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Abstract

The operating point of a chemical process is usually computed by optimizing an steady-state objective
function, e.g., the profit, subject to some characteristics of the plant. Typically, the resulting point lies on the
boundary of the operating region. Then, the presence of disturbances can easily cause constraint violations.
Thus, it is necessary to move the operating point away from the active constraints into the feasible region
(back-off). The magnitude of this back-off has direct economical meaning. The purpose of this paper is to
analyze the dynamic operability and performance of a steam generating unit using a Canonical Piecewise
Linear approximation. The motivation for this analysis is the large operating cost involved in the operation
of this equipment and the need to satisfy specific energy demands.

1. Introduction

The economical impact of disturbances in the
operation of a process has been a subject of increasing
interest in the latest years. The effects caused by
internal and external disturbances require special
attention from both, an operating and an economical
point of view; this situation is particularly important in
systems of high operating costs.

In a well-operated chemical plant, a challenging
task is to achieve the optimum of some measure of
plant performance within the various limitations
placed on plant operation. The requirements for
determining the optimum steady-state operating
conditions are an appropriate objective function, a
process model, and any operational requirements
expressed as a set of inequality constraints.
Mathematically, this can be written as (Bandoni e? al.,
1994),

Problem 1 (Steady-State Optimization): Given a
constant fixed vector of exogenous inputs (W) we
shall compute the set of control input (u) such that the
following function will be optimized:

M

- I
mmzol\x,u)
suject to
x=f(xuw)=0
z, = p(x,u,w)<0
w=W
where z(x,u) is the objective function, f{.,.,.) is the set
of system equations, p(.,.,.) is the set of operative
constraints, x is the system state vector, u is the
optimization variable vector and w is the exogenous
vector input, which can represent disturbances.

When this problem is solved, the operating
condition is fixed by using the solution vector u.
Generally, the solution of this problem is at the
intersection as many active constraints as the
dimension of u. Usually, however, it would not be
possible to operate the plant right on these constraints,
as process disturbances (i.e., a value for w different of
w) will cause the plant to fluctuate around the

nominal optimum point, leading to constraint
violations. One way to overcome this problem is to
move the original optimal operating point far enough
into the feasible region so as to ensure that no
constraint violation occurs during plant operation.
The extent of this movement of the operating point
(called back-off) due to the likely effect of
disturbances will quantify the economic penalty for
this feasible but non-optimum operation. To compute
this magnitude we will suppose that all possible
disturbances are in the set W,
wi(t)i=1,..,m

W= W if t <Owithw, < W, <W,
wi(t) = ) . _
() w if t20withw, Sw, W,

where # is the nominal value and w, and w, are the

lower and the upper bounds over the disturbances.

In order to be sure that the movement is minimum
we will formulate the following problem (Figueroa et
al., 1994; Perkins and Walsh, 1994)

Problem 2 (Dynamic-State Back-Off): We shall
compute the set of control input (u) such that the
following function will be optimized:
minzy(x,u) @)
subject to
X ~ s Yy =O
- f(x,u,w) }Vw e

z, = p(x,u,w)<0

In this problem it is important to remark that the
vector u is not depending on the time and the objective
function is evaluated at steady-state.

This problem might not have a solution.  In
practice, this means that it is not possible to operate
the plant under some requirements of performance for
the disturbance magnitude defined by weW. Note the
difference between problems 1 and 2. In the former
the constraints need to be verified for a specific w=#;
in the latter, the constraints need to be satisfied for all
weW.
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Our strategy to find an appropriate solution for this
problem, due to the computational complexity present
in the general non-linear case, consists in finding a
Canonical Piecewise Linear Approximation (CPWL)
of the system and constraints under consideration
(Figueroa and Desages, 1998).

2. CPWL Approach

The general formulation of piecewise = linear
functions allows us to write a non-linear system as
several linear expressions, each of them valid in a
certain operating region. To make this approximation,
the domain of variables ¥ (involving the domain of
the variables x, u and w) is partitioned in to ¢ non-

empty regions, N such that NzDNi' In each of
i=l

these regions, N¥, the non-linear differential equation,

the constraints and the objective function are

approximated using CPWL representations in the form

x=EX x+EX u+EX . wnt 3)
Z,=EL.X+E&.M+EL W, Q)
z, =&k x+EX u+nk %)

That can be written in an unique expression as
(Chua and Deng, 1986)

g
x=a +B x+B u+B_ w +ch.lpi|
i=1

(<2
z.=a +B x+B u+B_ w+> c,lp]
i=1
o
z,=a,+B, x+B u+B, w+Y c o]
i=l
where the matrices and vectors have appropriate
dimensions with elements in the real field and
£, =0 X+ 0L+ oL ,W— - Note that the vector with

the i entry sign(p,-) determines in which sector the
system is operating.

In the following, we will assume that in each
region N', the inverse of the resulting matrix g%

exists. Then, for a set of external variables (i, #), it is

possible to compute the steady-state point using the
algorithm developed by Figueroa and Desages (1998)
(see Appendix A).

Once that the steady-state point is computed, it is
possible to obtain an approximate expression for x(¢)
when a disturbance is applied. Mathematically, it
could be written as (Appendix B),

x(t) = D, (Hu+ D (O)w + D (1, W) (6)

Now, we can compute an expression for the
constraints for a generic sector X",

z,= @ (+ @b, (w + D, W) (M
where @, (1)= (5@, +5); @8 ()=(" 0, +E,,) and
o1, W)= (€% @, +£1).
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Now, our strategy is to determine the "worst
perturbation" weW in the sense of producing the
largest value of the entries of z_. To do so, for the j*

entry of vector z_, a function A,(u) is defined as

8)

where x(t) is the solution to x — f(x,u,w)=0 and the

subscript j means the j* row of the vector (or matrix).

If we consider that the maximum of
iR [z (x(®),u w)] is in sector X" at time =", then
140,0\7) < [ Rat] I

A,(n) = TS;‘E?‘,",‘;‘)[“("(’)’ u, w)]J

it is possible to write,
maxfz ()., w), =<[@%, ™ w+ @l s dl)] ©)

Now, given a fixed control input vector u, and
assuming that the argument ", the sectors [R’, N/,
N?% ..., N and the times [, ¢, ¢, ..., {'] are not
depending on w, the solution to the problem (8) is for
the disturbance

—_ h max
W™ =y ={Wj if Fm(f )%: 200 (10)
J . h max
w; if [@, (¢t )j <0
However, this situation is unrealistic because when
w changes, the values of #, ¢/, £, ..., £, =, R® N/ N?,

...., X™" and K" will also change. Then, in order to
compute w™ we propose the following algorithm

Algorithm 1: Worst Disturbance Determination
Data: A set of external variables (u,w), an initial
disturbance w® and the set W of possible disturbances.
Set k=1,

Step 1: Perform the simulation using Algorithm of
Appendix B, determine the time for which the j* entry
of vector z, ([Zc]j) is at maximum and cou. ute the

matrices @ (t™), @}, (:™) and @ (+™). Compute

A7 = [@h (¢ Wt + L ™)+ O (™)
Step 2. Compute the argument, w'=w"™, that
maximizes the expression

m z (t),u,w
wgggg[c(), ],

using equation (10), set
A = [@h (™). wh + B (™ )+ P (™))
and adapt the limits for the disturbance set as
o [wm o [eha™)] 20
WE T {wlf" if [oham™)) <o

J

j

and

[

wit i (@b e 2 ol
W= w lf [th (tmu)] <OT
e ow J
Step 3: If 2 = 1} , make k=k+1 and return to Step 1.
Otherwise, 7 =[@} (1™).w* + L (™).u+ @ (™)),
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and W’ =w" is the argument for which it happened;
Stop the algorithm.

Note that the iterations in this algorithm are
necessary due to the non linear nature of the original
problem. If the problem were linear, the convergence
of this algorithm will be guaranteed in one iteration.
Now, it 1s possible to group equations (9) for j=1,2,..,
n, as,

A=Du+E (11)
[(DC“]I_] [(DCW])'WI +[¢¢]1
where o [Q“]Z and - [(IJm ]z.v”v2 +[<I>¢]Z

[.], [0,], 4 +[o],

Now, let us analyze the objective function
2,(x(0),u) . If this problem is constrained to the k"

sector, the steady-state vector is
x=-(gh) (e el Hent). (12

Introducing this expression in (5), the objective
function constrained to the k* sector could be written
as

x=A*u+B*" (13)
B = (g8 (e) gk} (- e5.(e5) ")
Ak :(gtu -(g:x_(g';x)_lg’:u), and W is the disturbance

where

considered as nominal. Note that this expression of
the objective function will be valid only for the steady-
states solution lying in the &* sector. This condition of
restriction to sector it is known as the Sector
Belonging Condition for the steady state solution
(Figueroa and Desages, 1998) and could be written as
the following set of inequalities,

k
zi=D*.u+E'<0

(14)

where b =y, —eb (e 'en) and el -ene) e
with _ [&] =re, [&]=rar [&]=ra
(2] =r*a 7 =sign(a,x+au+amw-g) ad [];
means the * row in the matrix [.].

Then, the problem (2) constrained to the k* sector,
could be expressed as

min  A*u+B*
subject to (15)
Du+E<0

Df.u+EF<0
Note that in (15) the first set of constraints comes
from the operative constraints in the original system,
while the second set comes from the specific sector
belonging condition (i.e., (x,u,#)eX). In this
situation, the optimum will be either on the boundary
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of the sector N* or in the ones defined by the operative
constraints. If the solution to the problem (15) is on
the boundary of sector R¥, at least one entry in the
vector Dfu + E: will be zero. If this occurs, we must
change the sign of this entry (the rest remaining
invariable) and, in this way, we go on with the
optimization in the next sector X*"'. If no entry of
Dfu+E: is zero, we are in the border fixed by the

operative constraints.

Also note that the set of inequalities D.u+E <0 is
not dependent on the k* sector, however, the matrices
D and E are dependent on the vector u; then, each
time that the vector u changes they should be
computed again. Then we have solved the problem.
In summary, we have the following algorithm:

Algorithm 2 (Dynamic Back-off Computation):
Data: An initial guess for u (u’) and a nominal
disturbance & .

Step 0: Compute a steady-state point (x°,u’, W) en’
and the vector y° which identifies this sector using
Algorithm 1. Set A=0.

Step 1: Compute the matrices D and E, using
Algorithm 1 and Equation (11).

Step 2: In the sector 8* compute the control u* that
solves the following minimization problem

min  A*u+ B*
subject to
Du+E<0

Df.u+Ef<oO
Step 3. If any entry in the vector D¥u+ F} is zero,
change the sign of the correspondent entry in the
vector y* to obtain the new vector y*'' that identifies
the next sector N¥**!. Set k=k+1 and return to Step 1.
Otherwise (i.e. if not entry of DYu+FY is zero),
continue.
Step 4: Compute the worst disturbance using
Algorithm 3. If any entry in the vector X is larger than
zero, return to Step 1. Otherwise Stop.

In Step 3 there might be a problem of determining
which region (close to N*) could be chosen as N*''.
Suppose that the optimum in region §&* is at the
intersection of / hyperplanes. This means that / entries
of D'u+F! are zero. This makes it difficult to

continue with the optimization algorithm in the sector
N**', because this new sector may be obtained by
changing the sign of either of these entries of ¥, or any
combination of them. This gives (2’ - 1) possibilities.
It is obvious that the convergence of the algorithm
depends on our choice. Figueroa and Desages (1998)
presents three possible search methods to avoid this
problem. The convergence of this algorithm towards
the global optimum can not always be guaranteed,
however this is the typical problem of the nonlinear
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optimization. The use of the approximation does not
produce extra limitations.

In this work this strategy to operativity analysis
will be applied to a steam generating unit to emphasize
the use of this technique. The motivation for this
analysis is the large operating cost involved in the
operation of these units and their need to satisfy
specific energy demands. Our attention has been
focused to determine the feasibility of operation while
ensuring no constraint violations, for a set process
disturbances. The study has allowed us to establish an
economic penalty for the feasible operation.

3. Steam Generating Unit Model

Power and steam systems, in which the boiler is a
fundamental part, should be included in this category
due to their large operating cost and their need of
satisfying specific energy demands. Despite these
facts, utility systems have not received the same
degree of attention as other process units when dealing
with disturbances effects. One reason for this situation
has been the uneasy availability of simple reliable
mathematical models for boilers in the open literature.
The steam generating unit smdied in this paper
consists of five pulverizers supplying fuel to a 200
MW drum type boiler (Figure 1). The model for this
unit has been developed by Ray and Majumder
(1983).

3.1. Pulverizer model

Primary air required for this unit is supplied by two
P.A. fans and then bifurcated into hot air and cold air
flows for pulverizer units. A nonlinear model for a
single pulverizer has been developed having as inputs
the feeder speed, the hot air damper opening, the cold
air damper opening and the P.A. fans speed. The
states for each unit are the fuel output of the
pulverizer, the hot air flow and the cold air flow. The
output variable is the fuel outlet from pulverizers,
supplied to the boiler. Simulation of a single
pulverizer unit can be performed using the following
set of equations

arF’ R ST
—-Jr:c‘. u, H' + ¢, 11’3(,"+c;1‘7‘+c‘4(H'+C')u‘7
adt P g
—‘—it—=c;u{+c;ué—H'u;—C'u;
dC' . L b d e

i N i L) i b id
i U+ ug +cy H uy +¢y C' uy

where F is the fuel output of the pulverizer, H is the
hot air flow, C is the cold air flow, ¥, and u, are the
P.A. fan speed (nominally 24.7252 rad/sec), u, is the
hot air damper opening (0.8), u; is the cold air damper
opening (0.2) and u, is the feeder speed (3 r.p.m.).
The parameters are included in Table L.

The rest of the units will be having similar kind of
dynamics. In this analysis (for the purposes of
algorithm demonstration) we will consider the feeder
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speed in each pulverizer as a disturbance, because it
depends on the coal characteristics.

The manipulated variables are the hot air damper
opening and the speed of the two P.A. fan units. Also,
we consider that the hot and the cold air damper
openings are normalized, then they should verify the

following relation % = 1-u,

TABLE I: PULVERIZER PARAMETERS

i 2 3 4 5

d 9 11 10 1
¢ 2 1.8 22 2.1 1.9
¢ 073591 -07  -075  -071 -072
¢ 057306 .06 063 059 055
¢ 001413 0013 0015  .0014 00125
¢ 001413 0013 0015 0014  .00125
¢ 003 0027 0033 0031 0028
¢ 003 0027 0033  .0031 0028
ch -1.903016 -188  -193 .19 -1.89
a3 29 31 3.1 3.

3.2. Boiler model

The states of the non-linear drum type coal fired
boiler model are the drum pressure (P), the steam flow
to the H.P. turbine (S) and the drum level (L). It has
four inputs, there are the fuel input from the
pulverizers outputs (F;), the feed water input (w,,
nominally 193 Kg/sec), the feed water temperature (Te
nominally 288°C) and the control valve setting (c,
nominally 0.8). The model is as follows,

P S
‘;—t= -0.001938 P"® + 0014524 ) _F,
i=1
-~ 0.000736 w, +0.00121 L + 0.000176 T,
ds

.= 10¢, P'*-0.785716 S

dr

dL - 6 p2

— = 000863 w, +0.002 > F, +0463¢,-6x 107" P? -
i=1

0.00914 L-82 x 107°L* - 0007328 S

The purpose of this model is to describe the gross
behavior of the plant. The control variables for the
boiler are the fuel input (from the pulverizers) and the
feed water input. The disturbances are the feed water
temperature and control valve setting. The last one
represents the variation on the steam demand to the
service units.

3.3. Control Scheme

The control scheme for this systems is composed
for two control structures:

Control system for the boiler control: It involves
two SISO loops, controlling the pressure and the drum
level by using the fuel and the water feed inputs

76



C. G. RASPANTI J. L . FIGUEROA

respectively as manipulated variables. These loops are
closed with PI controllers with parameters as in Table
IL.

TABLE I1. PI CONTROLLERS

Loop 1 (P-F) Loop 2 (L-w)
P 0.75 0.05
/ 50000 10

Control system for the pulverizers: In this case, the
manipulated variable are the is the hot air damper
opening (u,) and the controlled variables are the fuel
outputs of the pulverizer (F). It is important to remark
that the value of the reference of these loops are
computed using a divisor, and each of these controllers
are a slave controller which master is the pressure loop
of the boiler (i.e. F*# =(2F%;=1,.5. This controllers

are proportional with parameter K,= 100.

In order to study the complete system operation,
we consider the five pulverizers supplying fuel to the
boiler plus the controllers, so we have a total of 20
non-linear differential equations. There are 16 freed
variables considered, these are the hot air damper and
the two P.A. fan speeds for each pulverizer and the
feed water input at the boiler. The disturbances
considered are the feeder speed for each pulverizer,
the control valve displacement and the feed water
temperature.

feed water input

control Valve of H.P
Turbine

fuel input from
pulverizers

Fig. 1 Steam Generating Unit with control Scheme
There are 15 operative constraints, they are

Minimal Steam flow S > 110

Bounds on the drum pressure 140 < P <200

Bounds on the drum level 45<L <66

Bounds on the fuel output on each pulverizer
S<F<9

The objective is to minimize the operation cost
(fuel and water). In this point we will assume that all
pulverizers have the same operative cost.
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S
2, = 025w, + 2, 10F,

i=)
The set of manipulated variables are allowed to
move in the following ranges:

0.8 < u, <0.95 (for each pulverizer)
22 <u,=u,; < 25.5 (for each pulverizer)
22 < u,;=u4z < 25.5 (for each pulverizer)
175.0 <w,<210.0

and also we allow free value for disturbances between
the following limits (with the nominal value between
parenthesis):

280.0<7T,(288°C)<292.0
2.9 <u, (3 r.p.m) < 3 (for each pulverizer)
0.8<¢,(0.8) <0.85

In order to apply these algorithms, the variable
domain has been divided in 140 regions. To perform
this CPWL model a direct not constrained
optimization algorithm was used on each individual
non linearity of the system, and then, they are joined
in a complete CPWL model.

The optimum back-off objective function
Zq; =356.39 is obtained in two iterations of Algorithm

2. The values of the manipulated variables are i) = 038
for =1,.,5; u =220 for i=1,2,3,5; u =2256;
up =220 fori=124,5; 42 = 2225 and w, =175

4. Conclusions

An approximation for a detailed pulverizers-boiler
system has been developed. It allowed to specifically
consider steam generating unit operability in process
plant disturbances analysis. This study was conducted
by determining an optimal operating point belonging
to the permanent feasible region of the utility system.
It allowed to quantify the deviation from the optimal
nominal condition, providing an economic indicator of
the potential value of implementing a control system.
The used CPWL-based algorithm needs less than 1/5
of the time for convergence as compared to the non-
linear models.
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APPENDIX A: Algorithm for Steady-State
Computation

Data: A set of external variables (if,#%) and an initial
guess x’. Set &=0.

Step 1: Compute the positive /'i;k that makes the ith
entry of the following vector zero:

2 =Eh 0+ AEL) )+ ELE BN W

for i=1,..,0, where z* = g% x* +EX W+ EX W+ nk.

Step 2: Compute A = min A* and x* =y* -} (g* )"z:
with 2% = ELxt + LT+ LW+

Step 3: If A, is smaller than one, set k=k+1 and

return to Step 1. Otherwise, x**!
value. Stop.

is the steady-state

For details and the proof of convergence see
Figueroa and Desages, 1998.

APPENDIX B: Computation of x(t)

Consider the system at the steady state point
(x°,u, W) ex’. Then, a disturbance w(#)e W is applied
to the system. While the system is in sector N°, it is
easy to see that the state vector will be
x(f) = e"'x° — (l e )(&‘;)-,.(i‘,’u.u +E W+ ng)

This expression will be valid till the time # in
which the system reach the next sector. In this new
sector, another linear expression for the system is valid

Then, it is possible to obtain an algorithm to perform
the dynamic simulation as follow,

Algorithm B: Dynamic Simulation

Data: A set of external variables (u,w), the
magnitude of the step in the disturbance w and the
horizon (7"*) to perform the simulation.

Step 0: Compute the steady-state solution for the
model (i.e. x°), Set k=0.
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Step 1. Determine in which sector, Nk, the point
(x*,u,w) lies; and compute the linear model valid

in this sector. The state as a function of the time
for this sector is

x(1) = e¥x* - (l - e‘k'*')(ﬁ’;)~l .(&f“.u +EF W nf) :
Step 2: Compute the time #* that first makes zero an
entry of the vector,

Zg = Eex(t) + Eu + X, W+ M
and determines the state for which it happens as
Xt =5 = (1= YeL) " (el el wn).
Step 3. If ' is smaller that 77, set x**' = x(+*"),

make k=k+1 and return to Step 1 to proceed
similarly in the next sector. Otherwise, Stop.

Using the results of this algorithm, a generic
expression for x(f) when the system goes through
=

sectors [R?, ', &% ...., 8" could be written as
x(1) = @, (Hu + D, (H)w + D, (1, W)
e fer) gt - fe) 2,

%(t)ﬂ“’ﬂﬁew )("e"‘” g -

=0\ J=i+l

i h-l . i Al Jidi 0
«»x«,mwéuf[-[new Jee e [le Jee

=0 J=l

+§{ﬁe=“’)(1~e“~” X&i,réi]—(l—emk;)_’&f

where ¢ is the time at which the system leaves sector
N’ Note the dependence of the matrices @ _(t),
®_ (1) and @ (s,%) on the sectors [R°, R', N?, ...,

X" and on the times [t°, t', £, ...., "]. This means
that, in general, this expression is not longer valid if
any change occurs in the inputs u or w.

with

D, (1) =€ [ﬁegi“} j(ggx)" E0, — et hzl( ﬁ &

i=1 \_J=i+l

Received April 15, 1999,

Accepted for publication September 5, 2000.
Recommended by Subject Editors R. Sanchez Pena
and H. Larrondo.



