ISSN 0327-0793

LATIN AMERICAN APPLIED RESEARCH

Chemical Engineering

Applied Chemistry

Heat & Mass Transfer

Applied Mechanics

Control and Information Processing

PESQUISA APLICADA LATINO AMERICANA

Engenharia Quimica

Quimica Aplicada

Transférencia de Calor e Matéria
Mecanica Aplicada

Controle e Processamento da Informacgao

INVESTIGACION APLICADA LATINOAMERICANA
Ingenieria Quimica

Quimica Aplicada

Transferencia de Calor y Materia

Mecanica Aplicada

Control y Procesamiento de la Informacion

Vol. 31 N° 4
September 2001




Latin American Applied Research

31:309-315 (2001)

PIECEWISE LINEAR MODELS IN MODEL PREDICTIVE CONTROL

J. L. FIGUEROA "

Planta Piloto de Ing. Quimica - UNS-CONICET,
Camino la Carrindanga Km 7 - 8000 - Bahia Blanca - ARGENTINA
e-mail: cofiguer@criba.edu.ar
*also in Depto. de Ing. Eléctrica -UNS. Avda. Alem 1253, 8000- Bahia Blanca, Argentina

Keywords: Model Predictive Control, Canonical Piecewise Lineal Approximations.

Abstract

In this paper an efficient algorithm for Nonlinear Model Predictive Control is presented. The nonlinear
problem is written as a simple Quadratic Programming problem with constraints by using a Canonical

Piecewise Lineal approximation to the model.

1. Introduction

It is undoubtedly true that the most control
applications require satisfaction of hard constraints on
controls and states; actuators saturation and safe
operation requires limitation on states such as velocity,
acceleration, temperature and pressure.  Efficient
handling of constraints requires nonlinear control
whether the system being controlled is linear or
nonlinear. The closed loop is, therefore, nonlinear
which is the reason for the slow development of an
adequate theory for the solution of these problems.

Model predictive control (MPC) refers to a class of
algorithms that compute a sequence of adjustments of
manipulated variables, in order to optimize the future
behavior of the plant in the presence of constraints.
Originally, model predictive algorithms were based on
linear model and were developed to meet the
specialized control needs of power plants and
petroleum refineries. Now, they have been tested
extensively and are presently well accepted in industry
(Garcia et al, 1989). MPC technology can now be
found in a wide variety of application areas including
chemicals, food processing, automotive, aerospace,
metallurgy and pulp and paper (Qin and Badgwell,
1997).

In the last decade, a substantial increase in the use
of optimization based predictive algorithms for process
control, has been observed. Alternative formulations
for predictive control using nonlinear process models
have also been considered. However, the solution of
these nonlinear model predictive control (NMPC)
algorithms is complex. This fact causes the application
of these NMPC to be only advantageous where a
substantial need for improved control quality exists,
e.g. due to the strong nonlinear nature of the process or
if changes during routine operation are large, as in
batch process or during start-up or shut-down of a
continuos process.

In this paper we propose the use of a Canonical
Piecewise Linear approximation for the process model
in order to obtain an efficient algorithm for the solution
of a generic nonlinear model predictive control

Let us assume that the system to be controller is
described by

x = f(x,u,d) (1)
y = h(x) (2)

where f:R" x R" x R™ — R" and h:R" - R™ are
twice continuously differentiable, x € R" is the vector
of state variables, ue R™ is the vector of inputs,
de R is the vector of the disturbances and ye R™is
the vector of the outputs.

For a constant sample time 7, f,=k.T is the K™

sampling interval and the discrete time operator
corresponding to (1-2) can be defined as

Xy = E(xk,uk,dk) 3)
yi =h(x,) 4)
AY
ysp

>

t'.k Tias
: Input horizon

thiz b fier

Output horizon

Figure 1: Input and Output Horizon in MPC

Let us assume that, this discrete model verifies,
£(0,0,0)=0., and the control and state are subject to

hard constraints, u €lU,x, €X,d, eW for all k,
where U c R"™ and W ¢ R™ are compact and convex
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sets and X — R" is a closed and convex set; and the
origin lies in the interior of these sets.

The model predictive controller should predict
inputs and outputs within the input horizon and output
horizon respectively (Figure 1). So, an input horizon
m and an output horizon p are defined, with m<p.
Then the lengths of these horizons are given by #;,=mT
and t,,=pT, respectively. Within one sampling interval
inputs, are constant and for f;,<t<t,, the input are
maintained constant and equal to its last value (Uyymy)-
The basic idea of the model predictive control law is to
minimize deviations of the controlled variables y from
their setpoints y* within the output horizon, using the
input vector u within the input horizon as decision
variable. This optimization problem is constrained by
a set of equality equations represented by the process
model and a set of inequalities given by upper and
lower bounds for inputs, outputs and states. The
mathematical formulation of this problem is given as

min S, =335, -y7 ) @5, -y7)
(ui_uir)

+g(u —u,r)

51X,y =E(x,,u,,d, )Jk=1.,p

Y =/z(xk,uk,dk) %)
u, <u, <u,
X, <X, <X,
YiSYeSY,
u,=u,,,j=m+l.,p
d,=d, ,j=m+l..,p
where Qiyand Q! are weighting matrices. Here the

subscript [ stands for lower bound and the subscript u
for upper bound. In this formulation the objective
function does not only weight the deviations of the
outputs from their setpoints, but contains an additional
term to take into account the deviation of inputs from a
reference input trajectory (u"), which accomplishes the
same role as the setpoints y* for the outputs. It is
chosen so, that in absence of disturbances the input
sequence, wu, , =uj,, With appropriated initial
conditions keeps the outputs at their set points within
the predictive horizon. In absence of future values for
disturbances we assume that they are constant for the
output horizon, i.e. d, =d forall . vk =1,....p

To simplify the notation, augmented vectors U(k),
D(k), X(k) and Y(k) containing all values of the
corresponding variables inside a predictive horizon,
beginning at sample k, are introduced as,

U(k)e R E[uf; ul uLp_l]r, (6)
D(keR™ =fal al, - d,.f, 7
Xhe R =[x, xI, - x T, (®)
Y(eR™ =lyl, v, ~ yi,J. O
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Q, =a’iag{Qiy, i= 1,..,p} and Q, :diag{QL, = l,‘.,p}-

There is not an available algorithm to solve the
problem (5) for on-line use due to its computational
complexity. This fact has moved different authors to
use some approximations to the model (for example
using Neural Networks, Wienner or Hammerstein
models) to solve this problem in an efficient way.
Examples of this could be found in Su and McAvoy
(1997), Zhu and Seborg (1994), Fruzzetti et al. (1997),
Norquay et al. (1998), Genceli and Nikolaou (1995),
Hernandez and Arkun (1993), Sriniwas and Arkun
(1997).

Our approach in this paper is to use a Canonical
Piecewise Linear approximation for the nonlinear
model and use the properties of these models to solve
(5). A description of these functions can be found in
Chua and Deng (1986) or Figueroa and Desages
(1998).

2. Problem Representation as CPWL.

Let the sets X cR", U CR™, W R™ be the
domains of the x, u and d variables respectively, and
consider the set

={x v a" " xe X uev,dew}
on which we want to approximate to the given system
(3)-(4). Consider also the following partition in the set

is called the "j™

o
X such that K = U X’ | where X/
j=1
partition" of the set K.
Then, the CPWL representation of the system (3)-

() is:

Xk+1 =ax +Bxxxk +Bxuuk +Bxddk +
(10)

g
Zcxilaxixk o Uy +a’didk _Bi[
i=1

Yy =a,+B x, +B u, +B _,d+

o
zcoi

i=1

(11)

O X+ Uy +adidk _ﬂil

where all the matrices and vectors have appropriate
dimensions with elements in the real field.
If the system is constrained to the j™ region (i.e.

(x,u,d)e®’), the equations (10-11) can be
reformulated as follows:
Xk =§ix'xk +§iu‘uk +§id'dk +7]i (12)
Y = ix'xk +§f’u'uk +éjod'dk +n) 13)

o ag
where g =B +Zc,d.oc,d.y/ > &l =B, +Ecx,.(xm.y/ )

i=1 i=1

g g
| - j b — J
xd "Bxd +2cx]'adi‘Yil ’ Ny =4a, +2cxi‘ﬁi")/i ’
i=1 i1
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o o

I = J J = J

ox Box +2col'a’xl'Yi # ou — Bou +2coi'QM'},i ?
i=1 i=1

o o
é‘;'d =B+ Zcoi'adi')/i] 2 Tli =a, + ECoi'Bi'yi] with
i=1 i=1

¥l = sign(ot,dx +a,ut+o,d —ﬁ,)

Note that the sign function in the last expression
determines the Sector Belonging Condition, i.e., the
sign vector ¥ defined as y!=[y/y/,...p/] is
univocally related to the j# partition (Figueroa and
Desages, 1998). Consequently, a point (x",u”,d")

will lie in X’ if and only if it satisfies the inequality

zh =& .x" +EL u" +EL,.d" +ni <0 (14)
where [gix], =~y/o [ iu],- =_Yijaui ? [&f{d],- =~/ 0y
["li ] =y/p and []‘ means the i row in the matrix

L.

Now, we will analyze a way to obtain a predictive
model for the system described by Equations (10)-(11).
Consider the system at any initial condition

(X, ,u,,d,) eX’. While the system is in sector R’

(suppose that this occurs for n’ samples), it is easy to
see that the state vector will be

g0 0
Xksi = &xxxkﬂ—l + &xu'ukﬁ—] +

0 0 i 0
éxddk+i—l + nx Vi= 1"""

5)

This expression will be valid till the moment in which

the system reach next sector (called Nl), when the
value of the state is

g0 0 0 0
k+n® “xk+n"—l + é"“uk+n"—1 +é"ddk+n"—1 1y

_¢0 (g0 0 0 0

- &x!( xxxk+n°—2 + é"“ulnn"—z + é"ddk+n"—2 + nx)+
0 0 0
‘“uk+n"—l + gxddk+n"—l + n"

= (£0)" x, +&° +EVEC +

= XX Xy xuuk+n“_1 XX xuuk+n"_2

0\"’~lgo 0 0£0
+ (éxx) xuuk + éxddk+n" =1 + &xx xddk+n°_2 +
0 \2¢zo0 0 \"'~lgo
( xx) xddk+nﬂ_3+"'+( xx) xddk +

0
n=l g

w0+ (B2 + (8% ) S+ +(ES)" '

X

and using this state as an initial condition for sector X'
it is possible to compute

> T ol AP o8 Uyq
ad ML Vi=n"+1,.,n'

expression that will be valid till the time in which the

system reaches sector X* (at n’). Then, it is possible to

obtain a Predictive Model by using the following

algorithm,

(16)

Algorithm 1: Predictive Model

Data: A set of control variables [u, ,u,,,--,u,,, ]

disturbances [dk d .,dkm] and the initial state

k+12""
. -1
vector Xy, set j=0 and n”" =0.

Step 1: Determine in which sector, R/, point
(x,,u,,d,) lies and compute the linear model
valid in this sector.

Step 2: If k<p continue; Otherwise stop.

Step 3: Compute x, =&/ x, +&/ .u, +&/,d, +n..

Step 3: If no entry of the vector,
7y, = E Xy H sty + 8y +1005

changes sign, make k=k+1 and return to Step 2.
Otherwise, make 1/ =k- /' and j=j+1 and return to
Step 1 to proceed similarly in next sector.

Using the results of this algorithm, a generic
expression for the predictive model when the system
goes through sectors [R? X!, R2 ..., ®"] could be
written as

X=¢ x, +® U+D ,D+®, (17)

Y=0,x, +®,U+®,D+P, (18)

where the matrices are defined in Appendix A.

In some applications, it is not necessary to consider
changes of the manipulated vectors in each period.
Moreover, it could unnecessarily increase the
dimension of the vector U for the solution of the
Model Predictive Control. To avoid this problem, we
propose to modify the matrices involved in Eqns. (17)-
(18) in order to consider another sampling time. To do
this, we will consider that the process input
(manipulated variable) changes each ¢ sampling times.
Then, for an input horizon m (the input signal changes
m times) the length of this horizon is fy=m.t.T.
Similarly, the length of the output horizon is z,,=p.2.T.
Note that in this case, the matrices involved in Eqns.
(17)-(18) could be easily computed by adding up all ¢
columns inside each r rows. For example, if the
original matrix is @_ =[‘I’xu] - for ij= 1,.,p.1, the

iJj
resulting matrix will be

1=1

é"“ - [&S’“’ ]k./x = Z;[q)"“]k.l,(h—l)-wi fo k’h:l’.’p

i=

Now, let us rewrite the Model Predictive Control
Problem using this predictive model. In absence of
information about future disturbances we will consider
it constants, i.e. d, =d Vk =1,..,p- Then, from the

......

analysis of problem (5) and the predictive model (17-
18); and considering that the disturbance vector D is
constant and the initial state vector xi is known a
priori, for our application we can pose this model as,

X=& (x,)+®,U (19)
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Y=8 (x )+®,U (20)
with

3, (x,)= @ x, + O D+,

and @ (x,)=®,x, +@,D+®,-

Replacing these expressions in each term of the
problem 5, we can obtain the objective function,

S, = Z(y. yP) Qi(y, - y7) +
3 (o, ) Q) o, i) =
=U'0,U+0,U+O

where@ = ((&)x -~y )TQy(tfx & Ys")+UrTQuUr),
=(@[Q®, +Q,) and 0,=2(&-v") Q@ +U'Q):
3, = 250 =y7) Q097+ Bl i) @l )
(Y-¥7) Q,(Y-¥*)+(u-1) @, (u-v)
=(®, +2,U-Y")'Q,(®, +2,U-Y")+(U-U") Q,(U~-U")
=U"(®.Q,®, +Q,)U+ ((5‘ -y*) Q,@, +U'TQ,,)U +
((&:, -Y*)'Q,(®, - v")+ U'TQ“U')

=U'8,U+8,U+H

Similarly, the constraints are now expressed as

HU < h (22)
with
I U, ]
-1 -0,
Q)(l.l Xu - ~x ’
H = | o, and h = ~X, + &

o, Y, - %y

=l | =¥+, |

Then, the Model Predictive Control problem could
be solved as,

min 3, = uv'e, ,U+0,U+0O
(23)

s.t.
HU < h
which is a typical quadratic problem, that could be
solved using any commercial algorithm. By solving

this problem, we can suggest the following algorithm
for MPC

Algorithm 2: Predictive Control Algorithm

Step 0: Check actual system state.(i.e., vectors x¢ and
d). Fix an initial guess for the control vector U.
Set k=0.

Step 1: Compute the Predictive model of Eqns. (19-
20).

31:309-315 (2001)

Step 2: Compute the control vector U by solving the
Model Predictive Control Problem of Eq. (23).

Step 3: If the model in Step 1 is not longer valid for
the new vector U, return to Step 1. Otherwise, go
on.

Step 4: Apply the control action uy to the system.

Step 5: Estimate the resulting system state vector X,
set k=k+1 and return to Step 1.

3. Example

Performance of the Algorithm for MPC will be
now analyzed by applying it to the control of a CSTR.
Figure 2 shows the considered system. Within a
CSTR, an isothermal pseudo first order reaction
A+B—P, is conducted with an excess concentration of
A. Two input streams of different concentrations of B
are used in order to provide a good adjustment of the
operating conditions. The reactor is assumed to be
well mixed. The output flowrate is determined by the
liquid level in the reactor. The process can be
described by the following model,

dx
d_tl=”1+“2'k1\/x_1

dx, I, u, k,x,
—= = —x, ) —+(Cp, —x, ) ——F=
dt ( Bl xz)x1 ( B2 xz)xl (1+x2 )~
Concentrated Diluted
u;, Cpy uz, Cp
A+B—P
F()! x.?

Figure 2: Stirred Tank

The desired steady state for this system is given for
the following values of the parameters; u;: flowrate of
the inlet concentrated stream (nominal value 0.2344);
u,: flowrate of the inlet diluted stream (1.7656); Cg;:
concentration of B in stream 1 (24.9); Cgy:
concentration of B in stream 2 (0.1); k;: valve constant
(0.2); k»: kinetic constant (1); x;: liquid height in the
reactor (100); x,: concentration of B in the reactor
(0.0669)

The states x; and x, are the controlled outputs, the
variables u; and u, are the manipulated variables and
the concentrations Cp; and Cp, are the disturbances
inputs. A discrete CPWL model was used to solve the
Model Predictive Control Problem. In this
approximation, the space is divided in 75 Sectors. In
this example, the sample time 7 is 0.1 minutes and the
horizons are r=10 and p=m=50. The weighting
matrices are defined as Q"; =] and
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1 0 )
0 10° for i=1,...,p-1

10 0 _
0 10¢| for =P

The manipulated variables are constrained to
09%02344 <u, <11*0.2344

09 *1.7656 < u, <11*1.7656

Q, =

The states are limited in the output horizon as

100 2

] < 00669 o
o7 2

where the superscript sp means the set point value.

Vi=1,..,p

0 50 100 150 200

Figure 3: Performance for change in set point

101 T —

100.8

100.6

100.4

100.2

0 50 100 150 200

Figure 4: Performance for Disturbances
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Appendix A: CPWL Predictive Model

The matrices that defines de Predictive Model
X=0® x, +® U+P D+P, (B1)

- . 0

é(] “0 &0

1 0 n®-1 0
¢xu = xx( ) éxu

(A )"<a°>"‘° |
) e ()

enen) e

0
xd 0
0£0 0
xx 2 xd xd
1 0 n°-1 0 : 1 0 n®-2
q)x(, = xx( xx) xd xx(gxx)

( h )n"~l ( 1 )nl( 0 )n“—l 0
XX Tt Pxx XX xd
h
&h n 1 n' 0 n®-1 0
L XX o\ Pxx XX xd

(gn)" ()" (&)

where n' is the sample time at which the system leaves k=
Note the dependence of the matrices o, +-n

sector X'

D, D, and @, _on the sectors [NO, R NZ, e Nh]
and on the “times” [no, nl, n2, e nh]. This means
that, in general, expression (B1) is not longer valid if

any change occurs in the inputs ug or dy for all

314

(L) () &2 )
(EL)" (gn)"

) e )
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are defined as

0
XX

(39)
o = i(x(‘gx)"ﬂ

(e e ()

(B (8w (&%)
n;

w15

n°

é;}_}(é“ )7l +1

[(&ix )"[...g(éix)‘:'ln‘;...j+( ’;x)’_ln’;}
, ((g;;x )f[...é(a’ ) 0] + ’;x)""n’;}

PO %
—

—-

0 0 0
0 0 0
! 0 0

Xu

BrEr e - g o
(8n)" (EL)" &L, Enbn B

0 w O 0

0 0 0

. AR

B B o
?«1 ( ) (él )"1 &Zx :d :d_

1,...p. Note that in these expressions p=n’ + n' + n*

+n.
Respect to the output equation, they are

Y=0,x, +®, U+CI>ydD+d>

= (Po®u Jii (P, + @, U+

(D D,y + @, )D+ (‘an O +D,)



where
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®,, = diag block| E°,,

cor B o R

D, =diag block[é

@, =diag block|:§gu ,

n®-1 n*+1
0 0 h h
ox x> ox > ox ’ aﬂd
n -1 n* 41
_ 0\’ o)’ n\! £
0 h ho, ‘Do - (no) > (no) Mo ) s n
our 20w E“W n®-1 n'+1
n°-1 n"+1

Received August 30 1999;
accepted for publication April 30 2001
Recommended by T. Pinto and Bolzan

315




