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Abstract: Even though employed widely in industrial practice, the popular proportional–
integral–derivative (PID) controller has weaknesses that limit its achievable performance. In
this paper, an alternative control scheme that combines the simplicity of the PID controller
with the versatility of model predictive control is presented. The result is a controller that
combines the time-delay compensation capability of predictive control algorithms, the
effectiveness of inferential control schemes for disturbance rejection, and the adaptation
capabilities of switching controllers. The robust stability and performance of the controller are
analysed. These results are then used to generate two tuning procedures. The design,
implementation, and performance of the controller are illustrated via simulations on linear and
non-linear systems.
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1 INTRODUCTION

Proportional–integral–derivative (PID) controllers

have remained as the most commonly used con-

trollers in industrial process control for more than 50

years, despite advances in mathematical control

theory [1]. The main reason for this is that these

controllers have a simple structure that is easily

understood by engineers, and under practical con-

ditions, they perform more reliably than more

advanced and complex controllers.

Even though versatile, the PID controller has

weaknesses that limit its achievable performance

especially on dead-time dominant, inverse response,

poorly damped, and non-linear processes. Thus,

there has been a continuing interest in devising new

ways of approaching the PID tuning and design

problems [2–12]. Available alternatives to the PID

controller, provide better performances but at the

expense of sacrificing simplicity. These alternatives

are also more difficult to tune than the simple PID

controller and often require considerable expertise

in control theory. It is therefore not surprising that

interest in the development of alternatives to the PID

controller has grown steadily in recent years [13–15].

This paper proposes an alternative single-input

single-output (SISO) regulatory controller, called

predictive feedback control (PFC), that takes advan-

tage of modern control technology to overcome the

weaknesses of the PID controller without sacrificing

simplicity. The PFC controller combines the time-

delay compensation capability of predictive control

algorithms, the input reconstruction capabilities of

inferential control schemes to improve disturbance

rejection, and the adaptation capabilities of switch-

ing controllers.

The PFC controller employs only one prediction of

the process output J time steps ahead to compute

the future error, and the control input u(k) is

computed by weighting the predicted errors com-

puted in previous samples. Hence, the resulting

control action is computed by observing simulta-

neously the future and past system behaviour. The

adaptation capability can be introduced by an online

modification of the prediction time J. Through this

mechanism, the closed-loop settling time is mod-

ified without affecting closed-loop stability. The

resulting controller is a generalization of the internal
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mode control (IMC) parametrization, where one of

the models employed by the controller parametriza-

tion is replaced by a predictor.

The paper is organized as follows: the basic

formulation of the PFC controller is derived and

the relationship with other control algorithms is

established in section 2. Closed-loop stability and

performance results are presented in section 3.

Then, the adaptation mechanism is discussed and

robust stability of the resulting closed-loop system is

studied in section 4. In section 5 two simple tuning

procedures are developed based on the results of

previous sections. In section 6 the implementation

of PFC to a linear model of a distillation tower and a

non-linear isothermal polymerization reactor are

presented. The results obtained with the PFC

controller are compared with those of PID control-

lers tuned using various techniques and a predictive

controller. Finally, the results are placed in perspec-

tive before the conclusions are presented in section

7.

2 PFC

The PFC control scheme consists of the following

three components:

(a) process output prediction;

(b) prediction update;

(c) control action computation;

around which the ensuing section is organized.

2.1 Output prediction

Given the local approximation to the process model

is assumed to be an ARMA model

y(k)~
~BB z{1
� �

1z~AA z{1ð Þ
u(k)ze(k) ð1Þ

where z21 is the unit delay operator, e(k) is the non-

measurable disturbance and the polynomials Ã(z21)

and B̃(z21) are written as

~AA z{1
� �

~
Xp

j~1

~aajz
{j, ~BB z{1

� �
~
Xp

j~0

~bbjz
{j ð2Þ

There is no loss of generality assuming that the

polynomials have the same order p, since trailing

coefficients can be zero. The model (1) can be

directly obtained from an identification procedure or

from a state space observer [16, 17]. Then, the J-

step-ahead prediction, based on the information

available at time k, is given by [18]

ŷy(kzJ , k)~
XJ

j~0

~bb
j
0yu(kzJ{j)z

Xp

j~1

~bbJ
jyu(k{j)

z
Xp

j~1

~aaJ
jyy(k{j)ze(kzJ) ð3Þ

where

~aaJ
jy~~aajz1z

XJ

l~1

~aal~aa
J{l
jy , ~bbJ

jy~
~bbjz1z

XJ

l~1

~aal
~bbJ{l

jy J¡p

ð4aÞ

~aaJ
jy~

Xp

l~1

~aal~aa
J{l
j , ~bbJ

jy~
Xp

l~1

~aal
~bbJ{l

jy Jwp ð4bÞ

Equation (3) explicitly contains future values of

e(k + J) which will be considered in the following

section.

2.2 Prediction update

A model cannot be expected to represent the true

process dynamics perfectly; but the typical model-

ling error obtained from available plant measure-

ments (e(k) 5 y(k) 2 ŷ(k)) as

e(k)~DA z{1
� �

y(k)zDB z{1
� �

u(k)zDS(k)

zd(k)zw(k) ð5Þ

is a combination of several components:

(a) parametric uncertainty DA(z21) and DB(z21)

arising from an inaccurate estimation of model

parameters;

(b) structural uncertainty DS(k) arising from the

exclusion of higher order, non-linear, process

dynamics from the model;

(c) unmodelled disturbance d(k) is excluded from

the model because it is unmeasurable;

(d) random measurement noise w(k).

The model error e(k) can be decomposed into two

components that should not be lumped together.

1. The stochastic component of the model error,

eS(k), which represents the observable effect of

the non-biasing residual features of inherent

model uncertainties. It can be characterized by a
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zero-mean value, whose statistical moments are

indicative of the model’s intrinsic integrity and it

should not be used to update the model predic-

tion.

2. The deterministic component of the model error,

eD(k), which represents the effect of all bias-

inducing features. It is the portion of the model

error e(k) that must be used to update the model

prediction to avoid permanent bias.

This idea leads to an update strategy in which eD(k)

is estimated from the available model error e(k) such

that the expected value of the complementary

component, eS(k), is required to be exactly zero.

From here, the model prediction update strategy

consists of two parts:

(a) current disturbance estimation: estimate of the

current disturbance effect êD(k, k) from e(k);

(b) disturbance prediction: predict the future values

of the disturbance effect êD(k + J, k) using êD(k,

k).

The current disturbance estimation problem can

be solved using an unbiased unknown input ob-

server that reconstructs eD(k) from a known model

and known inputs. Such input reconstruction can be

achieved through optimal filters that are designed to

decouple the residuals from the unknown inputs,

generating two groups of residuals: one with zero

mean and the others with unknown inputs [19–22].

The resulting filter is an observer whose gains satisfy

some geometrical conditions [23]. Once the un-

biased filter has been developed, the estimation of

the deterministic component of the unmeasurable

disturbance êD(k, k) is given by [17]

êeD(k, k)~
Xp

j~1

~bbjeu(k{j)z
Xp

j~0

~aajey(k{j) ð6Þ

Then, the disturbance prediction can be accom-

plished by building a disturbance predictor following

a similar procedure to that described in the previous

subsection

êeD(kzJ , k)~
XJ

j~0

~bb
j
0eu(kzJ{j)z

Xp

j~1

~bbJ
jeu(k{j)

z
Xp

j~0

~aaJ
jey(k{j)

where ~aaJ
je and ~bbJ

je are given by equation (4). Since the

value of future control actions are unknown, this

prediction is not realizable. To make it realizable a

statement about the future behaviour of the input

variable must be done. The simplest rule is to

assume that all the inputs will not move over the

next J-step-ahead horizon, i.e. u(k + j) 5 u(k + j 2 1)

j 5 1, …, J, the predicted process output is given by

êeD(kzJ , k)~~aaJeu(k)z
Xp

j~1

~bbJ
jeu(k{j)z

Xp

j~0

~aaJ
jey(k{j)

ð7Þ

where ~aaJe~
XJ

j~0
~bb

j
0e. Finally, the updated J-step-

ahead prediction ŷ(k + J, k) is given

ŷy(kzJ , k)~~aaJ u(k)zPu J , z{1
� �

u(k)zPy J , z{1
� �

y(k)

ð8Þ

where the predictors are given by

Py J , z{1
� �

~
Xp

j~1

~aaJ
jyz~aaJ

je

� �
z{j

Pu J , z{1
� �

~
Xp

j~0

~bbJ
jyz

~bbJ
je

� �
z{j

~aaJ~~aaJyz~aaJe

ð9Þ

Remark 1

The prediction (8) includes the future effects of bias-

inducing components of the unmeasurable distur-

bance, introducing an inferential action in the

control algorithms to be developed that improves

their performance.

Remark 2

If the process includes a measurable disturbance

d(k) such that

y(k)~
~BB z{1
� �

1z~AA z{1ð Þ
u(k)z

~CC z{1
� �

1z~AA z{1ð Þ
d(k)ze(k) ð10Þ

with ~CC(z{1)~
Xp

j~0
~ccjz

{j, the disturbance d(k) can

be incorporated into ŷ(k + J, k), leading to the

following expression for the updated prediction

ŷy(kzJ , k)~~aaJ u(k)zPy J, z{1
� �

y(k)zPu J , z{1
� �

u(k)

z ~aaJdzPd J , z{1
� �� �

d(k) ð11Þ
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where Pd(J , z{1) is given by equation (9). In this case,

the controller developed with this prediction will

include a feedforward action in its structure.

2.3 Control action computation

Once the output prediction has been updated, a

single control input move u(k) is computed by

minimizing a weighted combination of predicted

errors and control actions over a finite horizon [18]

L(k)

~
1

2
W (z{1) êe0(kzJ , k){~aaJ u(k)

� �2
zR(z{1)u2(k)

h i
ð12Þ

where W(z21) and R(z21) are stable weighting

functions that shape the time domain response.

Note that the setpoint signal r(k) can be replaced by

a filtered signal r*(k) 5 FR(z21)r(k) such that a new

tuning parameter, which shapes the system output

for setpoint tracking, can be introduced. Then the

control input is given by

u(k)~
1

~aaJ

H z{1
� �

W z{1ð Þ êe0(kzJ , k)~F z{1
� �

êe0(kzJ , k)

ð13Þ

where the conditional predicted error – the perfor-

mance deviation that results from u(k) 5 0 – is given

by

êe0(kzJ , k)~r(kzJ){Py J , z{1
� �

y(k)

{Pu J , z{1
� �

u(k){ ~aaJdzPd J , z{1
� �� �

d(k)

ð14Þ

and the polynomials H(z21) and W(z21) are given by

H(z{1)~
Xw

j~0

hjz
{j v¢w

W(z{1)~1z
Xv

j~1

wjz
{j

ð15Þ

The conditional predicted error ê0(k + J, k) includes

information of two sample times:

(a) the first time index, called prediction time,

indicates the number of samples ahead that

the system behaviour is predicted (J);

(b) the second time index, called computing time,

indicates the time when the prediction is

computed.

In this work the delay operator z21 of the

compensator F(z21) is applied to the computing

time such that

u(k)~
Xw

j~0

hjêe
0(k{jzJ , k{j){

Xv

j~1

wju(k{j) ð16Þ

where ê0(k 2 j + J, k 2 j) is the J–step-ahead condi-

tional predicted error based on measurement at time

k 2 j.

Thus, with the analytic expression in equation

(16), the PFC controller computes, at each time

instant k, the control action required to minimize

the deviation of the predicted process output from

the desired trajectory J steps ahead from the current

time instant after the output prediction has been

updated to reflect the effect of plant/model mis-

match, and conditioned on the fact that only the last

w output predictions are used. In other words, given

all the input changes, until the instant k, the

controller observes the value that would be reached

by the system output, if no future control action is

taken and then u(k) is computed such that the

performance index is minimized.

Remark 3

The weights W(z21) and R(z21) can be selected

independently of the system model structure. In this

way, the structure of the compensator F(z21) is not

connected with the structure of the system model

such that F(z21) can be a PI or PID controller while

the predictor is built using a high-order or even non-

linear model.

The PFC controller can be derived from the last

equation replacing the predicted error (14) with the

components in equation (16), the result is

u(z)~
H(z)zJ

~aaJW(z)zH(z)Pu J , zð Þ r(z)

{
H(z)Py J , zð Þ

~aaJW(z)zH(z)Pu J, zð Þ y(z)

{
H(z) ~aaJdzPd J , zð Þð Þ

~aaJW(z)zH(z)Pu J, zð Þd(z) ð17Þ

where the first and third terms correspond to the

feedforward components of u(k) due to the reference

signal r(k) and the measurable disturbance d(k)
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respectively, while the second term corresponds to

the feedback component due to y(k). The resulting

controller has a similar structure to a two-degree-of-

freedom controller plus a feedforward action, but

only three set of parameters to tune: the parameters

of polynomials H(z) and W(z) (v, w, hj, and wj) and the

prediction time J. This structure can be extended to a

true two-degree-of-freedom structure by prefiltering

the signals r and d such that the required degrees of

freedom are introduced to shape the system

response.

2.4 Relationship with other control algorithms

The PFC controller structure consists of a filter F(z)

with the J-step-ahead open-loop predictor

P J, zð Þ~Pu J , zð ÞzPy J , zð Þ~GGp(z) ð18Þ

and the system model G̃p(z) in the feedback path

(see Fig. 1)

C(z)~
F(z)

1zF(z) P J , zð Þ{~GGp(z)
� � ð19Þ

From this equation (and Fig. 1) we can see that the

structure of the PFC controller is similar to the IMC

parametrization [24]. The only difference is the

presence of the predictor P(J, z) instead of the

model. After some algebraic manipulations the PFC

controller C(z) can be rewritten as follows

C(z)~
Q(z)

1{Q(z)~GGp(z)

where Q(z) is the open-loop controller given by

Q(z)~
F(z)

1zF(z)P J , zð Þ

Then, the structure of the PFC controller includes

the open-loop controller Q(z) with the open-loop

predictor in the feedback path. Depending on the

value of the prediction time J and the parameters of

F(z) different controllers that have been studied in

the literature emerge.

Remark 4

Given the structure of the PFC controller (see Fig. 1

and equation (19)), the compensator F(z) can be

designed independently of the predictor P(J, z).

Therefore, the structure of F(z) can be fixed

independently of the system model G̃p(z) and its

parameters can be determined using a performance

index different from equation (12) (see examples 2

and 3 in this work and examples in [17] and [25]). In

this way, F(z) can have a PID structure while the

model is non-linear

For any J¢qtd=tSr different controllers are ob-

tained. For the case of JtS 5 td, the predictor P(J, z)

turns into the system model G̃p(z) without time

delay and the PFC controller becomes the Smith

predictor [26].

When JtS . td and the parameters of the filter are

w~1, w1~{1, v~0, c0~~aa{1
J , the resulting controller

is the extended horizon controller [27]

C(z)~
1

~aaJzP J , zð Þ{~GGp(z)
ð20Þ

which is a generalization of the minimum variance

controller. For the particular choice of the prediction

time J 5 N, where NtS is the open-loop settling time,

a family of predictive controllers can be derived. Its

main characteristic is to obtain a closed-loop

response that is at least as good as the normalized

open-loop response. If no other design condition is

demanded, the controller (20) becomes the predictor

controller [28]

C(z)~
1

~aaN{~GGp(z)
: ð21Þ

Fixing the parameter of the controller c0 5 k where

k > 1, the simplified model predictive controller [29]

C(z)~
1

k{1~aaN{~GGp(z)
ð22Þ

is obtained. The parameter k provides a way to

modify the closed-loop response and build dead–

time compensation into the controller, but it does

not provide offset-free responses in the presence of

modelling errors.Fig. 1 Structure of the predictive feedback controller
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From the previous paragraphs it is clear that the

PFC controller is a general structure that includes a

wide family of controllers, ranging from the classical

feedback controller to predictive controllers. Its

advantage relies on the inclusion of the prediction

time J as an additional tuning parameter and the use

of past conditional predicted errors (ê0(k 2 j + J,

k 2 j), j 5 0, 1, …, w) to compute the control action.

3 STABILITY AND PERFORMANCE ANALYSIS

3.1 Stability analysis

In the first stage a criteria for robust stability under

parametric uncertainty is derived. Later, the stability

criteria will be extended to polytopic representations

since a family of linear models can approximate a

non-linear system with a bounded error [30].

Assumption 1

In the following section it is assumed that the

unmeasurable disturbance term e(k) only includes

parametric uncertainty (DS(k) 5 0, d(k) 5 0)

e(k)^DA(z{1)y(k)zDB(z{1)u(k) ð23Þ

The first step to derive a stability criteria is to write

the characteristic closed-loop equation T(J, z) in

terms of the controller parameters, leading to

T (J , z)~ 1zA(z)ð Þ ~aaJW(z)zH(z)Pu J, zð Þf g

zB(z)H(z)Py J, zð Þ ð24Þ

Replacing the predictors Pu(J , z) and Py(J , z) by their

components, under Assumption 1, the characteristic

equation T(J, z) can be written in terms of the model

and controller parameters

T (J , z)

~ ~aaJW zð ÞzH(z)
Xp

j~1

~bbJ
j z{jz

Xp

j~1

bj{
~bbj

� �
z{j

" #( )

1{
Xp

j~1

ajz
{j

 !

z
Xp

j~1

bjz
{jH(z)

Xp

j~1

~aaJ
j z{jz

Xp

j~1

aj{~aaj

� �
z{j

" #

where aj and bj are the plant parameters. The

stability of the closed-loop system depends on both:

the prediction time J and the parameters of the

compensator F(z21), which must satisfy the follow-

ing relationship.

Theorem 1

Given a system controlled by a PFC controller, the

closed-loop system will be robustly stable if

1z
1{

Pv
j~1 wj

��� ���Pw
j~0 hj

�� ��
0
@

1
A~aaJw

Xp

j~1

~bbJ
j

��� ���z KPj j
Xp

j~0

~aaJ
j

��� ���

z
Xp

j~0

bj{
~bbj

��� ���z KPj j
Xp

j~1

aj{~aaj

�� �� ð25Þ

where KP is the process gain and ãJ is the Jth

coefficient of the model’s step response.

Proof

See [18].

When plant and the model are similar, equation

(25) becomes

1z
1{

Pv
j~1 wj

��� ���Pw
j~0 hj

�� ��
0
@

1
A~aaJw

Xp

j~1

~bbJ
j

��� ���z KPj j
Xp

j~0

~aaJ
j

��� ��� ð26Þ

and the stability region is the unit circle.

Remark 5

If the compensator F(z) includes an integral mode

Xv

j~1

wj

��� ���~1 ð27Þ

the stability condition (25) becomes

~aaJw

Xp

j~1

~bbJ
j

��� ���z KPj j
Xp

j~0

~aaJ
j

��� ���zXp

j~1

bj{
~bbj

��� ���
z KPj j

Xp

j~1

aj{~aaj

�� �� ð28Þ

This equation is the stability condition of the

extended horizon controller [27] and the closed-

loop stability only depends on the prediction time J.

This suggests that the prediction time J and the

parameters of the filter can be independently

selected such that both, prediction time and the
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filter parameters, independently guarantee the

closed-loop stability. This fact means that the

prediction time J should be selected using equation

(28), and the filter must be tuned as there is no time

delay in the system, because the predictor P(J, z) has

compensated it [31].

Closed-loop stability depends on compensator

parameters and prediction time J simultaneously.

Once the compensator has been tuned, the closed-

loop stability only depends on J, which is not unique

and can be used to insensitize the system with

respect to the value of the system time delay or

uncertainties. The set of stable prediction times SS is

defined as

SSTB~fV J [ N ^ J verify equation (25)g

For a stable system it is easy to verify that SSTB is

non-empty and it is given by the union of a finite

number of disjoint subsets. This situation only

happens for underdamped systems with big natural

frequency vn compared with the damping factor f

(f , 0.01vn and vn > 0.1). For this system the

dependency of stability horizon is not uniform.

However, for critical and overdamped systems the

set SS is unique (n 5 1) and the dependency of the

stability with J is uniform as it can be seen in the

following example.

Example 1

To analyse the dependency of closed-loop stability

with the prediction time let us consider the following

transfer function

Gp1(z)~
0:0395zz0:0094

z2{0:9578zz0:0067
ð29aÞ

Gp2(z)~
0:1044zz0:0883

z2{1:4138zz0:6065
ð29bÞ

Gp3(z)~
0:1129zz0:1038

z2{1:5622zz0:7788
ð29cÞ

These models are an overdamped system (Gp1), a

critical damped (Gp2), and an underdamped system

(Gp3) respectively. A graphical representation of the

stability condition (26) can be obtained by plotting

in the same figure the step response (aJ) of the

system and the right term of the stability condition

for a given filter

rJ~
1

1z 1{
Pv

j~1 wj

��� ���� �.Pw
j~0 hj

�� ��
Xp

j~1

bJ
j

��� ���z KPj j
Xp

j~1

aJ
j

��� ���
 !

ð30Þ

then, the stable prediction times are given by those

ones that verify the inequality aJ . rJ. Without loss of

generality, it will be assumed that the controller

includes an integral mode, then the closed-loop

stability will only depend on the prediction horizon J

(see equation (28)).

Figure 2(a) shows aJ and rJ of Gp1 for different

prediction horizons J. From this figure it is easy to

see that the dependency of closed-loop stability with

prediction time is uniform such that the closed-loop

system will be stable for aJ . 1/2KP, then the closed-

loop system is stable for J . 15.

Figure 2(b) shows the same data for Gp2. From this

figure it can be appreciated that for a critical damped

system the dependency of closed-loop stability with

the prediction time is still uniform. However, the

prediction time required to guarantee the closed-loop

stability is smaller, and aJ is bigger, than the one

required for an overdamped system (J . 5, aJ . 0.85).

Finally, Fig. 2(c) shows the same data for Gp3. The

non-uniform dependency of closed-loop stability

with prediction time can be seen in this figure. The

closed-loop system is unstable for J , 7, then the

closed-loop system becomes stable for J [ [7,8], then

it becomes unstable again for J [ [9,10,11] and finally

the closed-loop system becomes stable for J > 12.

The previous results are now extended to more

sophisticated uncertainties descriptions, which al-

low the inclusion of structural uncertainty (DS ? 0).

In practice, it is difficult – almost impossible – to

know the true model parameters, therefore control

engineers generally assume that a polytopic linear

model W of m linear time-invariant (LTI) models is

capable of describing with a given accuracy e the

system behaviour in a bounded domain. Then, the

robust stability problem becomes the problem of

finding the controller parameters (J, hj, and wj) such

that equation (25) is satisfied for each model of W.

Equation (25) becomes

1z
1{

Pv
j~1 wj

��� ���Pw
j~0 hj

�� ��
0
@

1
A~aaJw

Xp

j~1

~bbJ
j

��� ���z ~KK P

�� ��Xp

j~0

~aaJ
j

��� ���

z max
l [ ½1,m�

Xp

j~0

bjl{
~bbj

��� ���z K l
P

�� ��Xp

j~1

ajl{~aaj

�� �� !
ð31Þ
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This condition means that the closed-loop stability

for the worst model is guaranteed. From a geome-

trical point of view, this condition means that the

biggest uncertainty la~maxl [ ½1,m�lal is employed to

determine J, which leads to the smallest robust

stability region in order to stabilize the worst model.

The stability criteria derived in this section

(equations (25), (26), and (31)) guarantee the super-

stability of the closed-loop system [32], imposing a

higher lower bound for selecting the prediction time

J than the real one. The conservativeness of this

bound depends on the order of the system p, since

the poles of a superstable system are confined to an

area comprised by all regular polygons with 2k sides

(k 5 1,…, p) inscribed into the unit circle and having

one of their vertices at the point +1 [32]. Therefore,

there are always smaller prediction times than the

one provided by stability conditions which leads to a

stable closed-loop system. They can be found

through a direct search in the set

S~fV J [ N ^ J verify Jtd
¡Jg

where Jtd
~qtd=tSr and NtS is the open-loop settling time.

3.2 Performance analysis

Now, the effects of the PFC parameters on closed-

loop performance will be analysed. The PFC control

law is given by

u(k)~
1

~aaJ

W (z{1)

W (z{1)z~aa{2
J R(z{1)

êe0(kzJ , k)

~F(z{1)êe0(kzJ , k)

From this equation it can be seen that the weighting

functions (W(z21) and R(z21)) and the prediction

time J determine the closed-loop response features.

However, each of these parameters control some

distinct characteristics of the closed-loop response.

The weighting functions define the properties of

the desired closed-loop response (steady-state error,

robustness, overshoot, etc.) by defining the structure

and parameters of the compensator F(z). In this way,

the weighting functions determine the area where

the closed-loop poles will be located. Then, it can be

modified by changing the prediction time J, which

determines the overall controller gain.

The prediction time J is related to the closed-loop

settling time since it defines the time instant of the

system output that is controlled, ŷ(k + J, k). This fact

can be clearly seen if constant weighting functions

(W(z21) 5 1, R(z21) 5 r) are employed to design the

PFC control law.

Theorem 2

The prediction time J is the closed-loop settling time

for an error le(k), |l| , 1 and the control weight r is

related to l and J through

r~
l

1{l
~aa2

J ð32Þ

Proof

See [25]

When J~inf SSTBf g, the controller gain is the

largest, the controller drives the system output to

Fig. 2 Dependability of closed-loop stability with the prediction time J for different systems
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the reference in J steps and the controller becomes

the minimum–time control law for the deterministic

case or the minimum variance control law for

stochastic systems [28].

Remark 6

The PFC controller leads to stable closed-loop

systems, even for minimum phase systems, because

it avoids the cancellation of the unstable portion of

the systems by choosing the time when the system

output is controlled (the prediction time J). In this

way, a kind of spectral factorization of the system is

performed when the prediction time J is chosen and

the predictor P(J, z) is built.

If J is increased, the gain of the PFC controller is

reduced while the closed-loop settling time is

increased. For the particular choice of the prediction

time J 5 N the open-loop settling time, the controller

drives the system output to the reference in N time

intervals and only one significant control move is

observed (minimum–energy control law).

4 ADAPTATION MECHANISM

The predictor P(J, z) is the Youla parameter of the

PFC controller (see Section 2.4). If the prediction

time J is changed, the open-loop controller Q(z) –

and therefore the feedback controller C(z) – are

modified. In order to guarantee the closed-loop

stability Q(z) should be stable, therefore J should be

chosen such that it satisfied the stability conditions

(equations (25) or (31)).

The online modification of the prediction time J

can be employed as an adaptation mechanism to

improve the closed-loop performance. In particular,

it will be useful when non-linear systems, a linear

system with varying time delay and/or significant

uncertainties have to be controlled. In this case,

assuming that m LTI models represent the system in

a bounded domain, different J can be chosen for

different operating regions such that similar closed-

loop responses are obtained for each region.

It should be pointed out that the proposed

adaptation mechanism is related to switching sys-

tems due to the nature of the adaptation parameter

(J is an integer variable). However, it is different from

the classical switching control systems since the

Youla parameter (and therefore only the parameters)

of the controller is modified instead of changing the

entire controller. In this way, the different controllers

that emerge from changing J share their internal

states (past measured errors and control actions),

avoiding bumps and oscillations due to disconti-

nuities in the control law during the controller

switch.

Superstability [32] plays a crucial role in the

stability analysis of switching systems. It is a

necessary and sufficient condition to guarantee the

closed-loop stability [33]. Discrete superstable sys-

tems enjoy numerous important properties, for this

work the most relevant are:

(a) superstability guarantees the existence of a

positively invariant set;

(b) superstability implies the existence of a non-

quadratic Lyapunov function;

(c) superstability is retained in the time-varying

case.

Given a system controlled by a PFC controller that

changes its prediction time J, the closed-loop

stability is guaranteed under the following condi-

tions.

Theorem 3

Given a system controlled by a PFC controller whose

prediction time J(k) ;k . 0 and compensator para-

meters (wj and hj) satisfy the stability conditions

(equations (25) or (31)), the resulting closed-loop

system is exponentially stable for any bounded

reference or disturbance.

Proof

The stability conditions derived in section 3.1 imply

the superstability of the closed-loop system. There-

fore, if the reference trajectory is bounded (r(k) ( mR

mR . 0), the closed-loop error trajectories will mono-

tonically decrease for all future samples [32]

e(k)k k‘¡g(k)zs(k)max 0, e(0)k k‘{g(k)
� �

, kw0

ð33Þ

where

s(k)~ P
k

i~0
T (J(i), 1)k k1, g(k)~

B(1)H(1)k k1

1{s(k)
ð34Þ

Since the closed-loop error and input trajectory

converges monotonically in the norm, the resulting

closed-loop system is exponentially stable.

Equation (33) is a non-asymptotic estimates of the

closed-loop error e(k), and therefore of the system
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output y(k), for arbitrary initial conditions

(|e(k 2 j| ( mE mE . 0, j 5 1, …, w). Moreover, super-

stable systems are robust with respect to outliers in

the inputs [34]. Hence, the output of system

controlled by a PFC controller will monotonically

decrease in the norm until it enters into an invariant

set of size g(k), where it will remain. Then, it is clear

that any change in the prediction time J, that

satisfies stability conditions, will not produce chat-

tering in the system output induced by the adapta-

tion mechanism.

5 TUNING PROCEDURES

The PFC controller has several parameters that need

to be tuned: the prediction time J and the para-

meters of the compensator F(z) (order and coeffi-

cients of the polynomials H(z) and W(z)). From the

stability conditions derived in section 3.1 it is easy to

see that there is an interaction between the effects of

the compensator and the prediction time on closed-

loop stability that upsets the tuning procedure.

Therefore, the stability conditions induce the follow-

ing two design procedures.

1. Design procedure 1 (see Fig. 3) starts by fixing the

prediction time J, and then finding the compen-

sator F(z) such that robustness and performance

requirements are achieved.

2. Design procedure 2 (see Fig. 4) starts by designing

the compensator F(z) for the system without time

delay and, then the prediction time J is chosen

using one of the stability conditions.

When the system is non-linear or linear with

changes in the time delay value, one LTI controller

can not achieve the system’s robustness and perfor-

mance requirements, then an adaptation mechan-

ism that modifies the controller in a stable way is

needed. In this case, design procedure 1 is the more

suitable because it takes advantage of the modifica-

tion of the prediction time: different prediction

times can be chosen for different operating regimes,

which can be represented by one or several models

of a polytope W. Then, the compensator F(z) is

designed such that the system’s robustness and

performance requirements are achieved for each

operating regime. During the system operation, the

prediction time J will be changed to match the

operating regime according to the sequence defined

in the design stage.

Design procedure 2 is better for linear systems

with moderate or neglected uncertainties and

changes of time delay. In this case one LTI controller

is enough to achieve the system’s robustness and

performance requirements. Thus, a prediction time J

combined with a properly tuned compensator F(z)

are used to implement the PFC controller.

In the following sections these procedures will be

employed to develop the controllers in the following

examples.

6 ILLUSTRATIVE EXAMPLES

There are two key characteristics of the PFC

controller.

1. Its simplicity: It employs the same process char-

acterization used to design and tune PID con-

trollers; and it computes the control action from an

analytical expression that is easy to implement.

2. An improved performance: Because of its predictive

formulation, and its systematic approach to dis-

turbance estimation, it delivers improved perfor-

mance especially for time-delay-dominated pro-

cesses and for processes with noisy measurements.

Several examples will now be presented to

illustrate these characteristics and practical imple-

mentation.

Fig. 3 Design procedure 1

Fig. 4 Design procedure 2
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Example 2

This example considers a subset of the model of a

distillation column provided by Prett and Morari

[35], whose model is

y(s)~4:05
e{27s

50sz1
u(s)z1:44

e{27s

40sz1
d(s) ð35aÞ

t(s)~3:66
e{2s

9sz1
u(s)z1:27

1

6sz1
d(s) ð35bÞ

The process has two outputs: the primary output

(y(s)) that is dominated by the time delay and the

secondary output (t(s)) responds much faster to

manipulated and disturbance variables than y(s).

The controller performance is investigated under

disturbance rejection conditions. The control require-

ments for this problem are: a zero-offset steady-state

response and the shortest settling time possible for an

error of 0.02. The performance of the PFC controller is

compared with that of a cascade scheme, whose

controllers were tuned following the IMC design

procedure [36], and a RTD-A controller [15]. To

develop the controllers, the model (35) was discre-

tized using a zero-order holder in the input and a

sampling time of 1 s. The tuning parameters chosen

for the RTD-A controller are: hR 5 0.99, hT 5 0.1,

hD 5 0.01, hA 5 0.9; and the parameters of the con-

trollers for the cascade scheme are: KC 5 0.81, tI 5 9

(inner loop) and KC 5 0.20, tI 5 50, tD 5 10 (outer loop).

The PFC controller was designed following design

procedure 2 using an IMC procedure to design F(z).

The predictor for P(J, z) was developed using the

entire model of the process, such that the resulting

predictor can use the secondary output t(s) to

improve the prediction. The predictor was developed

from the disturbance estimator built around the

space state model of the process, assuming a

deadbeat behaviour in the observer. The prediction

time J was chosen using the stability condition (28)

J¢38

Since this stability condition is conservative, the

solution space (27 ( J ( 38) is explored and the

prediction time that provides the better performance

is J 5 28 (see Fig. 5). The remaining parameters of

the PFC controller are: v 5 1, w1 5 21, w 5 1,

h0 5 6.1728, and h1 5 25.8642.

Figure 5 shows the responses of the PFC controller

for different values of J. The first thing that can be

seen is that the system is stable for smaller values of J

than the ones predicted by stability condition (26).

This over-design is due to the conservative nature of

the stability criterion employed to develop the

stability conditions for the PFC controller. From this

figure it is easy to see the effect of J on the closed-loop

response, which was explained in section 3.2. Smaller

values of J lead to fast responses and aggressive

changes in u(k), while larger values of J lead to slower

responses and smoother changes in u(k).

Figure 6 shows the responses of the controllers

using the control schemes designed above to reject a

load disturbance change. The excellent disturbance

rejection capabilities of the predictive control algo-

Fig. 5 Closed-loop responses to a step change in disturbance for different values of the
prediction time J
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rithms can be clearly seen. The improvement of the

closed-loop performance is due to:

(a) a better estimation of the unmeasured distur-

bance (see Fig. 6(c));

(b) a better model of the effect of the disturbance

on the controlled output.

The first two issues are due to the estimation

technique employed to build the model of the PFC

controller. Unknown input observers use all avail-

able system information to reconstruct the distur-

bance input. Therefore, no assumption about the

disturbance model has being made to build the

estimator only model information has been em-

ployed. In this way, the model employed to build the

PFC controller contains all the available information.

Finally, the fact that the PFC controller employs

several predicted errors computed in previous

samples, introduces a stronger feedback action that

improves the closed-loop performance when un-

measured disturbances are presented in the system.

Figure 6(b) shows the control actions employed by

each control scheme to reject the disturbance. It is

easy to see the feedforward action introduced by the

disturbance estimators. The control action is applied

to the system as soon as the disturbance is detected

in the secondary output. The effect of the difference

between the disturbance model employed to build

the estimators and the real model can be also seen in

this figure. When the effect of the disturbance can be

measured in the output y the algorithms correct their

predictions, this effect can be also appreciated in the

manipulated variable: whereas the PFC controller

only corrects the effect of the estimator dynamic (the

peak around 50 s), the RTD controller corrects the

discrepancy in the disturbance model assumed

during the design phase (the peak around 50 s and

the subsequent changes until steady state is

achieved).

Example 3

This example considers the model of an isothermal

polymerization reactor discussed in Maner et al.

[37], where initiator flow rate is used to control the

number average molecular weight (NAMW). The

non-linear, four-state, state space model (available

in the cited reference) is used to represent the true

plant. Since the measurements of NAMW are not

available online, the case where an online visc-

ometer provides a surrogate measurement that

closely correlates with NAMW with a measurement

time delay of 0.1 h is considered.

The non-linear nature of the reactor is shown in

Fig. 7, where the NAMW open-loop responses to a

sequence of changes in the manipulated variable are

shown. This figure shows the dynamic responses to

a sequence of changes +0.1 m3/h, 20.1 m3/h,

20.01 m3/h, and +0.01 m3/h in the manipulated

variable FI about its nominal value 0.017 m3/h. From

this figure it is easy to see the non-linear nature of

the reactor. The operating space region considered

in this example is defined by the hypercube

x1(k){5:507j j¡5 kmol
�

m3

x2(k){0:133j j¡5 kmol
�

m3

x3(k){1975j j¡5000 kmol
�

m3

x4(k){49:38j j¡5 kg
�

m3

y(k){25000j j¡15000 kg=kmol

ð36Þ

Fig. 6 Closed-loop responses to a step change in disturbance for different control schemes (a)
system outputs, (b) manipulated variables, and (c) estimated disturbance for different
control schemes
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Then, it is possible to approximate the non-linear

model of the reactor within the specified working

space using four linear models, leading to an

estimated error e 5 0.7 [30]. The linear models were

determined from the NAMW step responses and

they have been discretized using a zero-order holder

in the input and a sampling time of 0.01 h is used.

They define the polytopic model W associated with

the non-linear behaviour in the considered operat-

ing region.

The controller performance is investigated under a

setpoint tracking conditions: beginning from an

initial operating steady-state value of 25 000 in

NAMW, a sequence of setpoint changes in intervals

of 2 h: from 25 000 to 40 000, returns to 25 000, then

steps to 10 000, and finally returns to 25 000. The

control requirements for this problem are: a zero-

offset steady-state response, an overshoot smaller

than 5 per cent and a settling time of 1.5 h for an

error of 2 per cent.

The performance of the PFC controller is com-

pared with that of an IMC tuned PID [36] and RTD-A

controller [15]. The tuning parameters of the PID

and RTD-A controllers are the same as those used in

Ogunnaike and Mukati [15] (the parameters for the

RTD-A controller are: hR 5 0.99, hT 5 0.1, hD 5 0.01,

hA 5 0.5; and the parameters for the IMC-PID

controller (with l 5 0.2) are: KC 5 27.17596106,

tI 5 0.31, tD 5 0.0594).

Model 3 was chosen to represent the reactor

because it corresponds to the more sensitive

operating region. Design procedure 1 was followed

to design the PFC controller in this example. The

compensator F(z) was designed using the IMC

procedure. Due to the non-linear nature of the

reactor, the predictor P(J, z) was built from an

estimator, which includes a disturbance observer for

the non-measurable disturbance. The disturbance is

assumed to enter into the control input (Gd(z) 5

Gp3(z)). The parameters chosen for the PFC con-

troller are: v 5 1, w1 5 21, w 5 1, h0 5 6.1728, h1 5

25.8642 and the prediction times for each model Jl

are summarized in Table 1.

While it can be seen from Fig. 8 that the PFC

controller provides better setpoint tracking than the

RTD-A and PID controllers, the other controllers

only outperform it in the first setpoint change. This

happens because of the model employed to develop

the controllers: while the performance of the RTD-A

and PID controllers have been optimized for this

change, the PFC was optimized over the entire

setpoint trajectory. It is interesting to see that neither

the RTD-A nor PID are able to achieve the setpoint in

the third change. This fact is due to the change in the

process gain (see Table 2). However, in spite of this

fact, the PFC achieved the setpoint for all changes

due to the adaptation capability introduced by the

modification of the prediction horizon J.

Figure 8(b) shows the control action employed by

each control scheme to track the setpoint changes. It

is easy to see the effect of the adaptation mechan-

ism, which modified the closed-loop behaviour

Fig. 7 Open-loop responses of the reactor concentration to step changes in the initiator flow
rate FI(t)

Table 1 Prediction time for each model of
the polytopic model

Model 1 Model 2 Model 3 Model 4

J 30 45 50 35
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without affecting the system stability. This effect can

be clearly seen in the third setpoint change, where

the behaviour of the manipulated variable is very

different: the PFC quickly follows the change

achieving the steady-state value while the other

controllers only rely on the integral mode to

eliminate the error.

Finally, Fig. 8(c) shows the disturbance estimated

by the PFC and RTD-A. In this figure it can be seen

that the disturbance observer employed by the PFC

tracks the changes in the system faster than the one

employed by the RTD-A, providing a better com-

pensation to the unmodelled dynamic and unmea-

surable disturbances. It should be noted that for this

example both controllers obtain information from

the same output, they only differ in the estimation

technique employed to reconstruct the unknown

input ẽ(k).

7 CONCLUSIONS

An alternative method for the design of discrete

controllers for SISO systems has been presented and

the application and benefits of this strategy has been

demonstrated. The PFC controller is a generalization

of the IMC structure. It combines the capacity of

predictive control algorithms for time-delay com-

Fig. 8 Closed-loop responses of the reactor to a sequence of step changes in the setpoint for
different control schemes (a) system output, (b) manipulated variables, and (c) estimated
disturbance for different control schemes

Table 2 Vertices of the polytopic model

Change Model obtained

Model 1

FI~0:0170, DFI~z0:0999
Gp1(z)~{1:5032|105 e{0:23s

0:115sz1

Model 2

FI~0:0254, DFI~{0:0999
Gp2(z)~{1:5032|105 e{0:42s

0:165sz1

Model 3

FI~0:0170, DFI~{0:0122
Gp3(z)~{1:2330|106 e{0:36s

0:175sz1

Model 4

FI~0:0086, DFI~z0:0122
Gp4(z)~{1:2330|106 e{0:26s

0:115sz1
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pensation, the effectiveness of inferential control

schemes for disturbance rejection, and the adapta-

tion capabilities of switching controllers. It is able to

maintain consistent setpoint and disturbance rejec-

tion performance over the range of non-linear

operation.

The contribution of the method presented here

include control methodology that:

(a) is straightforward to implement and use;

(b) requires minimal computation;

(c) relies on the linear control knowledge of plant;

(d) is reliable for a broad class of process applica-

tions.

Through various simulations the effect of tuning

parameters on the controller performance attributes

have been shown. The PFC controller was shown to

provide a better setpoint tracking and disturbance

rejection performance than several controllers, in-

cluding PID and predictive control algorithms.
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APPENDIX

Notation

A(z21), B(z21),

C(z21)

system polynomials

DA(z21), DB(z21),

DC(z21)

parametric uncertainty of the

model

Ã(z21), B̃(z21),

C̃(z21)

model polynomials

C(z) transfer function of the

feedback parametrization of the

controller

d(k) system measurable disturbance

ê0(k + J, k) J-step-ahead conditional

predicted error computed at

time k

F(z) compensator of the PFC

controller

G̃p(z) system model transfer function

J prediction horizon

Jl prediction horizon for the lth

model of the polytope W
J(i) prediction horizon at time i

L(k) performance index employed

to design the controller

m number of models belonging to

polytope W
M number of operating regimes of

the system

p order of the model

Q(z) transfer function of the IMC

open-loop parametrization of

the controller

P(J, z) updated J-step-ahead predictor

of system output

Pl(Jl, z) updated J-step-ahead predictor

of lth model of the polytopic

model W
Py(J , z{1), Pu(J , z{1)

Pd J , z{1
� � components of the updated

J-step-ahead predictor of
system output

R(z21), W(z21) weighting functions of

performance index L(k)

SSTB set of prediction times J that
lead to stable closed-loop
systems

DS(z21) structural uncertainty of the

model

T(J, z) characteristic equation of the

closed-loop system for a

prediction horizon J

u(k) system input variable

v, w order of the compensator

polynomials

W polytopic model used to model
a system

y(k) system output variable

ŷ(k + J, k) J-step-ahead system output

prediction

z21 delay operator

aj, bj, cj parameters of the system

ãj, b̃j, c̃j parameters of the model

~aal
jy,~bbl

jy,~ccl
jy parameters of the l-step-ahead

system output predictor
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ãje, b̃je parameters of the non-measur-

able disturbance estimator
~aal

je,
~bbl

je parameters of the l-step-ahead
non-measurable disturbance
predictor

d(k) non-measurable disturbance of

the system

e approximation error of the

polytopic model W
e(k) non-measurable disturbance of

the model at time k

eD(k) deterministic component of the

non-measurable disturbance of

the model

eS(k) stochastic component of the

non-measurable disturbance of

the model

f damping factor of the system

hj, wj parameters of the compensator

polynomials

hA, hD, hR, hT parameters of the RTD-A

controller

H(z21), W(z21) numerator and denominator of

the compensator F(z)

k tuning parameter of the

simplified model predictive

controller

mR, mE bound of the reference and

error trajectories

tI, tD, KC parameters of the PID

controller

vn natural frequency of the system
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