
- 4.8630 0 FL,
R
0 ~1.5204
'1000}00000@
01 0 0j[T'] |0 0 0 OfjT:
zZ. = | e R S
100 1 0fjctl |00 0 0]lcC,
10 0 0 1J[7?] [0 0 0 OJ|T,
o+ o
0o 10*|[F,
10 0 '_F;}
L 0 10'4J

57

Cl
C_fo v o o)
Y=lo 0 o 1]lc?
TZ
ki
T 0 01[F

g,

10

0

107
0

-4

4

0 ]
10“‘_1'

Appendix C: Complete Feedforward Controller
Matrix A (Columns 1-7)
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-683.24 [1831.2916408.719 |-10539. }-2.7692 [0.16340}-1.2786
322.687[-303.76 |-7.5466  [327.098}-3.3037 [3.0153110.07798
F10420. |-16038. |-11252.89}-0.1796 [11699.2]12812.5/11630.3
-4.8376 |-7.2199 222.444 |-203.88 |5.4833 |5.7167 }226.22
F683.24 ]1831.2 6389.5  [10540. |-2.7692 [0.22890(17.9221
-492652}-536234{115216.1 }500612 {91366 |539547 |-119061
0.00 10.00  }0.00 0.00 0.00 0.00 [0.00
106696 1159239 [-4906131 -550315}-119493}-126085{490227
0.00 0.00 10.00 0.00 0.00 [0.00 }0.00
Matrix A (Columns 8-14)

-327.52 -0.0051 [0.000405 [0.00157§0.00005{4491.34-4600.8
1236.42[7.4232 [-0.673942}2.3115 [-0.0504 |162662.10.00
2.497741-0.0035 [0.000282 10.001090.00003}-75.828 {3184.79
0.08632}-5.0774 |-0.50812 [77.1777}1.7446 10.00  10.00
-3.2747 10.0000510.00 0.00 00  K|.7104 }[-4.6008
10.123647.423271-0.673942}-2.3115 [-0.0504 |162662.10.00
203.5760.00358}-0.00028 |-0.0010 |-0.0000 [75.82843.18479
0.16923}-5.0774 {-0.50812 |[77.1777}1.7446 [0.0000 {0.0000
1500036]-1078.4 [6.19290 [24.1095)0.774756.8x107 }-7.x107
0.00 [0.00 {1000.000 0.00 [0.00 0.00 [0.00
550892 |-79.035 [6.23066 [-975.80 [0.66479]-.1x107 [7.0x10’
0.00 00 0.00 0.00  [1000.00/0.00  0.00
Matrix B

-0.04600 -0.00109

0.920177 1.62662

0.03184 0.03108

10.57400 11.21096

-0.00005 0.000001

0.920177 1.62662

0.03184 032606

10.5740 11.21096

-702.42 16.724

14048.506 0.00

702.425 685.700

0.00 14048.5

Matrix C (Columns 1-7)

350.679(-330.11 |-8.2013 |355.47 [-349.76 |327.759{8.4750
-7.594 |-11.334 349.22 {-320.09 {8.5058 [8.97503}-348.95
152.525[234.76 [164.71 [26.301 [-170.62 |-187.53 |-170.23
131.9877[-85.733 |-299.14 1493.457(0.1296 [-0.0076 [0.05986
Matrix C (Columns 8-14)

[355.88 /0.00558]-0.0004 [-0.0017 [-5x 10~ [5119.04]-5000.0
319.68 10.00562}-0.0004 |-0.0017 |-4x10~° [119.047{5000.0
-18.097 |-0.1086 10.0098610.0338310.00073}-2380.9 [0.000
-0.0040 §0.237710.02378}3.6132 10.08168/0.00  0.00
Matrix D

-0.05000 0.00119

0.0500 0.05119

0.00 -0.023809

-0.495049  10.495049



