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Abstract— Two different methods to com-
pute the period-doubling route to chaos (or
Feigenbaum chaos) in nonlinear systems are
presented. The first one is a semi-analytical
procedure, based on a symbolic calculation of
an approximate monodromy matrix. The sec-
ond one takes advantage of software packages
for continuation of periodic solutions. Both
procedures are used to analyze Chua’s cir-
cuit. The second method is also applied to the
Rossler system and one of the chaotic systems
of Sprott. In all three cases, several period-
doubling bifurcation points in the parameter
space are detected using standard continua-
tion software packages, allowing to compute a
sequence of values supposedly converging to
Feigenbaum’s constant. This “experimental”
computer verification agrees with experiments
performed by other researchers in real systems.
This material has been used in final projects in
a graduate cdurse on dynamical systems.

Keywords— period-doubling bifurcations,
Feigenbaum’s constant, chaotic systems.

L. INTRODUCTION

The aim of this paper is to present two different meth-
ods for prediction of the period-doubling bifurcation in
nonlinear systems, mainly for analysis, but with the
perspective to alert (control) the birth of chaos us-
ing the information provided by the Feigenbaum con-
stant. As it is well known, the cascade route of period-
doubling bifurcations is a very important scenario to
understand chaotic motions, and several notable re-
cent contributions have dealt with this detection us-
ing different orders of accuracy (Basso et al., 1997;
Bonani and Gilli, 1999; Collantes and Sudrez, 2000;
Maggio et al., 1998; Phillipson and Schuster, 2000) as
well as its control using different methodologies (Chen
and Dong, 1998; Chen et al., 2000, and Tesi et al.,
1996). Some Of them proposed to use the describ-
ing function method (generally a first-order harmonic
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analysis), while some others suggested to use the har-
monic balance approach with several harmonics, and
more recently quasi-analytical methods.

In this paper, we propose a more accurate computa-
tional scheme for predicting the first period-doubling
bifurcation, by taking advantage of some explicit for-
mulas of periodic solutions (Moiola and Chen, 1996)
in terms of higher-order harmonic balance approx-
imations (HBAs, in short). This new scheme im-
proves the accuracy of the detection when compared
to other closely related approaches (Basso et al., 1997;
Maggio et al, 1998; Tesi et al, 1996). It also re-
veals some insights about the hidden relationships of
period-doubling mechanisms and the coefficients of the
Fourier series in quasi-analytical computations. The
proposed algorithm uses the information of higher-
order HBAs, in conjunction with an “approximate”
evaluation of the associated monodromy matrix (Berns
et al., 1999; 2001). This algorithm provides approx-
imate characteristic multipliers (Floquet multipliers),
without using too many harmonics in comparison with
the method recently proposed in (Bonani and Gilli,
1999) and, at the same time, emphasizes some advan-
tages of series methods in the computation of peri-
odic solutions. These advantages have been very re-
cently rediscovered and carefully analyzed (Gucken-
heimer and Meloon, 2000). Some preliminary results
show that this technique could also be used to com-
pute the second period-doubling bifurcation, although
a higher number of harmonics may be needed to ob-
tain accurate detection; this issue is not pursued in the
present paper.

An alternative to detecting period-doubling bifur-
cations in systems of Ordinary Differential Equations
(ODEs) is to use a software package for continua-
tion of periodic solutions based on standard numer-
ical techniques, such as, for example, the LBLC pro-
gram from LOCBIF library (Khibnik et al., 1993b).
These powerful tools allow the detection of a higher
number of period-doubling bifurcations in the parame-
ter space than the semi-analytical method described
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above. This enables the “prediction” of Feigenbaum’s
constant from the first period-doubling bifurcations
(up to period 16 or 32). From the point of view of
engineering applications, it is also possible to approxi-
mate the birth of the attractor with a reasonable good
accuracy from the values of the parameter for solu-
tions of period 4 and 8. In this regard, several values
approaching the Feigenbaum constant are obtained for
very well known chaotic attractors, such as Chua’s cir-
cuit, Rossler’s system and one of the chaotic systems
recently discovered by Sprott (1994). In all of these
systems, the dynamics of the so-called Lorenz map
is “unimodal” and thus the requirements of Feigen-
baum’s theory is satisfied (Cvitanovic, 1989). These
results help us to interpret the “order” that appears in
chaotic systems to predict approximately serial values
of the cascade of period-doubling bifurcations.

II. BACKGROUND MATERIAL

In this section two different methods to detect period-
doubling bifurcations are presented. The first one is
based on the computation of the so-called monodromy
matrix of the system. The second one relies on numer-
ical procedures for computing the continuation curve
of periodic solutions in the parameter space.

A. Quasi-analytical method to predict
period-doubling bifurcations

A Drief review of a frequency-domain method to detect
Hopf bifurcations, as well as a semi-analytical proce-
dure to compute the monodromy matrix are described
here. More details can be found in Berns et al. (1999,
2001).

A.1. The Graphical Method for Hopf Bifurcation

Analysis

Consider the following feedback connection of a para-
metrized linear system and a memoryless nonlinearity

{ x(t)=A(p) x(t) +B(p) u, (1)
y(t)=C(p) x(t),

u=g(y;u).

This system can be thought as an autonomous (para-
metrized) nonlinear system

X(t) =f (x;p) = Ap) x(t) + B(p) g [C(p)x(t)n], (2)
where A, B and C are n xn, n xr and m x n matrices,
respectively, 4 € R is the main bifurcation control
parameter, x € R™ is the state vector, y € R™ is the
system output, g : R™ x R — C29+1(IR") is the system
feedback (a smooth nonlinear function), f : R* x R —
C2q+1(lR") is a smooth system vector field, and n,m, g
and r are positive integers. Define

G (s;p) = Cp) [sT — A(w)] 7" B(),

and also the Jacobian Jg= 98 (zip)

o _. The equi-

2=y=CX
librium solution of Eqgn. (1) can be obtained solving

GO:p) gyin)=¥.
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A Hopf bifurcation occurs when one eigenvalue, de-
noted ), of the transfer matrix of the linearized system
G(s; p)Jg, satisties

Aiwo; o) = ~1+ 06,  i=v-1,

for some values wp and pg. At the moment of bifur-
cation, a periodic branch arises from criticality, and
continues to develop as u is varied. Then, a 2gth-
order approximate periodic solution of Eqn. (1) can be
written as

2g
Y(O) Ryt =F+R{D_Yiet ) g=1.2..
k=0

to distinguish it from the true solution yy (t) = ¥ +
R{Spe, YEetutl where 'R{.} is the real part, wy
is the fundamental frequency. w, is the approximation
frequency, and Y* are the k-harmonic complex ampli-
tudes satisfying the harmonic balance equations

Y* = G (ikwy, p) HF, k=0.1,2...

where {H*} are the Fourier coefficients of the out-
put signal of the nonlinear feedback gly(t)] =
R{3 peo HF e*11t} | written as polynomial functions
of {Y*}. The Graphical Hopf Bifurcation Method
(GHBM) (Moiola and Chen, 1996) provides the 2qth-
order prediction of the limit cycle. Here, only the first
2q + 1 Fourier coefficients {H’;} of the output signal
of the nonlinear feedback, written as polynomial func-
tions of {Y}}, are considered

2q 0
glyt)] = ’R{Z HZ ei’““’"t} + R{ Z HS eik’wa} ,
k=0 k=2g+1

These equations are solved in terms of Y] =
Y; (v,6y), where v is the right eigenvector of
G(iw, p)Jg associated with the eigenvalue A, and 04
is a measure of the amplitude of the periodic solution.
More details for the explicit approximation formulas
can be found in the reference cited above.

A.2.  The monodromy matrizc

Let - (t) be a certain periodic solution of Eqn. (2}, such
that v (t) = vy (t + k¥T), with k € Z. Clearly, ¥(t) =
f [y (t)], and 4 (¢) is also T-periodic. Let s (t,xo + €¢)
be a solution that is not periodic, but “close to” the
periodic solution = (t),

s(t.xo +€0) =y (t) +e(t).
where xg = v(0), eg = €(0) € B(xg,8). Clearly, if

o =0, s(t,x9) = v (t), and thus e (t) = 0 for all t.
Once again, as s (¢, X9 + &) is a solution of Eqn. (2),

F(t)+e(t)
flv(t) +e(t)
of

fly®)+ Ix

§(t) =
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and thus
E)=F(@t)e(t)+ O [62 (t)] , (3)
where
F(t)= o L EAWEBWLCwW, @

: _ Om(z;p)
with J, = =5, =)’

The stability of the perturbed solution s (¢, xg+¢€o)
is closely related to Eqn. (3). If e(t) — 0 when t — oo,
then the perturbed solution converges to the periodic
solution «(t). On the contrary, if €(t) does not con-
verge to zero, it can not be assured that the per-
turbed solution converges to the periodic solution ~y(t).
Therefore, the local stability of a limit cycle can be an-
alyzed studying the local behavior of e(¢), neglecting
the higher order terms in Eqn. (3),

eM)=F@®)e(t),

with F(t)given by Eqn.(4). Matrix F(¢t) is T-
periodic, and it can be thought as the linearization of
the nonlinear system (2) around the periodic solution
v ().

System (5) is linear-periodic, and its solutions
can be characterized via the state transition matrix
® (¢,0). For any &g, the linear state Eqn. (5) with F (t)
continuous has the unique, continuousty-differentiable
solution

€ (0) = €0, (5)

€(t,eq) = ®(¢,0) eo.

It is a well-known property of linear periodic systems
that the state transition matrix ® (t,0) may be written
as

® (t,0) = K (t) e,

where K(t) = K(t+7T) € R*"*, K(0) = I, and
L =1/T log® (T,0). Matrix ®(7,0) = eLT= M is
called the monodromy matriz of the system. The be-
havior of the solutions in the neighborhood of v (-) is
determined by the eigenvalues A1, ..., A, of M| called
the characteristic multipliers, or Floquet multipliers.
The eigenvalues of L are referred to as the character-
istic exponents of . If v € R™ is a vector tangent to
~ (0), then v is the eigenvector corresponding to the
characteristic multiplier Ay = 1. The moduli of the
remaining n — 1 eigenvalues, if none is unity, deter-
mine the stability of «yv. In particular, if one eigenvalue
crosses the unit disk at —1 after varying a parameter,
an attractive closed orbit of Eqn. (2) becomes a saddle
closed orbit, and a new attractive closed orbit of nearly
twice the period is emitted from it. This bifurcation
is referred to as (supercritical) period-doubling bifur-
cation, subharmonic resonance, or flip bifurcation.
The monodromy matrix M and the Poincaré map
are closely related. Choosing appropriately the rep-
resentation basis, the last column of M can take the
form (0,...,0,1)7 and then the characteristic matrix

of the linearized Poincaré map is the matrix belonging
to R(n=Dx(n=1) ghtained by deleting the nth row and
column of M.

A.3. Approximate computation of the monodromy
matrix

Contrary to the case of time-invariant systems, a gen-
eral method to compute the analytical solution of a
time-variant linear system such as Eqn. (5) does not
exists'. Moreover, Eqn. (5) can be obtained only if an
explicit expression of the periodic solution is available,
which in turn implies knowing an (analytical) solution
of Eqn. (2). Therefore, there is almost no chance to ob-
tain an exact, analytical expression for the monodromy
matrix M.

Following (Berns et al., 1999; 2001) an alternative,
approximate method to compute M is to obtain an ap-
proximate periodic solution, and analyze the behavior
of the approximate monodromy matrix M, computed
over a 2qth-order periodic solution v, of Eqn. (2). Al-
though the error in estimating the period-doubling
bifurcation can be quantified, a simple procedure to
check the accuracy of the approximations is a decreas-
ing value of ||A; — 1|| for increasing higher-order HBAs.
For further details the reader is referred to the above-
mentioned references.

B. Numerical continuation approach

The approach for detecting period-doubling bifurca-
tions described before has the advantage of reveal-
ing some insights about the hidden relationships of
period-doubling mechanisms and the coefficients of the
Fourier series. However, as several approximations are
needed to arrive at the final result, some care must be
exercised in the analysis of the solutions. This fact,
together with the computational complexity involved,
precludes its use in some cases.

An alternative is to carry out numerical time-
simulations on the system, plotting appropriate pro-
jections of the solutions over a plane, and visually de-
tecting the birth of a period-doubling solution. The
disadvantages of this approach are obvious. A bet-
ter technique is to employ a routine for continuation
of periodic solutions. Several numerical routines are
available for this purpose; see for example (Kuznetsov,
1998; Govaerts, 2000). The maximum value of one of
the output variables (in oscillatory regime) is plotted
as function of the main bifurcation parameter u; there-
fore values of the parameter where period-doubling bi-
furcations occur can be read very precisely. This plot
is known as the continuation diagram of periodic solu-
tions.

There are many software packages available to per-
form this kind of computations, for example LBLC

1Some special cases can be solved analitically; for example, if
F (t)and [ F (o) do commute, then M = exp [fOT F (o) da] =

Yo ',;17 [fOT F (o) da] . .
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a Al A A3 o A A2 A3
6.905 | 1.418 | —0.028 + ¢0.005 | —0.028 — ¢0.005 6.915 | 1.04992923 | —0.98815423 | —0.00181657
6.920 | 1.427 —0.0554 —0.0146 6.920 { 1.05044375 | —1.00291535 | —0.00178851

Table 1: Characteristic multipliers of M; for a range
of the main bifurcation parameter a.

from the LOCBIF library (Khibnik et al., 1993b); how-
ever, in any of them choosing an appropriate initial
condition is of paramount importance to obtain signi-
ficative results.

C. Feigenbaum’s constant

For systems exhibiting unimodal dynamics of the so-
called Lorenz map, a possible route to chaos is the
cascading of period-doubling bifurcations. Starting
from the critical value pgy for which a Hopf bifurca-
tion phenomenon occurs, increasing values of p pro-
duce periodic solutions of varying amplitude, until pu
reaches another critical value, noted as ug, where an
orbit of double period appears. This behavior is re-
peated for increasing values of i at specific values pon,
and the cascade of period-doubling oscillations ends
up (at least in non-patological dynamical systems) in
a chaotic attractor. Feigenbaum has shown that the
values of the parameter pg for which period-doubling
bifurcation occurs exhibit certain regularity for uni-
modal maps. If one computes the ratio ¢, between
two successive distances between critical points in the
parameter space, t.e.

fgnst = pigo
MHon+2 — fon+ ’
then the series of values 81, 62, d3, ...converges to a
particular value, the celebrated Feigenbaum’s constant
(Cvitanovic, 1989)

lim &, = ér =~ 4.669... .

n—0o0

S = n=12... (6)

Knowing two successive values of the parameter for
which a period-doubling bifurcation occurs, it is pos-
sible to estimate a value of the parameter p,, for
which the system is bordering chaos

Ja

Hoo,n = /—L2"+(ﬂ2n+l _'LLQ")T n= 1,2, e . (7)

-1
Therefore, from an engineering point of view, if 4 =
loo,n for n sufficiently large, the system’s variables will
exhibit chaotic behavior, or at least, they will have
such a rich harmonic content that they could be con-
sidered “chaoti¢” for any practical application.

III. APPLICATION EXAMPLES

In this section, the values pug. for which a period-
doubling bifurcation appears will be detected for three
different systems. Only for the first system is carried
out the computation of the first period-doubling with
the approximate monodromy matrix in the frequency
domain and then compared to the result obtained by
the continuation method.

Table 2: Characteristic multipliers of My for a range
of the main bifurcation parameter a.

[ )\1 /\2 )\3
6.905 | 1.03535850 | —0.99495839 { —0.00191856
6.910 | 1.03581737 | —1.00983049 | —0.00188948

Table 3: Characteristic multipliers of M3 for a range
of the main bifurcation parameter a.

A. Chua’s circuit

The model of Chua’s circuit (Madan, 1993) with a soft
nonlinearity is given by

T = aly-(r).
y = r-y+tz (8)
2 = ~ﬁy1

where p(z) = %xa — %x is a cubic polynomial nonlin-

earity, and « and (@ are control parameters; for more
details see (Khibnik et al., 1993a; Moiola and Chua,
1999). In our study, parameter ( will be fixed at
8 = 10.91678, and « will be considered as the main
control parameter (4 in the previous section).

Al

System (8) can be regarded as the feedback connection
of the linear plant

Monodromy matriz approach

s +s+0
B+ (1- Sa)s? + (-Ba+8)s+ Sa’

G(sip) =

and the nonlinear feedback g (z) = & (3% — 3z), and

thus, J =4 ( %xz - :—13) The equilibrium points are given
by T = i2\/2%. A Hopf bifurcation occurs for ay =
3/2(y/1+28-1) =~ 5.667671, and the frequency of the
periodic solution is wp = a\/i/ 3. A period-doubling
bifurcation, obtained by numerical integration, gives
the critical value ag = 6.888775.

The characteristic multipliers for the approximate
monodromy matrices My, My and M3 are shown in
Tables 1, 2 and 3, respectively, for different values of
the parameter «. From these Tables, it can be ob-
served that the largest value of ||A; — 1}j occurs for
the first-order HBA approximation, revealing that the
approximate monodromy matrix M, may be a coarse
estimate of the true monodromy matrix M. Neverthe-
less, increasing the number of harmonics in the approx-
imation of the limit cycle leads to decreasing values of
|IA1 — 1f|, and hence, M; and Mjcan be regarded as
“good” approximations to M.

Of particular interest is the behavior of the charac-
teristic value Ay in Tables 2 and 3. In both Tables, A,
takes the value —1, for some o* € (6.915,6.920) for the
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Figure 1: Continuation of periodic solutions for Chua’s
circuit.

fourth-order HBA, or some a* € (6.905,6.910) for the
sixth-order HBA, indicating the chance of a period-
doubling bifurcation. These values compare very fa-
vorably with the critical value ay = 6.888775.

This procedure can be repeated for detecting the
second period-doubling bifurcation. However, due to
the approximate nature of the calculations, some care
is needed in interpreting the results. Moreover, a
higher order HBA may be pursued to obtain mean-
ingful estimates.

A.2.  Numerical continuation approach

In order to obtain the values of ayn where a period-
doubling bifurcation occurs, a continuation of the pe-
riod 1 orbit is computed, as shown in Fig. 1. Only one
of the branches of the cascade of bifurcations is de-
picted; due to the symmetry of the system, the other
branch is entirely similar. The critical values of «
are: az = 6.888775, ay = 7.034154, ag = 7.065070,
a1g = 7.071624 and azp = 7.073030. Figure 1 can
be regarded as a synthesis of the oscillatory dynamics
that ends in the “single scroll” attractor and then, by
a complex connection through the saddle point, in the
“double scroll” attractor.

Successive values of é,, for n = 1, 2, 3 can be com-
puted [see Eqn. (6)] with the parameter values corre-
sponding to the first five period-doubling bifurcations

61 =4.702387, 62 =4.717119, 63 = 4.661451,

that seem to get closer to the theoretical limit 6. The
values found for ag- enable us to estimate different
values of a, ,, [see Eqn. (7)]. The computed values are
ool = 1.07T3778, ap 2 = 7.073496, a3 = 7.073410,
O, = 7.073413.

Remark: As noticed in Guckenheimer and Meloon
(2000), the precision with which the eigenvalue \; is
computed (by definition must be +1) is a measure for

// !
o} e
1t /
HB |
[} 05 1 1.5 2 25 3 35 4 4.5 5
.
Figure 2: Continuation of periodic solutions for

Rossler system.

the accuracy of the computation of the periodic solu-
tion and its monodromy matrix. It is interesting to see
that in the present paper the error ||A; — 1|| for this
eigenvalue is about 3.5 x 10~2 for the best approximate
monodromy matrix M3. Regarding the continuation
of cycles performed with LOCBIF, this error is below
1x10~3. Just for comparison, notice that in the recent
contribution of Guckenheimer and Meloon (2000) the
authors have dealt with an error below 1 x 1074 by
using a sophisticated method which can perform even
better than the classical and standard algorithms for
continuation of periodic orbits.

B. Réssler system

Rossler system (Rossler, 1976) is given by

r = -y-z
= xr+ay,
z = b+z(zx—o0),

where a and b have been fixed at 0.2, and ¢ is the
main bifurcation parameter. A continuation of the
period 1 orbit is shown in Fig. 2. The period-doubling
bifurcations occur for ¢; = 2.832446, ¢4 = 3.837358,
cg = 4.124215, c16 = 4.186997, and c32 = 4.200536,
allowing to compute the following estimates of Feigen-
baum’s constant

6, = 3.503181, 62 =4.569096, 63 =4.637122.

Again, the values of con found allow to estimate dif-
ferent values of ¢y, ,, for which the system will be in
(or very near to) chaotic regime: co,; = 4.111251,
Coo2 = 4.202399, co 3 = 4.204108, coi,q4 = 4.204226.

C. Sprott system

Of the several chaotic systems discovered by Sprott
(1994), let us consider the following one, having a sin-
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Figure 3: Continuation of periodic solutions for Sprott
system.
gle nonlinearity

r = ar+z,

ez — Yy,

= —-r+4y.

Here « is the control parameter. A continuation of the
period 1 orbit is carried out in order to verify Feigen-
baum’s constant; the corresponding diagram is shown
in Fig. 3. The period-doubling bifurcations occur for
oy = 0.2644273, oy = 0.3136389, ag = 0.3244517,
a1 = 0.3267759, and aap = 0.3272732, obtaining the
following estimates of Feigenbaum’s constant

61 =4.551235, 6y = 4.652267, 63 =4.673638.

Once more, different values of aq,, ‘can be estimated
from the values found for as.. The computed values
are Qoo,1 = 0.3270517, aeo2 = 0.3273988, ass =
0.3274094, a4 = 0.3274087.

D. Discussion of results

Although in this work a rigorous verification has not
been carried out, Kennedy (1992, 1993) observed in
an electronic implementation of Chua’s circuit that is
very difficult to distinguish experimentally the bifur-
cation from a cycle of period 4 to a cycle of period
8. In other experimental setups the situation is simi-
lar, as can be observed in Table 4 (Cvitanovic, 1989).
In other words, the cascade of period-doubling bifur-
cations quickly goes to the attractor, and in general,
only the bifurcations for cycles of period 2 and 4 are
easily distinguishable.

From a computational point of view the situation is
somewhat similar: it is also very difficult to detect ac-
curately the appearance of n period-doubling bifurca-
tions when n is larger than 4. However, the number of

31:185-192 (2001)

Figure 4: Phase plot projection of variables z and z for
Chua’s circuit (a = 7.073496) .

Experiment nit 6, Authors
Water 4143 Giglio (1981)
Mercury 4 | 4.4 | Libchaber (1982)
Diode 51 4.3 Testa (1982)
Transistor 4| 4.7 ] Arecchi (1982)
Josephson junction | 3 | 4.5 Yeh (1982)

Table 4: Estimates of the Feigenbaum’s constant in
physical experiments (n is the number of period dou-
blings).

period-doubling bifurcations detected depends on the
technique used to compute the solutions. When using
numerical simulations difficulties similar to those de-
tected in experimental setups do arise. The technique
of continuation of periodic solutions allows for a bet-
ter detection of period-doubling bifurcations, as can
be observed in the examples above. Nevertheless, it is
very difficult to go beyond than a period-32 bifurcation
(5 period-doublings).

The lack of a large number of points in the para-
meter space for which a period-doubling bifurcation
can be accurately detected severely limit the num-
ber of terms of the series that can be computed us-
ing Eqn. (6). Therefore, a truly “convergence” of the
series to the limit value ép is difficult to justify. It
should be noted, however, that the computed values
are very close to the theoretical 6. On the other
hand, Eqn. (7) and the numerical results obtained for
the three examples show that the value of the parame-
ter such that the system is in (or near to) the chaotic
regime can be estimated from the parameter value at
the second and third period-doubling bifurcations. For
example, a chaotic regime for Chua’s circuit can be
obtained (at least, from an engineering point of view)
setting @ = a2 = 7.073496. The projection of the
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trajectories of the system on the z-z plane resembles
an orbit of peripd 8 (see Fig. 4); however, the detailed
view shown in the same figure reveals the chaotic na-
ture of the solutions.

IV. CONCLUSIONS

A quasi-analytical approach has been introduced in
this paper for detecting the first period-doubling bifur-
cation in a nonlinear dynamical system. Prediction of
the period-doubling bifurcation is accomplished very
accurately via the proposed computational scheme, us-
ing a reasonably small number of harmonics. The tech-
nique has the advantage of utilizing the structure of
the system for analysis, design or other purposes, since
the harmonic content as well as the approximate mon-
odromy matrices can be implemented explicitly. Fur-
thermore, approximations to the Feigenbaum’s con-
stant for systems of ODEs has been shown. All the
three considered systems (Chua’s circuit, Rossler’s and
Sprott’s) have a route to chaos following the cascade
of period-doubling. Although a better precision is ob-
tained using programs for continuation of periodic so-
lutions comparing with the pure simulations (see page
379 of Strogatz, 1994, and compare it with the Fig. 2),
the use of LOCBIF is arduous if the initial condition
is not chosen appropriately.

This method can be used for bifurcation control by
applying the standard techniques given by Tesi et al.,
(1996) when delaying the first period-doubling bifurca-
tion. In this case, this frequency domain approach will
provide a better approximation than the first-order
harmonic balance solution of the describing function
method. Moreover, by detecting the second period-
doubling bifurcation and applying the Feigenbaum’s
constant, an approximate detection of the birth of
chaos can be obtained.

The numerical estimation of Feigenbaum’s constant
presented in this work is similar, in spirit, to the study
carried out on reactors of tubular flow by Kim et al.
(1989), but using a package for continuation of peri-
odic solutions instead of integration routines.
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