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Cátedra de Quı́mica Analı́tica I, Facultad de Bioquı́mica y Ciencias Biológicas, Universidad Nacional del Litoral,
Ciudad Universitaria, Santa Fe (S3000ZAA), Argentina

A chemometric strategy based on multivariate curve
resolution and alternating least-squares (MCR-ALS) ap-
plied to LC-MS three-way data arrays has been developed
to perform a metabonomic study in tomato (Lycopersicon
esculentum) fruits (cultivar Rambo) following treatment
with carbofuran. This methodology has proved to be
adequate for the detection of unintended stress effects due
to the previous treatment with this pesticide. MCR-ALS
was performed on augmented matrices built with the LC-
MS three-way data obtained from treated and nontreated
samples through the sampling time. The strategy allowed
us to obtain the concentration and spectra profiles of the
main components (previously estimated with the SVD
algorithm) from samples treated with pesticide as well as
from blank samples, showing how they vary with time after
plants treatment with the pesticide. In addition, a simple
resolved mass spectrum was obtained corresponding to
the peaks of a particular component in all matrices, thus
avoiding ambiguity in the compound identity assignment.
Different time profiles were found for some metabolites
in treated and nontreated samples, which demonstrate
that the presence of pesticide causes changes thorough
time in the behavior of certain endogenous tomato me-
tabolites as a result of physiological stress.

In recent years, new “omics” disciplines (metabolomics and
metabonomics) have been increasingly applied in diverse fields
(e.g., functional genomics, toxicology, pharmacology, disease
diagnosis, food and nutrition science, and environmental science).
Thus, metabolomics and metabonomics techniques have been
used for multiple and diverse project studies, and the number of
reports on these studies in peer-reviewed journals has risen
steadily every year to well over 600 in 2008.

Metabonomics has been defined as “quantitative measurement
of time-related multiparametric responses of multicellular systems
to pathophysiological stimuli or genetic modifications”, whereas
metabolomics has been defined as “the measurement of metabo-
lite concentrations and fluxes in isolated (and usually identical)
cell systems or cell complexes”.1 Despite these two definitions,
some authors use both terms indistinctly2 and six strategies
(metabolomics, metabolite profiling, metabolic fingerprint, me-
tabolite target analysis, and metabonomics) have been proposed
for metabolomic analysis.3 In addition, some authors refer to
“metabolite profiling” or “metabolomics approaches”.4 Obviously,
any of the above-mentioned approaches involves measuring a set
of compounds with wide variations in chemical (molecular weight,
polarity, solubility) and physical (volatility) properties, which also
extend over an estimated 7-9 fold magnitude of concentration
(picomole to millimole).5

Specifically, metabonomics depends on the possibility of
determining changes in low molecular weight organic metabolites
in complex biological samples. Analytical strategies in metabo-
nomics are high-field proton nuclear magnetic resonance spec-
troscopy (1H NMR), direct injection into a mass spectrometer,
Fourier transform infrared (FT-IR) spectroscopy, and separa-
tion-based techniques such as gas or liquid chromatography
or capillary electrophoresis with mass spectrometry detection
(GC-MS, LC-MS, and CE-MS).6 Nowadays, emerging develop-
ments in analytical technologies such as fast high-resolution
separation systems (e.g., ultraperformance liquid chromatog-
raphy, UPLC) or high-mass accuracy and large dynamic-range
MS instruments such as time-of-flight-MS (TOF-MS), quadru-
pole-time-of-flight-MS (Q-TOF-MS), Fourier transform cyclotron
resonance-MS (FT-ICR-MS), and Fourier transform-Orbitrap-
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MS (FT-Orbitrap-MS) can provide more information from the
experimental data generated, leading to assignment of metabo-
lites.7

Complete chromatographic separation of the components of
complex biological samples is often difficult to achieve because
of the existence of overlapping or embedded peaks, even under
optimal separation conditions, mainly when using conventional
separation systems. Nowadays, the hyphenation of chromato-
graphic with spectroscopic techniques (e.g., GC-MS or LC-MS)
yields second-order data that combine instrumental signals built
from both spectral and time domains. The response is arranged
as a data matrix where each column corresponds to a m/z ratio
and each row corresponds to a different time. Using this type of
data in combination with multivariate resolution methods allows
us to obtain mass and concentration profiles (mass spectra and
chromatograms, respectively) for the different sample components.

Resolution of overlapping signals may be carried out by
chemometric approaches, including noniterative and iterative
methods, as well as those based on pure variable selection.
Current noniterative chemometric approaches in curve resolution
based on the natural evolution of the data are evolving factor
analysis (EFA),8,9 window factor analysis (WFA),10,11 heuristic
evolving latent projections (HELP),12,13 orthogonal projection
resolution (OPR),14 evolving window orthogonal projections
(EWOP),15 and subwindow factor analysis (SFA).16,17 Among the
iterative approaches, iterative target transformation factor analysis
(ITTFA)18 and multivariate curve resolution-alternating least-
squares (MCR-ALS)19 may be cited. Pure variable selection
methods are the most simple to use and include self-modeling
mixture analysis (SIMPLISMA),20 the orthogonal projection ap-
proach (OPA),21,22 iterative key set factor analysis (IKSFA),23 and
simplified Borgen method (SBM).24

The HELP method coupled with GC-MS data was used to
determine chemical components of essential oils in Cortex cinna-
momi from four different production areas resulting in the
separation of 88-93 components and the determination of 58-64
of them, representing about 90% of the total relative content.25

The same algorithm was applied in combination with GC-MS data

to analyze volatile components in a traditional Chinese medicinal
preparation. Ninety-three components were separated, and 65 of
them were qualitatively and quantitatively analyzed which repre-
sented about 90.28% of the total content.26 Further, in the
characterization of essential oil components of Iranian geranium
oil, a total of 61 components accounting for 91.51% were identified
using similarity searches between the mass spectra and the MS
database, and this number was extended to 85 compounds using
HELP for solving overlapping peak clusters, after determining the
number of components, pure variables, zero concentration, and
selective regions by application of different chemometric ap-
proaches.27 GC-MS combined with OPR and DS-MCR-ALS (dis-
tance-selection multivariate curve resolution-alternting least-
squares) was used to characterize the essential oil components
of Iranian cumin and caraway. A total of 19 and 39 compounds
were identified by direct similarity searches for cumin and caraway
oils, respectively, and these numbers were extended to 49 and
98 components, respectively, when applying chemometric tech-
niques.28

In the environmental field, MCR-ALS was applied to LC-ESI-
MS data in the investigation of main microcontaminant sources
of endocrine disruptors in coastal and harbor waters and sedi-
ments,29 and the same approach was further applied to analyze
wastewaters and sediments by using fused data from LC-DAD
and LC-ESI-MS.30

The main aim of the present work was to use MCR-ALS for
detecting changes in the concentration of tomato metabolites as
a result of stress after treatment with carbofuran, specifically with
Botrán 20, an insecticide belonging to the carbamate family.

The Rambo tomato is a good size fruit (size G-GG), firm,
spherically shaped, and slightly ribbed. The skin is relatively thin
and has an attractive red color with green streaks. The good taste,
both in early and advanced states of maturation, qualify it as an
excellent ingredient for salads. In addition, it is very resistant to
tomato mosaic virus, fusarium races 1 and 2, verticillium, and
Stemphylium radicis but only has moderate resistance to nema-
todes.31

Carbofuran is a systemic insecticide with nematicide, insecti-
cide, and miticide activity, which acts by surface contact and
through ingestion by interfering with the transmission of nerve
impulses by inhibiting cholinesterase.31 So, it causes reversible
acetylcholinesterase carbamylation, allowing the accumulation of
acetylcholine.

THEORY
Data Pretreatment: Use of Wavelet Transform (WT) To

Compress Matrices. Since 1996, the number of papers involving
wavelet transform (WT) treatments, devoted to compressing and
denoising signals, has considerably increased. Some of these
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papers involve high performance liquid chromatography with
diode array detection (LC-DAD),32-34 as well as liquid and gas
chromatography with mass spectrometry detection (LC-MS and
GC-MS).35,36 In addition, WT has been applied as a signal
pretreatment before chemometrics approaches such as curve
resolution34 and other chemometric techniques.37,38

Wavelets are a family of basis function having a compact
support, which means that they differ from zero only in a limited
time domain. This property makes the wavelet very appropriate
to represent the different features of a signal, especially sharp
signals and discontinuities.39 The WT decomposes the signal onto
a set of basis functions called the wavelet basis, each member
being obtained by dilation and contractions (scaling) as well as
by shifts (translations) of a single prototype called the mother
wavelet Ψ.

Ψa,b ) a-1/2Ψ(t - b
a ) (1)

where a, b ∈ R and a * 0; a is the scaling variable, and b is a
translation variable.

To achieve computation, dyadic (power of 2) dilations and
translations of the mother wavelet are used

Ψ(s,l) ) 2-s/2Ψ(2-st - l)

where s is the scale index, and l the location index.
WT techniques can be classified in two categories: the

continuous wavelet transform (CWT) and the discrete wavelet
transform (DWT). The latter retains sufficient spectral information
and can be implemented much faster than CWT, the signal
decomposition is unique, and the problem of the basis selection
does not exist.40

The DWT can be represented in a vector matrix form

w ) Wf

where f is the signal of interest, w is the vector of the wavelet
transform coefficients, and W is an orthogonal matrix consisting
of the wavelet basis functions.

Each basis vector is characterized by a set of coefficients (c0,
c1, c2, etc.) which are organized in the matrix W into a low-
pass and a high-pass filter, depending on the pattern in which
they are ordered. The low-pass filter, constructed with the
coefficients (c0, c1, c2, ...cN) acts as a smoothing filter, whereas

the high-pass filter, with coefficients (cN - cN-1, ...c1 - c0), can
be considered a difference filter.41

According to the fast decomposition algorithm proposed by
Mallat,42 the full length vector describing the original signal is
passed through the low-pass and the high-pass filters and outputs
are split in approximations and details (or wavelet coefficients).
Approximation coefficients represent a smooth version of the
signal at half resolution and detail coefficients contain details of
the signal at that level of decomposition. Approximation coef-
ficients are then used as new input for the matrix W to obtain a
new vector of approximation coefficients and new details of the
signal. The process can continue until one approximation coef-
ficient remains, but usually it is finished when the optimal
decomposition level is achieved. Then, reconstruction of the signal
is carried out by the inverse wavelet transform, whose transform
matrix is the transpose of WT matrix (WT).

Among the different types of wavelets, the simplest one is the
Haar wavelet, which is also the first member of Daubechies family
of orthonormal wavelets, characterized by the two coefficients c0 and
c1.43 The Haar wavelet is the only wavelet which keeps the non-
negativity property in the approximations (low-frequency) of the
signal, allowing the application of ordinary multivariate curve
resolution methods with non-negativity constraints.30

Compression can be in one dimension (1D) or two dimensions
(2D). There are two ways to generalize the one-dimensional
wavelet transform to two dimensions, known as the standard and
nonstandard approaches.41 Standard decomposition of an image
is appealing because it simply requires performing one-dimen-
sional transforms on all rows and then on all columns. The
nonstandard decomposition alternates between operations on rows
and columns. The choice of an approach depends on the
application to be carried out.

Multivariate Curve Resolution-Alternating Least Squares
(MCR-ALS). The main function of resolution methods is the
mathematical decomposition of a global mixed instrumental
response into the pure contributions due to each of the compo-
nents in the system. MCR-ALS has become a popular chemometric
tool that has been used successfully to resolve multiple component
responses in unknown unresolved mixtures.44-46 So, this tech-
nique has been shown to be a powerful tool for resolving two-
and three-way data arrays, the main advantage being easy
adaptation to data sets of different complexity and structure
(trilinear or nontrilinear), providing optimal least-squares solu-
tions.47 Also, its versatility allows application to any multicompo-
nent system, giving as a result data tables or data matrices that
can be described by a bilinear model, i.e., processes such as
chemical reactions, chromatographic elutions, environmental data,
and others, monitored by diverse multivariate responses, such
as spectroscopic measurements, electrochemical signals, or
composition profiles.46
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MCR-ALS is an iterative resolution algorithm that is used to
recover the process contributions, expressed as the concentration
profile and the pure spectrum of each of the compounds
involved.48,49 This algorithm is based on a bilinear model (eq 2)
that decomposes the data matrix D, containing the raw information
about all the components present in the data set, into the product
of two matrices C and ST, containing the pure response profiles
associated with the variation of each contribution in the row
(matrix C) and the column directions (matrix ST).

D ) CST + E (2)

where D(J × K) is the original data matrix, C(J × N) and ST(N ×
K) are the matrices that contain the concentration profiles of
each component and the pure spectra, respectively. E is the
error matrix, i.e., the residual variation of the data set that is
not related to any chemical contribution. Parameters J and K
are the number of rows and the number of columns of the
original data matrix, respectively, and N is the number of
chemical components or principal components in the mixture
or process.

C and ST matrices are responsible for the observed data
variance. Usually, the column profiles of matrix C are associ-
ated with the concentration profiles, and the row profiles of ST

are associated with pure spectra profiles of the resolved
components. The superscript “T” means the transpose of matrix
S, where pure spectra are column profiles.46

Singular Value Decomposition (SVD). MCR-ALS solves
iteratively eq 2 by an alternating least squares algorithm which
calculates concentration C and pure spectra ST matrices optimally
fitting the experimental data matrix D. This optimization is
carried out for a proposed number of components, whose
estimate is the first step in MCR-ALS. The estimation of the
principal components may be done using principal components
analysis (PCA), one of the most basic and widely used
chemometric tools devoted to finding the number and direction
of the relevant sources of variation in a bilinear data set50 or
singular value decomposition (SVD). Both techniques consist
of a statistical summary which involves a reduction in the size
of the information.

Implementation of Constraints in ALS Optimization. Be-
sides the estimation of the principal components of the experi-
mental matrix D, the optimization of eq 2 requires an initial
estimate of either the spectra in ST or the concentration profiles
associated with these spectra, which can be obtained using
SIMPLISMA-derived methods.51,52 The main goal of this ap-
proach is to find the purest or most representative contributions
to the data matrix using real variables. Most of resolution methods
start with initial estimates of C or S and work by optimizing
iteratively the concentration or response profiles, introducing the
available information about the system through the implementa-

tion of constraints.53 A constraint can be defined as any math-
ematical or chemical property systematically fulfilled by the whole
system or by some of its pure contributions. So, constraints force
the iterative optimization process to model the profiles respecting
the conditions desired.54 Also, during the optimization, the
constraints modify the least-squares pseudoinverse estimations,
and the constrained solutions are not truly least-squares solutions.
In any iterative method, the appropriate application of constraints
is crucial to drive the optimization to the right solution.

The constraints that can be imposed commonly on the
algorithm are intended to decrease the possibility of rotational
ambiguities and to provide a physically reliable optimization path.
The two most generally used constraints in ALS process are non-
negativity55 and unimodality.56 The former is the most used in
resolution methods and prevents the presence of negative values
in profiles. It can be applied to concentration profiles and to
various types of spectra because their intensities are always
positive. On the other hand, the unimodality constraint guarantees
and forces only the presence of one maximum per concentration
profile. This is applied to the concentration profiles related to
chromatographic elution processes.

Augmented Matrix Arrangements: Column-Wise Data
Matrices. MCR-ALS can be applied to a single data matrix (two-
way data sets) or to three-way data sets, i.e., row-wise or column-
wise augmented data matrices. In both cases, multiexperiment
data arrangements still follow the same bilinear model as a single
data matrix.57 Working with column-wise augmented data matrices
requires that these matrices, belonging to different processes, are
appended one on top of each other so that the spectral direction
is common and the data matrix lengthens in the process direction.
Constraints mentioned above can be applied to one or more
species within an experiment.

Figures of Merit. The quality of the MCR-ALS model is
assessed by different indicators or figures of merit linked to the
correct reproduction of the original data set through the use of
the resolved MCR-ALS model, i.e., the CST product. One of these
figures of merit is the “lack of fit”, that is defined as the
difference between the input data D and the data reproduced
from the CST product obtained by MCR-ALS. This value is
estimated according to

lack of fit (%) ) �∑(dij* - dij)

∑dij
2 × 100 (3)

where dij is an element of the experimental matrix D and d*
ij

the element of the MCR-ALS reproduced matrix D*. The other
two figures of merit are percent of variance explained (r2) (eq
4) and standard deviation of residuals with respect to experimental
data (eq 5) calculated as57

r2 (%) )
∑dij*

2

∑dij
2 × 100 (4)
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σ ) �∑(dij* - dij)
2

n
(5)

where n is the number of elements in the data set (nrows × ncolumns).

EXPERIMENTAL SECTION
Chemicals and Solvents. Acetonitrile (ACN) of HPLC grade

was obtained from J.T. Baker (Holland). Acetic acid glacial (AcOH,
99.7%) was obtained from Panreac (Spain). Magnesium sulfate
anhydrous (MgSO4) and sodium acetate 3-hydrate (AcONa ·
3H2O) were obtained from Merck (Germany). Ultrapure water
was obtained from a Milli-Q water purification system from
Millipore (Bedford, MA). Mobile phases were filtered through
a 0.45 µm cellulose acetate (water) or polytetrafluoroethylene
(PTFE) (organic solvents) and degassed with helium prior to
and during use. All the extracts were filtered through a
Millipore membrane of cellulose acetate (0.45 µm particle size)
before pumping it into the chromatographic system. Finally a
concentrated suspension of Botrán 20 (carbofuran 20% w/v)
was obtained from Tragusa (Sevilla, Spain).

Instrumentation and Software. LC separation was carried
out with a Hewlett-Packard (H-P) series 1100 system (Hewlett-
Packard, Wilmington, DE) with an H-P Chem Station for MS
control and spectral processing. The HPLC system consisted of
a model G 1311 gradient pump and Rheodyne six-port injection
valve (model 7725i) with a 20 µL loop. The analytical separation
was performed with a 150 mm × 4.6 mm i.d. Agilent Zorbax
EclipseXDB C8 column (5 µm particle size). An H-P G 1948 A
Platform benchtop single quadrupole mass spectrometer with
an ESI interface was used to detect the target compounds in
the LC column effluent.

Also a 230 V, 50 Hz crusher (0.5 kW maximum power) from
Sammic S.L. (Azpeitia, Spain) and a polytron PT1035 from
Kinematica AG (Switzerland) were used. A rotary evaporator (R-
114) with a B-480 thermostatted water bath was purchased from
Buchi (Flawil, Switzerland). A Sigma 4-15 centrifuge with a Sigma
11150, 143/F, 5100/min rotor incorporated was used during the
extraction step. Finally, crushed and homogenized samples were
stored in a -86 °C ultralow freezer. For MCR-ALS application, a
graphical user interface was used, which additionally provides
detailed information about the implementation of this algorithm.46

Plant Samples and Pesticide Treatment. Four different
cultivars of tomato (Rambo, Raf, Zayno, and RZ 74-668) were
planted in a 1 ha greenhouse located at the Experimental Farm
UAL-ANECOOP foundation involved in the Cooperative Society
of grade 2 ANECOOP and the University of Almerı́a, on March
6, 2007.

The four cultivars were arranged according to an experimental
design ensuring uniformity and symmetry in order to minimize
possible errors due to the spatial distribution of plants. The
cultivable surface was divided into two plots, each of which, in
turn, was divided into two sectors. Thus, the total area was
composed of four sectors (A, B, C, D), each of them containing
22 lines arranged in pairs to form rows. Each tomato cultivar was
arranged in each sector as a plot containing 30 plants by double
rows (60 plants/sector).

The cultivar under study was Rambo, which was developed
by Syngenta Seeds Company, and the other three cultivars will

be examined in subsequent work. Average conditions of humidity
and temperature in the greenhouse were 20.1 °C and 74.4%,
respectively.

The plants were arranged in the greenhouse according to a
planting design to ensure uniformity and symmetry and in order
to avoid possible contamination of nontreated plants (blank
samples) during plant treatment with carbofuran. Plants, receiving
routine horticultural treatment, were treated with Botrán 20 on
May 21, 2007, at the recommended doses (4 L/ha). The treatment
was applied to tomato plants, leaving a block of nontreated plants
to be used as blank samples. Security zones were established to
prevent contamination between treated and nontreated samples.

Sampling Procedure and Storage. Sampling was performed
8 times (nonconsecutive days) over a period of 21 days after
treatment with the pesticide. Each day, three replicate samples
of tomato fruits, each of them consisting of three fruits in turn
taken from different heights of the plants (low, medium, and
upper), were collected. Table 1 shows in detail the sampling plan.
The main objective was to obtain representative samples through-
out the 21 days of sampling.

After sampling, each replicate sample was put into a polyeth-
ylene bag properly labeled and transported immediately to the
laboratory. Each analytical sample was obtained by mixing the
three replicate samples, which were cut, thoroughly mixed with
a crusher, and homogenized with a polytron. Finally, 200 g of the
mixture was selected as a representative sample and was kept
deep-frozen in a -84 °C freezer until analysis to avoid problems
of stability of the pesticide in the vegetable matrix during the
storage stage.

Rambo tomato blanks were collected following the same
sampling scheme as that used for samples treated with carbofuran.
Thus, on each sampling day the same number of treated samples
and blank samples were collected.

Samples Extraction and Preparation. Extracts were pre-
pared by using the original QuEChERS method.58-60 The steps
in the extraction process are as follows: (1) weigh 15 g of
thoroughly homogenized sample into a 50 mL Teflon centrifuge
tube; (2) add 15 mL of ACN acidified with 1% AcOH; (3) add 6 g
of anhydrous MgSO4 and 2.5 g of AcONa ·3H2O; (4) shake
vigorously for 3 min by hand; (5) centrifuge the tube at 3700
rpm for 5 min. On the other hand, a preconcentration step was
carried out by evaporating to dryness aliquots of 10 mL of

(58) Anastassiades, M.; Lehotay, S. J. J. AOAC Int. 2003, 86 (2), 412–431.
(59) Lehotay, S. J.; Mastovská, K.; Lightfield, A. R. J. AOAC Int. 2005, 88 (2),

615–629.
(60) www.quechers.com (official web site of the method).

Table 1. Sampling Plan of Rambo Tomatoes after
Treatment with Carbofuran

sampling
number

number of days
after carbofuran treatment

name of the
treated sample

name of the
blank sample

1 1 CA1 CA1b
2 3 CA2 CA2b
3 7 CA3 CA3b
4 9 CA4 CA4b
5 11 CA5 CA5b
6 14 CA6 CA6b
7 18 CA7 CA7b
8 21 CA8 CA8b
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supernatant in a rotatory evaporator, which were reconstituted
with 1 mL of ACN. Finally, the extracts were filtered through
Millipore membrane Teflon filters (0.45 µm particle size) before
injection into the chromatographic system.

The dispersive solid-phase extraction (SPE) cleanup using PSA
(primary-secondary amine), included in the original Quechers
method, was not performed after the ACN extraction step because
an exhaustive extraction method is the best choice.

LC-ESI-MS Analysis. The chromatographic separation step
was carried out with a solvent gradient consisting of solvent A
(ACN) and solvent B (ammonium formate 50 mM acidified at pH
3.5 by adding formic acid) into a EclipseXDB C8 column. Also, a
Phenomenex C8 precolumn was used. The gradient program
was as follows: initially 3 min with 75% B, 15 min linear gradient
to 40% B, 7 min linear gradient to 100% A, 1 min at 100% A, and
finally 4 min of linear gradient back to initial conditions (75%
B) for 1 min with 75% B. The mobile phase was adjusted to a
flow rate of 1 mL min-1. The temperature of the column was
set at 25 °C, and the injection volume was 20 µL. The
chromatogram was run under the established gradient program
over 30 min. The MS detector was used in positive ion mode
with a fragmentation voltage of 60 V. The desolvation was
optimized in order to obtain the highest analytical response
for carbofuran. The source temperature of ESI desolvation was
selected at 325 °C, and the fragment ions were generated using
highly pure nitrogen as a drying gas at a flow rate of 9 L ·min-1

and a nebulizing gas at pressure of 40 psig. LC chromatograms
were obtained by operating in the time scheduled in full scan
acquisition mode in the m/z range 50-750 amu.

Data Analysis. Each LC-MS run recorded for every sample
corresponded to a two-way matrix of size 507 × 2951, where the
first value refers to the number of retention time points in each
chromatographic run and the second is the number of m/z points
in each spectrum. These data files were provided in cdf format
by the HP Chem Station Software and then were converted to
asci format (by using a cdf2ascii software) and finally to txt to be
processed with MATLAB 7.6.0 (R2008a).

Before applying MCR-ALS, these data files were subjected to
a reduction in dimensionality. Thus, zero values were first
removed from column 710, and multilevel 2-D discrete wavelet
transform (DWT) was then applied to compress them to a quarter
of their original size without losing relevant chemical information.

Before detailed analysis of the data set was performed, singular
value decomposition (SVD) was carried out on each augmented
data matrix constituted by the two-way data corresponding to the
eight treated samples (picked through the eight sampling days)
and to the eight nontreated samples picked on the same days.
Finally, MCR-ALS was applied to resolve the column-wise aug-
mented matrices into individual concentration and spectral profiles
using non-negativity (spectra and concentrations) and unimodality
(concentration) constraints.

RESULTS AND DISCUSSION
Sampling and Extraction. The recommended dose for

carbofuran in tomato crops is 4 L/ha with a preharvest interval
of 45 days.61 The latter is an agronomic parameter that relates to

the minimum time that must elapse between application of
pesticide and crop harvesting. After that time, the concentration
of pesticide in the fruit is expected to be lower than its MRL
(maximum residues limit). The MRL has been defined by the
Codex Alimentarius Commission as the maximum concentration
of a pesticide residue (expressed in mg kg-1) which is legally
permissible for use in the surface or the inside of food for
human consumption and animal feed. MRLs are based on GAPs
(good agriculture practices) data and aim to ensure that foods
derived from products commonly used, that comply with the
respective MRLs, are toxicologically acceptable.62 The sampling
was carried out according to a protocol proposed by the
European Union.63

The extraction of the samples was carried out with the
QuEChERS method, which is widely used in the determination
of pesticides residues in food. This method is characterized as
quick, easy, inexpensive, effective, rugged, and safe (QuEChERS),
hence its name, and by its wide scope of extraction capability for
compounds of different polarities.

Data Treatment: Reduction of Dimensionality. When
complex samples are analyzed with LC-MS detection in scan
mode, data sets of large size are obtained, and as a result their
processing becomes extremely difficult. In these cases, data
compression methods are advantageous because they reduce the
size and computational burden of the data without losing important
chemical information. Consequently, each original matrix of 507
× 2951 was subjected to pretreatment. Because of the large m/z
range (50-750) selected during the MS scan spectra acquisition,
zero values were found in the matrices, from column number 707
in most cases. Therefore, all these columns were removed from
all data matrices, resulting in matrices whose dimensions were
507 × 710. Then, the DWT technique was used essentially to
perform data compression with the aim of facilitating further
chemometric data treatments. Obviously, compression is inher-
ently associated with signal denoising because small coefficients
(details) are assumed to represent the noise component of the
signal.41

Among the numerous different filters belonging to different
families (Daubechies, Coiflet, Symmlet), the Haar wavelet was
chosen because of reasons mentioned in the Theory section. DWT
was applied to both dimensions of each individual matrix by using
the standard approach. In this procedure, matrices were decom-
posed to level 2 in the wavelet coefficients domain, as a compro-
mise between compression and resolution, in such a way that the
computer worked fast enough without losses of important MS
spectral data. Finally, the wavelet approximation coefficients
corresponding to the optimal decomposition level were used to
reconstruct the final reduced matrices in its own signal domain.
Compression to the above indicated level reduced the MS spectra
from 710 to 178 m/z values, whereas in the other dimension the
number of rows (retention times) was reduced from 507 to 127.
As a result, the data matrix was reduced to 25% of the original
size in both dimensions.

This procedure was applied to the eight individual data
matrices, corresponding to the eight sampling days of the Rambo

(61) Registro de Productos fitosanitarios. no. registro: 23.092; nombre comercial:
Botran 20 SC.

(62) Comission of Codex Alimentarius: Manual de procedimiento, 10th ed.; Food
and Agriculture Organization of the United Nations (FAO): Rome.

(63) Dirección General de Agricultura (Comisión de la Comunidad Europea)
Anexo 1.
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tomatoes treated with carbofuran (CA1 to CA8), as well as to
the eight matrices corresponding to the nontreated samples (blank
samples, from CA1b to CA8b). Figure 1 shows a complete
scheme of the data treatment with DWT.

MCR-ALS Analysis of Augmented Data Matrices. Data
obtained in the LC-MS chromatographic analysis of a tomato
sample in scan mode provided an array of numbers which are
ordered in a data table or data matrix with a number of rows equal
to the number of elution times (30 min with 507 points) and with
a number of columns equal to the number of mass (50-750 amu
with 2951 m/z values). As previously mentioned, after data
treatment, every individual data matrix (both treated and blank
samples) showed 127 rows (retention times) and 178 columns
(m/z). These experimental data are described by a bilinear model
such as given by eq 1.

Because of the complexity of the data set, each individual
matrix was divided into four regions as schematically shown in
Figure 2.

Three-way resolution is more effective than resolution of a
single matrix because it always introduces a significant improve-
ment in the recovery of the true response profiles, adding the
additional benefit of providing quantitative potential capability.
Among the family of three-way resolution algorithms, the iterative
ones focus on the optimization of initial estimates by using suitable

data structure and chemical constraints.64 Thus, simultaneous
MCR-ALS analysis of multiple independent experiments run under
different experimental conditions is a useful and powerful strategy
in resolution. As mentioned in the Theory section, eq 2 can be
extended to allow for the MCR-ALS simultaneous analysis of
several experiments using the same detection technique.

Individual data submatrices corresponding to a selected region
of the matrices (both treated and blank samples) can be arranged
in a three-way data array structure, which can also be unfolded
in an augmented column-wise two-way data matrix. This data
arrangement gives rise to a column-wise augmented matrix, where
the resolved pure mass spectra are common to all experiments
and the concentration profiles can be different from experiment
to experiment.

In this way, MCR-ALS was applied in order to obtain the
resolved concentration and mass spectral profiles corresponding
to the components or endogenous metabolites, over the sampling
period. The first step consisted of building up augmented column-
wise matrices D (one matrix D per region of the original
compressed matrices), using both treated and blank samples.

So, the different matrices D were built from individual data
matrices by setting one on top of the other and keeping the
column vector space in common. As an example, Figure 3
illustrates how the augmented data matrix D corresponding to
the first region of the individual matrices was built from the eight
treated and their respective nontreated samples.

A similar procedure was carried out for the other three regions,
finally obtaining four augmented data matrices corresponding to
the four regions or subdivisions in each individual matrix. The
dimensions of these four augmented data matrices depended on
the dimensions of each region. In this way, augmented data
matrices built from regions 1 and 2 had dimensions of 560 × 178,
whereas augmented data matrices corresponding to regions 3 and
4 had dimensions of 480 × 178 and 432 × 178, respectively.

The complete resolution of an augmented data matrix depends
mostly on the presence of pure variables or selectivity and on the

(64) Smilde, A. K.; Tauler, R.; Henshaw, J. M.; Burgess, L. W.; Kowalski, B. R.
Anal. Chem. 1994, 66, 3345–3351.

Figure 1. Sets of data matrices obtained during the analysis of samples treated and nontreated with pesticide. Both kinds of samples (treated
and blank) were picked in 8 nonconsecutive days after the treatment of “Rambo” tomato plants with carbofuran. All these matrices were compressed
by applying the DWT technique.

Figure 2. The four submatrices defined by each individual matrix.
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local rank structure of the data matrix, which is given by the
number of principal components of the system. So, a step previous
to MCR-ALS analysis was to determine the number of compo-
nents, explaining an acceptable value of the total variance of each
augmented data matrix. In this work, a 90% of total variance
explained was chosen as a compromise between the number of
components and computational time. The number of principal
components in each augmented matrix D, explaining a 90% of total
variance, was optimized throughout SVD algorithm. This estima-
tion gave a total of 109 principal components in region 1, 88 in
region 2, 60 in region 3, and 55 in region 4.

To estimate the matrices C and ST, from each augmented
data matrix, an ALS procedure is used, starting with the
implementation of initial estimates to spectral profiles. Because
of the high complexity of the samples, no pure component
spectra were available. Therefore, initial estimates for mass
spectra profiles were carried out by applying the SIMPLISMA
algorithm, fixing the noise level at 0.1. Also, during the iterative
optimization, two constraints were applied to obtain chemically
meaningful solutions. Thus, at each cycle, the MCR-ALS
algorithm calculates new matrices C and ST and incorporates
a set of constraints arising from chemical knowledge of the
system in the study so that the value of E is a minimum. These
constraints were non-negativity (applied to concentrations and
spectra) and unimodality (applied to concentrations). The
application of the non-negative constraint was carried out
according to “fast non-negative least squares” algorithm. The
unimodality constraint was implemented through the “average”
option. In this way, secondary maxima are corrected, taking
averages, similar to that in unimodal least-squares algorithms.
Also, a constraint tolerance can be selected to allow for some

local departures of the unimodality condition. In our case, a
value 1.0 was chosen for tolerance, which means that no
departures from the unimodal condition are allowed. Finally,
the optimization ends when a convergence criterion is reached.
Convergence is achieved when, in two consecutive iterative
cycles, relative differences in standard deviations of the residu-
als between experimental and ALS calculated data values (σ)
are less than a previously selected value, usually chosen as
0.1%. This value may be modified depending on the stage of
the optimization.

After the optimization procedure, MCR-ALS provides informa-
tion structured as four variables that consist of two matrices
related to the resolved pure concentration (C) and spectral profiles
(ST) and the figures of merit related to the optimization
procedure. These figures of merit are (i) the lack of fit between
the resolution results and the original matrix (eq 3), (ii) the
percentage of variance explained (r2) (eq 4), and (iii) the standard
deviation (eq 5) which represents a vector that contains the
optimal percent of lack of fit in relative standard deviation units.

In this way, concentration and mass spectra profiles of the
corresponding components of each augmented matrix were
obtained. Each column of the matrix C provided the concentration

Figure 3. Construction of the augmented column-wise data matrix D using the region 1 of the eight data matrices (treated and blank samples).

Table 2. Figures of Merit of MCR-ALS Analysis for Each
Region

region lack of fit (%) r2 (%)

1 16.48 97.28
2 13.18 98.26
3 18.91 96.42
4 11.84 98.60
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profiles corresponding to each sampling day (for the eight treated
samples and their respective blank samples), while each row from
matrix ST gave the mass spectrum profile of each component,

which is the same in all D submatrices; that is to say, only one
unique mass spectral profile was obtained per component in
treated and blank samples.

Figure 4. Evolutionary profiles of a component through the eight sampling days in treated (blue) and nontreated (red) samples, extracted from
matrix A.

Figure 5. Evolutionary profiles of the 40th and 76th components over eight sampling days in treated (blue) and in nontreated (red) samples,
extracted from region 2 (R-II). The inserted plots correspond to the profiles scaled by its maximum values.

Figure 6. Evolutionary profiles of some components through the eight sampling days in treated (blue) and nontreated (red) samples, extracted
from the four regions. The kinetic curves are similar, but the concentration level of each component in treated samples is lower than in blank
samples.
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Comparison of Evolutionary Profiles in Treated and
Nontreated Samples. After ALS optimization, output information
consisting of the above-mentioned figures of merit was obtained
(Table 2). As can be seen, the r2 values (ranged between 96 and
99%) and the lack of fit (ranged between 12 and 16%) can be
considered aceptable if it is taken into account that only 90%
of the explained varianece is being gathered with the number
of components selected for each region, as mentioned above.

Also a matrix A, containing the areas under the concentration
profiles for each component at a sampling date, was obtained. It
is to say, each value, aij, of this matrix corresponds to the area
of the ith component in the jth submatrix (jth sampling day).
Each row of A corresponds to a component, i.e., the matrix A
contains a total of 109, 88, 60, or 55 rows, depending on the
region being considered. On the other hand, each column
corresponds to the area under the concentration profile
obtained by MCR-ALS for each of these components (for
treated and nontreated samples). Therefore, each row of A
represents the evolutionary profile of each component over
time, which shows how the concentration of each component
varies through the eight sampling days in treated and blank
samples. As the augmented data matrices were built with eight
treated samples and their eight blank samples, the first half of
the columns of matrix A corresponds to treated samples and
the other half to nontreated samples. These evolutionary
profiles were obtained from matrix A, as depicted in Figure 4.

The study of the behavior of the different components in the
tomatoes subjected to carbofuran was first attempted with a
multivariate analysis by principal component analysis (PCA),
carried out on the peak areas obtained in matrix A, with vs
confusing results. Therefore, an exhaustive comparison of the
individual evolutionary profiles of all the components which are
present in treated samples vs the evolutionary profiles of the same
components in blank samples was carried out for each region, by
obtaining a Pearson’s coefficient (r) for each pair of evolutionary
profiles. This parameter provided the correlation between these

profiles, allowing a qualitative classification of the different
behaviors of each compnent in treated and nontreated samples
to be established. Since blank and treated samples were picked
in the same way and in a similar state of maturation, any behavior
can be interpreted as an effect due to the presence of pesticide.

Thus, r values close to 1 indicate a high degree of similarity
in both evolutionary profiles, that is, a similar behavior over time
for those components in blanks and treated samples. In this way,
it can be assumed that some of the tomato components are not
affected in their natural metabolism by the presence of carbofuran.
In Figure 5 some examples are presented. Profiles scaled by its
maximum values show the similarity between the kinetic behavior
corresponding to both metabolites (components 40 and 76).

However, in some cases, despite obtaining good correlations
in the evolutionary profiles in treated and nontreated samples (i.e.,
similar kinetics of evolution), the profiles appear at different levels
of concentration. Thus, good correlations were obtained for the
evolutionary profiles of some components, for which the evolution
curve of a treated sample is below the curve of the blank sample.
This can be interpreted assuming that the pesticide did not modify
the kinetic evolution of the component in the tomato but did alter
its concentration level, their appearance being inhibited in the fruit.
Figure 6 shows examples of this behavior.

Again, profiles scaled by its maximum values show the
similarity between the kinetic behavior followed by the metabolites
in both kinds of samples.

Inverse behavior was also observed for other components, that
is, metabolites with evolutionary profiles showing high correla-
tions, the profile for the blank sample being below the profile
corresponding to the sample treated with pesticide. This behavior
seems to indicate that the pesticide favors the formation of this
metabolite but without affecting its kinetic profile. Some examples
are shown in Figure 7.

On the other hand, some evolutionary profiles showed very
low r values, which usually indicate a very poor correlation
between the profiles, that is, a different behavior due to the

Figure 7. Evolutionary profiles of some components through the eight sampling days in treated (blue) and nontreated (red) samples, extracted
from the four regions. The kinetic curves are similar, but the concentration level of the component in blank samples is lower than that in treated
samples.
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presence of pesticide. However, when viewing these profiles, one
became aware that this poor correlation was due to different
evolution curves which were similar when moving one with
respect to another over time. Therefore, a study, which consisted
of moving over time the metabolite profiles of the treated samples
with respect to the corresponding metabolite profiles of the blank
sample (or vice versa) and calculating the corresponding Pearson
coefficients, was carried out. In this procedure, a homemade
Matlab algorithm based on a mobile window strategy was used.
The result of this strategy was to obtain high r values when
moving the evolutionary profile corresponding to the blank sample
1 or 2 days with respect to the profile of the treated sample. One
possible explanation may be that the presence of pesticide in the
treated samples can delay or advance in time the evolutionary

profile of a given metabolite with respect to the profile that occurs
in the corresponding blank sample, not affecting its kinetic profile.

Figure 8 shows some examples where the metabolism of the
component has been delayed in a treated sample in comparison
with the metabolism in the untreated sample. As can be seen, a
forward movement of the metabolite profile in blank samples with
respect to the metabolite profile in treated samples illustrates this
behavior.

On the other hand, Figure 9 shows some examples illustrating
a contrary behavior. A movement of the blank profile to the
left with respect to the profile in the treated sample shows how
the metabolism of the component is moved forward due to the
presence of pesticide. In both cases, it the influence of the
pesticide in the concentration of the metabolites can also be
observed.

Finally, the evolutionary profiles with a r value close to -1
indicates an inverse correlation between them, i.e., a contrary
behavior of the components in treated and nontreated samples.
Figure 10 shows some examples of this behavior.

CONCLUSIONS
The use of a chemometric strategy based on the MCR-ALS

algorithm applied to LC-MS three-way data arrays has been shown

Figure 8. Moved evolutionary profiles of some components through
the eight sampling days in treated (blue) and nontreated (red)
samples.

Figure 9. Moved evolutionary profiles of some components through
the eight sampling days in treated samples (blue) and in nontreated
samples (red).
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to be adequate to perform a metabonomic study in tomato
(Lycopersicon esculentum) fruits (cultivar Rambo) after treatment
with carbofuran. Following this strategy, the evolutionary profiles

of endogenous compounds can be observed in samples nontreated
and treated with carbofuran, allowing their behavior to be studied.
Interestingly, several metabolites present different evolutionary
profiles over eight sampling days, depending on the presence of
the pesticide. Also, a few components do not present any variation
in their profiles. These findings suggest that the presence of
pesticide causes changes over time in the behavior of certain
endogenous tomato metabolites as the result of physiological
stress.

After this qualitative study, future research in this field will be
to identify the nature of the metabolites affected by the presence
of pesticide. For this purpose, other sophisticated techniques
involving the use of accurate mass measurements such as time-
of-flight (TOF) or quadrupole-time-of-flight (q-TOF) detection and/
or tandem MS (MS/MS) must be used.
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Figure 10. Evolutionary profiles of some components through the
eight sampling days in treated (blue) and nontreated (red) samples
with inverse behaviors through the time
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