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In this paper two-dimensional systems with static bifurcations are considered. An analysis
of the bifurcation behavior is proposed using a frequency domain approach. The analyzed
bifurcations are known as elementary since they are the building blocks to understand other
more complex singularities.

1. Introduction

The defining conditions which cause the appear-
ance of static and dynamical bifurcations are es-
sentially important for the proper design of the
engineering systems. In almost all cases, it is de-
sirable to avoid the conditions which generate more
“complex” dynamics, like the appearance of multi-
ple equilibrium solutions (related to static bifurca-
tions), and oscillatory solutions (related to dynam-
ical bifurcations). In both cases, the bifurcation
condition states that one eigenvalue (or a pair of
eigenvalues) of the linearized system must cross the
imaginary axis, causing (or not) a stability change
of the equilibrium point. For the case of a nonlin-
ear system, it is necessary to analyze the “leading”
terms which follow the linear one in order to classify
the bifurcation.

In this article, the applied methodology comes
from the theory of multivariable control systems
known as the frequency domain method. The the-
ory for the stability analysis in linear systems was
completed by MacFarlane and Postlethwaite [1977],

and its applications were pointed out by Edmunds
[1979]. In [Mees & Chua, 1979] and [Mees, 1981],
the problem of analyzing the dynamical bifurca-
tion (Hopf bifurcation) was dealt with, while in
[Moiola & Chen, 1993, 1996], some defining con-
ditions (generic) for the static bifurcations were es-
tablished. Moreover, a closely related approach was
used by Llibre and Ponce [1996] and Llibre and
Sotomayor [1996] to classify the global behavior of
certain static bifurcations in piecewise-linear con-
trol systems.

The present work extends some previous re-
sults stated in [Moiola et al., 1997] with the aim
of classification of different elementary bifurcations
by using the frequency domain formalism. These
results should be of interest for bifurcation con-
trol of elementary bifurcations, where some of
the most representative works have been presented
by Abed and Fu [1986, 1987], Kang and Krener
[1992], Kang [1998] and Kang et al. [1999], although
they have used the more traditional time domain
formulation.
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2. Preliminaries

Consider a general n-dimensional nonlinear system

ẋ = f(x; µ) ,

x(0) = 0 ,
(1)

where µ is a real parameter and f satisfies adequate
conditions to guarantee the existence and unique-
ness of this initial value problem.

If the previous equation is written in a state-
variable form, the nonlinear system (1), results in

ẋ = A(µ)x+B(µ)g(y; µ) ,

y = −C(µ)x ,

x(0) = 0 ,

(2)

where A is an n×n matrix, which can be arbitrarily
chosen for convenience (invertible and stable for all
values of µ), B and C are n × p and m × n ma-
trices, respectively, and g(y; µ) is a p× 1 nonlinear
vectorial function which belongs to C4.

Introducing in the system (2) a state-feedback
control u = g(y; µ), a linear system is obtained with
a nonlinear control variable as follows

ẋ = A(µ)x+B(µ)u ,

y = −C(µ)x ,

u = g(y; µ) .

(3)

Taking Laplace transform in (3), with zero-
initial condition, yields

L(y) = −G(s; µ)L(g(y; µ)) , (4)

whereG(s; µ) = C(µ)[sI−A(µ)]−1B(µ) is the usual
transfer matrix of the linear part of (3). From the
last equation, the original problem can be solved for
the variable y (contained in L(.)) in the so-called
frequency domain. Therefore if x̂(t; µ) is an equi-
librium solution of (3), then ŷ(t; µ) = −C(µ)x̂(t; µ)
can be considered as an equilibrium solution in the
frequency domain. Taking inverse Laplace trans-
form in (4), yields

ŷ(t; µ) = −G(0; µ)g(ŷ(t; µ); µ) , (5)

where −G(0; µ) = C(µ)[A(µ)]−1B(µ) .
Linearizing (3) about the equilibrium ŷ(t; µ),

a system with the following transfer matrix is
obtained

G(s; µ)J(µ) , (6)

where J(µ) = (∂g/∂y)|y=ŷ .

An application of the generalized Nyquist sta-
bility criterion [MacFarlane & Postlethwaite, 1977],
where s = iω gives the following result

Lemma 1. If an eigenvalue of the Jacobian of the
system (3), in the time domain, takes a purely imag-
inary value iω0 at a particular value µ = µ0, then
the corresponding eigenvalue of the constant matrix
G(iω0; µ0)J(µ0) in the frequency domain must take
the value −1 + i0 at µ = µ0.

Let λ̂ = λ̂(iω; µ) be an eigenvalue of the matrix

G(iω; µ)J(µ) which satisfies λ̂(iω0; µ0) = −1 + i0.
Fixing µ = µ̃ and varying ω, the locus of the eigen-
value or “eigenlocus” is obtained. When there is
a dynamical bifurcation, this locus is analyzed for
ω0 6= 0. Thus, a real zero eigenvalue, which is a nec-
essary condition for static bifurcation in the time
domain formulation, is associated with an eigenlo-
cus that crosses the point −1 + i0 at ω0 = 0 in the
frequency domain counterpart.

In general, the eigenvalues λ(s; µ) of (6) are the
solutions of the following algebraic equation

h(λ, s; µ) = det(λI −G(s; µ)J(µ)) = 0 (7)

or

h(λ, s; µ) =
K∑
i=0

ai(s; µ)λi = 0 , (8)

where K = min(m, p) (the matrices G and J have
ranks at most K), aK(s; µ) ≡ 1 and the remaining
coefficients ak(s; µ) are rational functions in s as
follows:

ak(s; µ) =

pk∑
l1=0

βpk−l1,k · spk−l1

qk∑
l2=0

αqk−l2,k · sqk−l2
,

k = 0, 1, . . . , K − 1 ,

where βi1,k(µ) and αi2,k(µ) are real functions of
the parameter µ. From now on, suppose that the
functions ak(s; µ) have no poles on the imaginary
axis. Moreover, consider that λ = −1 is a simple
root of (7).

Taking into account Lemma 1 and imposing the
condition λ = −1 in (8), a necessary relationship
between s = iω and µ to find a bifurcation point is
obtained. Therefore

h(−1, iω; µ) = (−1)K +
K−1∑
k=0

(−1)kak(iω; µ) = 0 .

(9)
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By separating the expression (9) into real (<)
and imaginary (=) parts, the following is attained

F1(ω, µ) = <{h(−1, iω; µ)}

= (−1)K +
K−1∑
k=0

(−1)k<{ak(iω; µ)}

= 0 , (10)

F2(ω, µ) = ={h(−1, iω; µ)}

=
K−1∑
k=0

(−1)k={ak(iω; µ)} = 0 . (11)

It is possible to set up bifurcation conditions
upon F1, F2, and their partial derivatives to find
and classify singular points [Moiola & Chen, 1993].

Definition 1. A static bifurcation condition is ob-
tained satisfying (10) and (11) with ω0 = 0.

Proposition 1. To have a static bifurcation con-
dition, it is necessary that F1(0, µ) = 0 [Moiola &
Chen, 1996].

3. Two-Dimensional Systems

It is attempted to study two-dimensional systems as
(1) (with zero-initial condition, and an equilibrium
point x̂ = 0), whose Jacobian evaluated at x̂ has one
negative eigenvalue and the other equals to zero.
The defining conditions correspond to the named
elementary static bifurcations. By calculating the
nondegeneracy conditions, the type of bifurcation
involved can be determined. This section has the
goal of specifying the frequency formulation which
allows to calculate the aforementioned conditions.

Consider the general system in a state-variable
formulation

ẋ1 = f1(x1, x2; µ) ,

ẋ2 = f2(x1, x2; µ) .
(12)

It is known that, changing coordinates and mak-
ing use of the invariant manifolds, it is possible to
rewrite the system (12) locally, as

ẏ1 = g1(y1; µ) ,

ẏ2 = −β(µ)y2 ,
(13)

where β(µ) > 0 ∀µ. It is supposed that when
µ crosses 0, the number of equilibrium solutions

changes. So, there is a bifurcation point at (ŷ1, µ) =
(0, 0). Henceforth, the bifurcation analysis of the
system (12) at (0, 0), will be directly connected with
the respective analysis of the system (13).

By carrying out a realization of the system (13),
just to solve it in the frequency domain, the follow-
ing is obtained(

ẏ1

ẏ2

)
= A

(
y1

y2

)
+Bu(z1, z2; µ) ,

where

A =

−1 0

0
−β(µ)

2

 , B = C =

(
1 0
0 1

)

and as
(
z1
z2

)
= −C

(
y1

y2

)
=
(−y1

−y2

)
results

u(z1, z2; µ) =

(
u1(z1, z2; µ)

u2(z1, z2; µ)

)
,

=

g1(−z1; µ)− z1

β(µ)

2
z2

 .

In this case

G(0, µ) =

1 0

0
2

β(µ)


and according to (5), the following nonlinear system
must be solved in the frequency domain

−
(
ẑ1

ẑ2

)
=

1 0

0
2

β(µ)


g1(−ẑ1; µ)− ẑ1

β(µ)

2
ẑ2

 .

The equilibrium solutions ẑ =
(
ẑ1
ẑ2

)
are qual-

itatively coincident with those of system (13),
specifically

g1(−ẑ1; µ) = 0 ,

ẑ2 = 0 .

Then, the Jacobian of the system is given by

J(µ) =
∂u

∂z

∣∣∣∣
z=ẑ

=


∂u1

∂z1

∂u1

∂z2

∂u2

∂z1

∂u2

∂z2


∣∣∣∣∣∣∣∣∣
z=ẑ

=


∂g1(−z1; µ)

∂z1

∣∣∣∣
z1=ẑ1

− 1 0

0
β(µ)

2

 .



680 G. R. Itovich & J. L. Moiola

By using Lemma 1, the Jacobian of the system (13)
evaluated at the equilibrium has a zero eigenvalue,
it is known that, in the frequency domain, an eigen-
locus of the matrix G(0; µ)J(µ) crosses −1 + i0.

Carrying out the aforementioned realization,
the type of static bifurcation found in the frequency
domain will be analyzed, through h(−1, 0; µ) =
F1(0, µ) = 0. In this case and in agreement with
the general definition of h(λ, s; µ) given in (7),

h(−1, 0; µ) = det(−I −G(0; µ)J(µ))

= 2
∂g1(−z1; µ)

∂z1

∣∣∣∣
z1=ẑ1

. (14)

Henceforth, for convenience, it will be consid-
ered F1(0, µ) = h(−1, 0; µ) = F1(z1; 0, µ) as a
two-variable function of z1 and µ, which must be
evaluated at (ẑ1, µ) = (0, 0). Moreover, it is known
that, depending on the type of static bifurcation
which appears in (13), the function g1 with its par-
tial derivatives must satisfy certain precise condi-
tions [Glendinning, 1994] at the bifurcation point
(0, 0).

In accordance with (14), as the function F1 is
known, the type of static bifurcation which appears
in (12) will be determined. Thus, the following the-
orems can be stated:

Theorem 1 (Saddle-Node Bifurcation). Suppose
that F1(ẑ1, 0, 0)= 0, U = (∂g1(−z1; µ)/∂µ)|(ẑ1 ,0) 6=
0, and V = (∂/∂z1)F1(z1; 0, µ)|(ẑ1,0) 6= 0. The
system (13) has a continuous curve of equilibrium
points in a neighborhood of (y1, µ) = (0, 0) which is
tangent to µ = 0 at (0, 0). If UV < 0 (respectively
UV > 0) there are no stationary points near (0, 0)
if µ < 0 (respectively µ > 0) while for each value
of µ > 0 (respectively µ < 0), in some sufficiently
small neighborhood of µ = 0, there are two equilib-
rium points near y1 = 0. For µ 6= 0, both equilib-
rium points are hyperbolic, the upper one is unstable
and the lower is stable if V > 0. The stability prop-
erties are reversed if V < 0.

Proof. This statement is the frequency domain
counterpart of the result proved in [Glendinning,
1994]. �

Example 1. Consider the product-system [Hale &
Koçak, 1991]

ẏ1 = µ+ y2
1 ,

ẏ2 = −y2 .

A realization of the given system is proposed,
as follows,

A =

−1 0

0 −1

2

 , B = C = I ,

u(z1, z2; µ) =

−z1 + µ+ z2
1

z2

2



=

−z1 + g1(−z1; µ)

z2

2

 .

Due to (14),

F1(z1; 0, µ) = 4z1 .

Provided that ẑ1 = 0, F1(ẑ1, 0, 0) = 0, U = 1
and V = 4, in accordance with Theorem 1, there is
a saddle-node bifurcation at (ŷ1, µ) = (0, 0). The
equilibrium points, which exist if µ < 0, are hyper-
bolic, the upper one is unstable and the lower one
is stable because V > 0.

Theorem 2 (Transcritical Bifurcation). Suppose
that F1(ẑ1, 0, 0) = 0, U = (∂g1(−z1; µ)/∂µ)|(ẑ1,0) =
0, V = (∂/∂z1)F1(z1; 0, µ)|(ẑ1,0) 6= 0 and if W =

(∂/∂µ)F1(z1; 0, µ)|(ẑ1,0), W
2 − V · (∂2g1(−z1; µ)/

∂µ2)|(ẑ1,0) > 0. The system (13) has two curves of
equilibrium points in a neighborhood of (y1, µ) =
(0, 0). These curves intersect transversely at (0, 0)
and for each µ 6= 0 sufficiently small, there are two
hyperbolic equilibrium points near y1 = 0. The
upper equilibrium point is stable (respectively
unstable) and the lower equilibrium point is unstable
(respectively stable) if V < 0 (respectively V > 0).

Proof. This statement is the frequency domain
counterpart of the result proved in [Glendinning,
1994]. �

Example 2. Consider the product-system [Hale &
Koçak, 1991]

ẏ1 = µy1 + y2
1 ,

ẏ2 = −y2 .

A realization of the given system is proposed, as
follows,

A =

−1 0

0 −1

2

 , B = C = I ,
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u(z1, z2; µ) =

−(µ+ 1)z1 + z2
1

z2

2

 ,

=

−z1 + g1(−z1; µ)

z2

2

 .

Due to (14),

F1(z1; 0, µ) = −2µ+ 4z1 .

Provided that ẑ1 = 0, F1(ẑ1, 0, 0) = 0, U = 0, V =
4, W = −2, W 2 − V · (∂2g1(−z1; µ)/∂µ2)|(ẑ1,0) =
4 > 0, in accordance with Theorem 2, there is a
transcritical bifurcation at (ŷ1, µ) = (0, 0). There
are two equilibrium points for each µ 6= 0 suffi-
ciently small. These points are hyperbolic, the up-
per one is unstable and the lower is stable because
V > 0.

Theorem 3 (Pitchfork Bifurcation). Suppose that
F1(ẑ1, 0, 0) = 0, U = (∂g1(−z1; µ)/∂µ)|(ẑ1,0) = 0,
V = (∂/∂z1)F1(z1; 0, µ)|(ẑ1,0) = 0, W = (∂/

∂µ)F1(z1; 0, µ)|(ẑ1,0) 6= 0 and X = (∂2/∂z2
1)F1(z1;

0, µ)|(ẑ1,0) 6= 0. The system (13) has two curves
of equilibrium points in a neighborhood of (y1, µ) =
(0, 0). One of these passes through (0, 0) trans-
verse to the axis µ = 0 while the other is tangential
to µ = 0 at (0, 0). If WX < 0, then for each µ
with |µ| sufficiently small, there exist three equilib-
rium points near y1 = 0 if µ > 0 (the outer pair are
stable and the inner point is unstable if X > 0) and
an equilibrium point near y1 = 0 if µ < 0 (stable
if X > 0). The stability properties are reversed if
X < 0. On the other hand, if WX > 0, then there
exist three equilibrium points near y1 = 0 if µ < 0
(the outer pair is unstable and the inner point is sta-
ble if X < 0) and an equilibrium point near y1 = 0 if
µ > 0 (unstable if X < 0). The stability properties
are reversed if X > 0.

Proof. This statement is the frequency domain
counterpart of the result proved in [Glendinning,
1994]. �

Example 3. Consider the product-system [Hale &
Koçak, 1991]

ẏ1 = µy1 − y3
1 ,

ẏ2 = −y2 .

A realization of the given system is proposed, as

follows,

A =

−1 0

0 −1

2

 , B = C = I ,

u(z1, z2; µ) =

−(µ+ 1)z1 + z3
1

z2

2



=

−z1 + g1(−z1; µ)

z2

2

 .

Due to (14),

F1(z1; 0, µ) = −2µ+ 6z2
1 .

Provided that ẑ1 = 0, F1(ẑ1, 0, 0) = 0, U = 0,
V = 0, W = −2 and X = 12 > 0, in accordance
with Theorem 3, there is a pitchfork bifurcation at
(ŷ1, µ) = (0, 0). Given that WX < 0, then there
exist three equilibrium points near ŷ1 = 0 if µ > 0
(the outer pair is stable and the inner point is un-
stable) and an equilibrium point near ŷ1 = 0 if
µ < 0 (which is stable). The stability conditions
arise from the condition X > 0.

It must be emphasize that the described static
bifurcation analysis can be applied directly to
product-systems, specifically

ẋ1 = f1(x1; µ) ,

ẋ2 = f2(x2; µ) ,

when the linearization about the equilibrium point
has one negative eigenvalue and the other equals to
zero. However, notice that it is possible to apply the
previous results to more general systems, through
an “appropriate” first reduction. Connected to this,
some more complex examples are developed.

Example 4. Consider the system [Strogatz, 1994]

ẋ1 = x2 − 2x1 ,

ẋ2 = µ+ 1 + x2
1 − x2 .

The bifurcation analysis of this example can be de-
veloped via the bifurcation equation of the system
[Hale & Koçak, 1991]. In this case, it yields

ẏ1 = µ+ 1 + y2
1 − 2y1 = g1(y1; µ) .
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Due to (14),

F1(z1; 0, µ) = 4z1 + 4 .

Provided that ẑ1 = −1 and µ = 0, F1(ẑ1, 0, 0) = 0,
U = 1 and V = 4, in accordance with Theorem 1,
there is a saddle-node bifurcation at (x̂1, µ) =
(ŷ1, µ) = (1, 0). The equilibrium points, which ex-
ist if µ < 0, are hyperbolic, the upper one is un-
stable and the lower one is stable. These results
agree with those which can be obtained in the time
domain counterpart.

Example 5. Consider the system [Strogatz, 1994]

ẋ1 = x2 + (µ− 2)x1 + sin(x1) ,

ẋ2 = x1 − x2 .

The bifurcation equation of the system is

ẏ1 = y1 + (µ− 2)y1 + sin(y1) = g1(y1; µ) .

Due to (14),

F1(z1; 0, µ) = 2(1− (µ+ cos(z1))) .

Provided that ẑ1 = 0 and µ = 0, F1(ẑ1, 0, 0) = 0,
U = 0, V = 0, W = −2, X = 2 and WX < 0, in
accordance with Theorem 3, there is a pitchfork bi-
furcation at (x̂1, µ) = (ŷ1, 0) = (0, 0). Then, there
exist three equilibrium points near x̂1 = 0 if µ > 0
and an equilibrium point near x̂1 = 0 if µ < 0.
Provided that X > 0, when µ > 0, the outer pair
is stable and the inner point is unstable and when
µ < 0, the equilibrium point is stable. Once again,
these results agree with those that can be obtained
with the usual analysis of the given system in the
time domain.

Henceforth, the appearance of cusp points will
be analyzed for two dimensional systems in the
frequency domain formulation. Consider the case
of a two-dimensional system as Eq. (12) but now
µ = (µ1, µ2) ∈ R2, x̂ = (x̂1, x̂2) = (0, 0) is an
equilibrium point, and the Jacobian evaluated at
this point has one negative eigenvalue and the other
equals to zero. Moreover, when µ varies in a neigh-
borhood of 0, the number of equilibrium solutions
changes. Thus, the given system has a bifurcation
point at (x̂, µ) = (0, 0).

Again, it is possible to rewrite the system (12)
locally, as in Eq. (13), where now β(µ) > 0 ∀µ ∈
R2. Thus, the bifurcation point can be completely
analyzed in the (y1, µ)-space.

Consider that the function g1 has a Taylor ex-
pansion about the origin like

g1(y1; µ) = a(µ) + b(µ)y1 + c(µ)
y2

1

2!

+ d(µ)
y3

1

3!
+G(y1; µ) , (15)

where a(0) = b(0) = c(0) = 0, d(0) 6= 0 and ∀ ε > 0
there exist δ and η such that |G(y1; µ)| < ε|y1|3
when |y1| < δ, ‖µ‖ < η.

Carrying out a realization similar to the one
done before to (13), follows that

h(−1, 0; µ) = 2
∂g1(−z1; µ)

∂z1

∣∣∣∣
z1=ẑ1

where ẑ = (ẑ1, 0) is an equilibrium solution in the
frequency domain.

Now, the functional F1(0, µ) depends on z1 and
µ = (µ1, µ2), and must be evaluated at (ẑ1, µ) =
(0, 0), which is the bifurcation point of the system
(12). According to the results stated in [Hale &
Koçak, 1991], the following theorem can be estab-
lished, which allows to set up sufficient conditions to
find a cusp point bifurcation via frequency analysis:

Theorem 4 (Cusp Singularity). Suppose that
F1(ẑ1, 0, 0) = 0, T = g1(−z1; µ)|(ẑ1,0) =
0, V = (∂/∂z1)F1(z1; 0, µ)|(ẑ1,0) = 0, X =

(∂2F1(z1; 0, µ)/∂z2
1)|(ẑ1,0) 6= 0 and the Jacobian

J(g1, F1)(µ1, µ2) =

∣∣∣∣∣∣∣∣∣
∂g1

∂µ1

∂g1

∂µ2

∂F1

∂µ1

∂F1

∂µ2

∣∣∣∣∣∣∣∣∣
(ẑ1,0)

6= 0 .

The dynamics of the system (12) is defined through
a cusp in the (µ1, µ2) plane. The equation of the
bifurcation curve is approximately given by

2[F1(ẑ1; 0, µ)]3 = −9X[g1(−ẑ1; µ)]2 .

Proof. This statement is the frequency domain
counterpart of the result proved in [Hale & Koçak,
1991]. �

Example 6. Consider the following product-
system

ẏ1 = µ1 + µ2y1 + y3
1 ,

ẏ2 = −y2 .
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It must be observed that, in this case,

g1(−z1; µ) = µ1 − µ2z1 − z3
1 ,

and then

F1(z1; 0, µ) = −2(µ2 + 3z2
1) .

Provided that ẑ1 = 0 and µ = 0, F1(ẑ1, 0, 0) = 0,
T = 0, V = 0, X = −12, and as

J(g1, F1)(µ1,µ2) =

∣∣∣∣∣∣∣∣∣
∂g1

∂µ1

∂g1

∂µ2

∂F1

∂µ1

∂F1

∂µ2

∣∣∣∣∣∣∣∣∣
(ẑ1,0)

=

∣∣∣∣∣1 0
0 −2

∣∣∣∣∣ = −2 6= 0 ,

all the conditions established in Theorem 4 are sat-
isfied, so the considered system has a cusp point
bifurcation at (ŷ1, µ) = (0, 0) and the defining bi-
furcation curve is approximately given by

2[−2µ2)]3 = −9(−12)[µ1]2 ,

4µ3
2 = −27µ2

1 .

Example 7. Consider the system analyzed in
[Moiola & Chen, 1996], the mathematical model
of a continuously stirred tank reactor (CSTR) in
which a first-order irreversible, exothermic reaction
A → B takes place. Under certain convenient con-
ditions [Uppal et al., 1974], the system can be writ-
ten in its dimensionless form as

ẋ1 = −x1 +D(1− x1) exp(x2) ,

ẋ2 = −(1 + β)x2 + B̃D(1− x1) exp(x2) .

It is known that this system has an equilib-
rium point at x̂ = (x̂1, x̂2) = (1/2, 2) and that
there is a bifurcation point at (x̂; B̃, D, β) =
(1/2, 2, 4, exp(−2), 0) since the eigenvalues of the
Jacobian evaluated at this point are 0 and −1. The
bifurcation analysis can be developed via the bifur-
cation equation of the given system. In this case,
solving the first equation for x1, results

x1 =
D exp(x2)

1 +D exp(x2)
,

dividing the second equation by (1+β), which is al-
ways nonzero, and substituting the last expression
of x1 into it, yields

−x2 +
B̃D

(1 + β)

exp(x2)

(1 +D exp(x2))
= 0 .

Calling B1 = B̃/(1 + β), follows

g2(x2; B1, D) = B1D exp(x2)− x2(1 +D exp(x2))

= 0

which is the bifurcation equation of the CSTR
system.

Thus, the study of the equilibrium points and
their stability types can be obtained from the fol-
lowing scalar differential equation

ẏ2 = g2(y2; B1, D)

= B1D exp(y2)− y2(1 +D exp(y2)) = 0

which are in one-to-one correspondence with those
of the original system.

Provided that

F1(z2; 0, B1, D)=2
∂g2(−z2; B1, D)

∂z2

=2[1+D(1−z2−B1) exp(−z2)] ,

where ẑ2 = −2, B1 = 4 and D = exp(−2) follows

F1(z2; 0, B1, D)|(ẑ2,4,exp(−2)) = 0 ,

T = g2(−z2; B1, D)|(ẑ2,4,exp(−2)) = 0 ,

V =
∂

∂z2
F1(z2; 0, B1, D)

∣∣∣∣
(ẑ2,4,exp(−2))

=2D exp(−z2)(−2+z2+B1)|(ẑ2,4,exp(−2)) =0 ,

X=
∂2F1(z2; 0, B1, D)

∂z2
2

∣∣∣∣
(ẑ2,4,exp(−2))

=2D exp(−z2)(3−z2−B1)|(ẑ2,4,exp(−2)) =2 6=0

and the Jacobian

J(g2, F1)(B1,D) =

∣∣∣∣∣∣∣∣∣
∂g2

∂B1

∂g2

∂D

∂F1

∂B1

∂F1

∂D

∣∣∣∣∣∣∣∣∣
(ẑ2,4,exp(−2))

=

∣∣∣∣∣ 1 2 exp 2
−2 −2 exp 2

∣∣∣∣∣ = 2 exp 2 6= 0 .

According to the hypothesis stated in Theorem 4 in
the frequency formulation, it can be asserted that
the dynamics of the considered CSTR system is de-
fined through a cusp point in the (D, B1) plane, as
is shown in Fig. 1.
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Fig. 1. Continuation of fold points ending in a cusp point
in the CSTR.

The results stated in [Hale & Koçak, 1991] for
(15) can be extended from the time domain, in or-
der to determine the existence of the swallowtail
singularity that appears in the study of the bifur-
cation set of a three-parameter perturbation of the
quartic degeneracy as

g1(y1; µ) = a(µ) + b(µ)y1 + c(µ)
y2

1

2!

+ d(µ)
y3

1

3!
+ e(µ)

y4
1

4!
+G(y1; µ) ,

under certain conditions, similar to those consid-
ered before. This is attained through the following
two lemmas.

Lemma 2. Let be ẏ1 = g1(y1; λ), λ = (λ1, λ2, λ3)
and

g1(y1; λ) = λ1 + λ2y1 + λ3
y2

1

2!
+ d(λ)

y3
1

3!

+ e(λ)
y4

1

4!
+G(y1; λ) , (16)

where d(0) = 0, e(0) 6= 0 and ∀ ε > 0 there exist δ
and η such that |G(y1; λ)| < ε|y1|4 when |y1| < δ,
‖λ‖ < η.

Then the bifurcation set of the given differential
equation is a swallowtail surface in the (λ1, λ2, λ3)
space, described by the following equations:

λ1 = λ1(r, s) =
r2s

2
+

3e(0)

4!
r4 + · · · ,

λ2 = λ2(r, s) = −rs− e(0)

3!
r3 + · · · ,

λ3 = s .

Proof. It is based on a laborious and reiterative
application of the Implicit Function Theorem. The
system considered is given by

g1(y1; λ) = 0 ,

∂g1(y1; λ)

∂y1
= 0 .

Under the stated assumptions, it is possible to de-
termine the existence of two functions

λ1 = λ1(y1; λ3) ,

λ2 = λ2(y1; λ3) ,

in a neighborhood of the origin which solve the pre-
vious system. Moreover, the first terms of their
Taylor expansions about (0; 0) can be calculated,
by attaining the following expressions:

λ1 = λ1(y1; λ3) =
y2

1λ3

2
+

3e(0)

4!
y4

1 + · · · ,

λ2 = λ2(y1; λ3) = −y1λ3 −
e(0)

3!
y3

1 + · · · ,

which agree with those given above, after making a
change of variables. �

Lemma 3. Let ẏ1 = g1(y1; µ), µ = (µ1, µ2, µ3)
and

g1(y1; µ) = a(µ) + b(µ)y1 + c(µ)
y2

1

2!
+ d̂(µ)

y3
1

3!

+ ê(µ)
y4

1

4!
+ Ĝ(y1; µ) , (17)

where a(0) = b(0) = c(0) = d̂(0) = 0, ê(0) 6= 0 and

∀ ε > 0, there exist δ and η such that |Ĝ(y1; µ)| <
ε|y1|4 when |y1| < δ, ‖µ‖ < η. It is assumed that

J(a(µ), b(µ), c(µ))(µ1,µ2,µ3)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂a

∂µ1

∂a

∂µ2

∂a

∂µ3

∂b

∂µ1

∂b

∂µ2

∂b

∂µ3

∂c

∂µ1

∂c

∂µ2

∂c

∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(µ1,µ2,µ3)=(0,0,0)

6= 0 .
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Then, the bifurcation set of the given differen-
tial equation is approximately a swallowtail surface
in the (µ1, µ2, µ3)-space.

Proof. Due to the condition about the Jacobian J ,
the transformation of parameters given by

λ1 = a(µ1, µ2, µ3) ,

λ2 = b(µ1, µ2, µ3) ,

λ3 = c(µ1, µ2, µ3) ,

sends a neighborhood of the origin in the µ-space
onto another neighborhood of the origin in the λ-
space, in a 1–1 correspondence. Writing d(λ) =

d̂(µ(λ)), e(λ) = ê(µ(λ)) and G(x; λ) = Ĝ(x; µ(λ))
in the general perturbation (17), the original per-
turbation (16) is attained. Then, the results follow
directly from the Lemma 2. �

Thus, the next theorem is established, which
allows to determine the existence of a swallowtail
singularity in two-dimensional systems like (13),
via frequency analysis. This can be carried out,
taking into account the previous lemma and set-
ting sufficient conditions over g1 and F1 and its
derivatives.

Theorem 5 (Swallowtail Singularity). Suppose
that F1(ẑ1, 0, 0) = 0, T = g1(−z1; µ)|(ẑ1,0) = 0,

V = (∂/∂z1)F1(z1; 0, µ)|(ẑ1,0) = 0, X = (∂2F1(z1;

0, µ)/∂z2
1)|(ẑ1,0) = 0, Y = (∂3F1(z1; 0, µ)/

∂z3
1)|(ẑ1,0) 6= 0 and the Jacobian

J

(
g1, F1,

∂F1

∂z1

)
(µ1,µ2,µ3)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1

∂µ1

∂g1

∂µ2

∂g1

∂µ3

∂F1

∂µ1

∂F1

∂µ2

∂F1

∂µ3

∂

(
∂F1

∂z1

)
∂µ1

∂

(
∂F1

∂z1

)
∂µ2

∂

(
∂F1

∂z1

)
∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ẑ1,0)

6= 0 .

The dynamics of the system (12) is defined through
a swallowtail in the (µ1, µ2, µ3) space. The para-
metric representation of the bifurcation surface is
approximately given by

µ1 = µ1(r, s) =
r2s

2
+

1

16
Y r4 + · · · ,

µ2 = µ2(r, s) = −rs− 1

12
Y r3 + · · · ,

µ3 = s .

Proof. This statement is the frequency domain
counterpart of the result proved in Lemma 3. �

Finally two examples are developed to show
how the last theorem can be applied.

Example 8. Consider the following product-
system inspired in [Seydel, 1994]

ẏ1 = µ1 + µ2y1 + µ3y
2
1 + y4

1 ,

ẏ2 = −y2 .

It must be observed that, in this case,

g1(−z1; µ) = µ1 − µ2z1 + µ3z
2
1 + z4

1 ,

where µ = (µ1, µ2, µ3) and

F1(z1; 0, µ) = −2(µ2 − 2µ3z1 − 4z3
1) .

Provided that ẑ1 = 0 and µ = 0, F1(ẑ1, 0, 0) = 0,
T = 0, V = 0, X = 0, Y = 48 6= 0 and as

J

(
g1, F1,

∂F1

∂z1

)
(µ1,µ2,µ3)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1

∂µ1

∂g1

∂µ2

∂g1

∂µ3

∂F1

∂µ1

∂F1

∂µ2

∂F1

∂µ3

∂

(
∂F1

∂z1

)
∂µ1

∂

(
∂F1

∂z1

)
∂µ2

∂

(
∂F1

∂z1

)
∂µ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ẑ1,0)

=

∣∣∣∣∣∣∣
1 0 0
0 −2 0
0 0 4

∣∣∣∣∣∣∣ = −8 6= 0 ,

all the conditions established in Theorem 5 are
satisfied, so the considered system has a swallow-
tail bifurcation at (ŷ1, µ) = (0, 0) and the defin-
ing bifurcation surface in the (µ1, µ2, µ3)-space is
given by

µ1 = µ1(r, s) =
r2s

2
+ 3r4 ,

µ2 = µ2(r, s) = −rs− 4r3 ,

µ3 =
s

2
.
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Fig. 2. Continuation of cusp points ending in a swallowtail
singularity.

This situation can be checked through in Fig. 2,
which shows a cusp continuation in the (µ2, µ3)
plane. The distinguished singularity, which looks
like another cusp corresponds to the aforementioned
swallowtail.

Example 9. Consider the system analyzed in
[Moiola & Chen, 1996], the mathematical model
for a perfectly mixed reactor with a coiling coil, in
which two consecutive, irreversible, exothermic and
first-order reactions A → B → C occur, as inves-
tigated by Halbe and Poore [1981]. The described
system can be written in its dimensionless form as:

ẋ1 = −x1 +D(1− x1) exp(x3) ,

ẋ2 = −x2 +D(1− x1) exp(x3)−DSx2 exp(x3) ,

ẋ3 = −(1 + β)x3 + B̃D(1− x1) exp(x3)

+ B̃DSαx2 exp(x3) ,

where D is the main bifurcation parameter and B̃,
S, α and β are the auxiliary system parameters.

This system has an equilibrium point at
(x̂; B̃, S) = ((x̂1, x̂2, x̂3); B̃, S) where

x̂1 = 0.7142155 ,

x̂2 = 0.6348825 ,

x̂3 = 2.6559060 ,

B̃ = 8 ,

S = 0.05 ,

for

(D̂, α̂, β̂) = (0.1755276, 1.023397, 1.395882) .

Analyzing the Jacobian at x̂ with the distinguished
values of the parameters, it can be observed that
one of the eigenvalues is equal to zero.

The bifurcation analysis can be developed via
the bifurcation equation of the given system. In this
case, solving the first equation for x1,

x1 =
D exp(x3)

1 +D exp(x3)
,

putting this expression in the second one, and solv-
ing this for x2 yields

x2 =
D exp(x3)

(1 +D exp(x3))(1 +DS exp(x3))
.

Finally, operating with the third equation, one can
obtain the bifurcation equation of the given system,
which is:

g3(x3; D, B̃, S, α, β)

= −(1 + β)x3 + B̃
D exp(x3)

1 +D exp(x3)

+ B̃D2Sα
exp2(x3)

(1 +D exp(x3))(1 +DS exp(x3))

= 0

or

g3(x3; D, B̃, S, α, β)

= −(1 + β)x3(1 +D exp(x3))(1 +DS exp(x3))

+ B̃D exp(x3)(1 +DS exp(x3))

+ B̃D2Sα exp2(x3) = 0 .

Taking into account the expression of the func-
tion g3(·), with the fixed values of B̃ and S, and

F1(z3; 0, D, α, β) = 2
∂g3(−z3; D, α, β)

∂z3
,

it is possible to prove via Theorem 5 that there is a
swallowtail singularity at

(D̂, α̂, β̂) = (0.1755276, 1.023397, 1.395882) .

for x̂3 = 2.6559060.
Provided that ẑ3 = −x̂3 results

F1(ẑ3, 0, D̂, α̂, β̂) = −3.52575 ∗ 10−6 ,
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T = g3(−z3; D, α, β)|(ẑ3,D̂,α̂,β̂) = 2.78230 ∗ 10−6 ,

V =
∂

∂z3
F1(z3; 0, D, α, β)

∣∣∣∣
(ẑ3,D̂,α̂,β̂)

= 2.56511 ∗ 10−6 ,

X =
∂2F1(z3; 0, D, α, β)

∂z2
3

∣∣∣∣
(ẑ3,D̂,α̂,β̂)

= 2.26394 ∗ 10−3 ,

Y =
∂3F1(z3; 0, D, α, β)

∂z3
3

∣∣∣∣
(ẑ3,D̂,α̂,β̂)

= 6.58167 6= 0

and the Jacobian

J

(
g3, F1,

∂F1

∂z3

)
(D,α,β)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g3

∂D

∂g3

∂α

∂g3

∂β

∂F1

∂D

∂F1

∂α

∂F1

∂β

∂

(
∂F1

∂z3

)
∂D

∂

(
∂F1

∂z3

)
∂α

∂

(
∂F1

∂z3

)
∂β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ẑ3,D̂,α̂,β̂)

= −2.27595 ∗ 103 6= 0 ,

so the last assertion follows.
Similar results can be obtained with

(D̆, ᾰ, β̆) = (0.1325816, 0.7992681, 1.1304940) ,

for x̌3 = 4.0999860. In this case, with ž3 = −x̆3,
the calculations give:

F1(z̆3, 0, D̆, ᾰ, β̆) = 5.35974 ∗ 10−5 ,

T = g3(−z3; D, α, β)|(z̆3,D̆,ᾰ,β̆)

= −1.68357 ∗ 10−5 ,

V =
∂

∂z3
F1(z3; 0, D, α, β)

∣∣∣∣
(z̆3,D̆,ᾰ,β̆)

= −8.08018 ∗ 10−5 ,

X =
∂2F1(z3; 0, D, α, β)

∂z2
3

∣∣∣∣
(z̆3,D̆,ᾰ,β̆)

= −9.94328 ∗ 10−5 ,
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Fig. 3. Continuation of cusp points ending in two swallow-
tail singularities in the CSTR.

Y =
∂3F1(z3; 0, D, α, β)

∂z3
3

∣∣∣∣
(z̆3,D̆,ᾰ,β̆)

= −1.87469 ∗ 10 6= 0

and the Jacobian

J

(
g3, F1,

∂F1

∂z3

)
(D,α,β)

∣∣∣∣
(z̆3,D̆,ᾰ,β̆)

= −9.88604 ∗ 104 6= 0 .

These two swallowtails singularities were com-
puted by using LOCBIF [Khibnik et al., 1993] as
well as the continuation of cusp singularities as de-
picted in Fig. 3. Starting the continuation from
these two swallowtails, it is possible to find a but-
terfly singularity after a suitable (extra) parameter
variation.

4. Conclusions

In this work, the analysis of determining saddle-
node, transcritical and pitchfork bifurcations for
two-dimensional product systems with the fre-
quency domain formulation has been completed.
The analysis has been made by using the general-
ized Nyquist stability criterion and the nondegener-
acy conditions of the aforementioned singularities.
The precise conditions have been established over
the functional F1(z1; 0, µ) (characteristic in the fre-
quency domain formulation) to distinguish from
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the elementary static bifurcations up to swallowtail
singularities.
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