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Abstract— In this work a new radar de-
tection method is proposed, the Cell Av-
erage Neural Network Constant false Alarm
Rate (CANN CFAR), which can be used with
Weibull distributed non homogeneous radar
returns. This processor combines Maximum
Likelihood estimation method with Neural
Networks for the clutter parameter estimation,
resolving homogeneity and determining clut-
ter bank transition points and size. To char-
acterize its performance, probability of detec-
tion is evaluated using Monte Carlo simulations
and compared to other efficient CFAR schemes.
As a result, CANN CFAR detection has bet-
ter performance than conventional CFAR pro-
cessors, especially when detecting targets lo-
cated near clutter heterogeneities. An addi-
tional advantage of the proposed technique is
its efficiency when determining clutter transi-
tion points, bank size and threshold setting.
This efficiency translates in lower computation
time than other CFAR algorithms, mostly con-
sidering real time processing.
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I. INTRODUCTION

In the case of naval medium range radars operating
at S, C and X bands with pulse repetition frequen-
cies (PRF) between 750 and 5000 Hz, available time
between each radar return goes from 1 to 0.2 mseg.
respectively. When working in real time, this is the
available interval to carry out several processes such
as signal capturing, filtering, detection, tracking, etc.
It is well known that modern technologies like FPGA
and digital signal processors (DSP) execute algorithms
at very high speed. However, several radar processing
tasks, as for example CFAR detection, require itera-
tive algorithms that have slow convergence. Then, it
is essential that these processing tasks be as efficient
and fast as possible.

We are especially interested on the detection process
carried out using constant false alarm rate (CFAR)
in heterogeneous clutter. In a CFAR processor, the
detection threshold is computed so that the radar re-
ceiver maintains a constant pre-determined probabil-
ity of false alarm (Py,) (Mahafza, 2000). In general,
the radar return is completely unknown, and must be
modeled in order to study its behavior and to find an
appropriate CFAR detector. The herogeneous clutter
is usually modeled as a sharp transition from one re-
gion to another, with a different distribution. In this
work, the Weibull distribution is chosen to model het-
erogeneous radar returns. This distribution has been
widely used to model both land and sea clutter and can
generally be matched to experimental data over a wide
range of conditions (Minkler and Minkler, 1990). Its
probability density function (PDF') is known to repre-
sent sea and ground clutter at low grazing angles or at
high resolution situations (Ravid and Levanon, 1992).
It is characterized by two parameters: scale and shape.

Several detection schemes that are available take
into account this two- parameter heterogeneous clut-
ter model. The most notable is the Log-T (LT) detec-
tor proposed by Goldstein (Gandhi et al., 1995; Gold-
stein, 1972; Weber and Haykin, 1985). For the two-
parameter Weibull estimation problem, some authors
assumed one parameter known and estimate the other.
That is the case when this kind of distribution is used
with the well known CFAR detection, as for example
with cell average (CA) and order statistics (OS) CFAR
processors (Gandhi and Kassam, 1988; Rohling, 1983).

A CFAR algorithm in which the parameters are es-
timated using Maximum Likelihood (ML CFAR), was
developed by Ravid and Levanon (1992). The main
objective was to reduce extensive CFAR loss exhib-
ited by some conventional CFAR processors. How-
ever, this algorithm is more computational intensive
than the other approaches.

Other specially interesting scheme is the Range Het-
erogeneous (RH) CFAR proposed by Doyuran and
Tanik (2007). RH CFAR is suitable for non Rayleigh
and range heterogeneous clutter. This algorithm esti-



mates the homogeneity of the clutter and, if required,
the transition point and threshold in the case of het-
erogeneity.

The main drawback of RH and ML CFAR is large
computation time due to the number of iterations re-
quired for estimation in the CFAR window. An effi-
cient alternative can be the CANN CFAR technique as
is proposed in this work. This method combines both,
ML for the clutter parameter estimation, and neural
network (NN) for radar return homogeneity testing,
and clutter bank transition points and size estimation.

Neural Networks have been employed by several au-
thors in order to solve problems related to radar target
detection. Haykin et al. (1991) and Haykin and Deng
(1991), have proposed a clutter classification to distin-
guish between several mayor classes of radar returns
including weather, birds and aircraft. This classifier
incorporates both preprocessing and post processing
procedures, as well as a multilayer feedforward net-
work (based on back propagation algorithm) in its de-
sign. The superior performance of the NN classifier
over the conventional classifier should be viewed as a
practical demonstration of the potential value of NN as
a tool for the classification of radar clutter and should
establish confidence in the use of a multilayer feed-
forward NN as the basis for classifying primary radar
returns in aid traffic control environment.

Ramamurti et al. (1993) trained a NN for the pur-
pose of detecting a known signal corrupted by addi-
tive Gaussian as well as non-Gaussian noise of impul-
sive type. During the noise-only inputs, the network is
trained to produce an output zero while, during signal-
plus-noise inputs, it is trained to produce unit output.
Once the network is trained and is employed as a de-
tector, a signal is declared to be present if the net-
work output exceeds 0.5. It was demonstrated that a
NN can be trained to function as a detector in non-
Gaussian noise, yielding considerable performance im-
provement over conventional detectors (based on sta-
tistical methods).

Kuck (1996) proposed the use of NN to implement
two types of CFAR. The first one trained on target
signal detection, this detector is trained to output di-
rectly a detection decision either target detection “1”
or non-target detection “0”. The second, trained on
threshold estimation, this detector is trained to esti-
mate an optimal threshold according to the current
clutter distribution. Depending on the adaptation of
statistical features, a multilayer NN detector can de-
liver better results for input distribution that cannot
be modeled or only be modeled by some complex dis-
tribution functions. Gandhi and Ramamurti (1997)
employed NN to detect known signals in additive non-
Gaussian noise. Training of the NN for signal detection
and its operation at some specified probability of false
alarm are discussed. The NN, in this case, is employed
not as a pre or a post processor (i.e.,one that simply
assists the existing signal detector) but instead as an

entity that completely determines the detection test
statistic.

The CANN CFAR presents the benefit of being
faster than the RH scheme while at the same time it
maintains similar detection performance. The CANN
CFAR method can be conceptually summarized as fol-
lows. In a first step, clutter parameter estimation is
made by means of ML estimation method at the end
of the complete radar return which is assumed to be
homogeneous. Following, processing of radar returns
are made by blocks. If the whole window is found
to be homogeneous, a constant detection threshold is
applied; otherwise, transition point and clutter bank
length is calculated, using basic NN models, in order
to determine a detection threshold capable of avoiding
clutter banks.

In addition to the use of NN models to estimate
clutter bank width and transition points, the main dif-
ferences between RH and CANN CFAR are related to
the block processing methodology used in the scheme
proposed and the clutter parameter estimation made
only once per complete radar return. As is discussed
in the following, these differences lead to an efficient
CFAR scheme, maintaining similar performance than
RH or ML CFAR methods.

This work is organized as follows. In section II,
some related basic detection models and notation are
presented. The novel CANN CFAR method is intro-
duced, with details, in section III. A complete perfor-
mance analysis, including comparisons, is presented in
Section IV. Finally, the conclusions are expressed in
Section V.

II. BASIC CONCEPTS AND MODELS

Since our study considers homogeneous and non homo-
geneous radar returns, a brief description of the model
used: Weibull radar return, is presented in this section.
In addition, to describe CFAR concepts, the related
threshold parameters: probability of false alarm Py,
and probability of detection Py, are discussed. Also,
basic tests to determine clutter homogeneity and NN
used to implement them are included.

A. Radar return model

Let x; be an observation at the input of the radar
receiver taken within some resolution cell which rep-
resents a sampled radar return, observed over a time
interval (window). The observation x; may be com-
posed by target plus clutter or clutter only,

Si + ¢;
Ty =
Ci

x; may be considered to be a sample from one of two
random processes. One is the sample of x; under the
condition that no signal is present. The other is the
sample of z; under the condition that both signal and
clutter are present (Minkler and Minkler, 1990). In

Target signal plus clutter
Clutter only

(1)



this work, target signal is modelled as Rayleigh dis-
tributed random variable.

Clutter phenomena may be caused by a number of
different sources. It may become necessary to identify
clutter regions of differing clutter type and to describe
their properties such as type, size and borders, power
and spectral features rather than trying to suppress
and ignore them at an early stage of signal processing.
The assumption of a uniform clutter situation within
the reference window is no longer maintained. Instead,
provisions are made to handle transitions in clutter
characteristics, clutter areas of small extensions, and
interfering target echoes occurring within the reference
window of the radar test cell (Rohling, 1983).
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Figure 1: An illustration of non homogeneous return and
clutter regions.

Homogeneous clutter is assumed to have Weibull
distribution (Doyuran and Tanik, 2007), that is de-
scribed by the following expression:

B (21 e=(8)" 5>0
= «~ « - 2
p() { 0 otherwise @

where « is the scale parameter that gives an indication
of the energy level of the median, and 3 is the shape
parameter (), indicating the degree of distribution
skewness (Minkler and Minkler, 1990).

In the case of non homogeneous returns, the clutter
is assumed to have Weibull amplitude distribution and
the distribution parameters change abruptly in range.
A typical example of non homogeneous clutter return
is illustrated in Fig. 1, where f,(z,aq, 1) is the PDF
of the first clutter region and f,(z, as, B2) is the PDF
of the second one. Parameters «aq, 31 and asg, (2 rep-
resent the distribution parameters of region 1 and 2,
respectively (Doyuran and Tanik, 2007).

B. Probability of detection and false alarm

Py, indicates the probability that a clutter sample z;,
is interpreted as a target echo during the threshold
decision. We consider that x; represents the sample
in the cell under test (CUT), and it is a single sample
of the clutter process (Rohling, 1983). For a specified
value of Py, and known clutter PDF the detector task

is to decide H; (indicative of target signal present), or
Hy (indicative of no target signal present) according
to the following detection rule (Davidson, 2000),

declared
declared

{xi>T H, 3)

xz; <T Hy

where T represents the detection threshold. Then, for-
mally, the Py, is given by

P;, = Priz>T|H :/

x>T

p(x; Ho)dz  (4)

where p(x; Hp) is the PDF of the detection statistic
under Hy hypothesis. The probability of detection P,
is defined as

P, =

Prx > T|H,] :/ p(z; Hi)dz  (5)

x>T
where p(x; Hy) is the PDF of the detection statistic
under H; hypothesis (Minkler and Minkler, 1990).

C. Threshold

When the clutter distribution is modeled using a
Weibull distribution, the detection threshold T' can be
obtained as a function of the clutter expectation E [z]
and a scalar function of Py, given by

T = Elx]6 (Pra) (6)

bel”

and I'(.) is the Gamma function. It should be noted
that when the shape parameter 8 undergoes significant
change, the detection thresholds fail to maintain the
desired Py, (Minkler and Minkler, 1990).

Figure 2 illustrates Py, variations when the § pa-
rameter of the Weibull distribution is modified from
0.5 to 3, for different values of § (Pr,). In order to
maintain the Py, constant, the threshold multiplier
0 (Pfq) must be decreased as the shape parameter (
grows.

For a Weibull distributed random variable = the
mean value is defined by E[z] = ol (1 + %) (Kuck,

1996). Then, the threshold can be written as

T=a [m (Pf—;)} e (8)

In practice, the distribution parameters a and
are estimated using limited number of samples. That
makes the actual false alarm rate different from the
desired one. As the estimates are random variables,
so is the Py, (Doyuran and Tanik, 2007).

where

§ (Pyq) =

_ a8
E[Pra] = el (ElT1/e)] )



Figure 2: Py, as a function of the shape parameter
variation.

D. CFAR

A simplified CFAR detector is illustrated in Fig. 3.
The amplitude in the CUT is compared to the CFAR
processor output, scaled by 6 (Py,), the threshold mul-
tiplier, which is a scalar factor. The CFAR processor
applies an algorithm to the M range cell values at
both sides of the CUT. The immediate neighbor cells
are called buffer cells and are discarded to avoid con-
tamination with the edge of the matched filter output
from the target return (Rifkin, 1994). The detection
threshold is computed so that the radar receiver main-
tains a constant pre-determined Py, (Mahafza, 2000).

Figure 3: Simplified CFAR Scheme.

Several CFAR algorithms have been developed in
order to find an adaptive threshold, which adapts it-
self to the clutter variations, maintaining a constant
Pyq. An example of such processor is the CA CFAR
processor which adaptively sets the threshold T' (Eq.
6) by estimating the mean level, T in the window of
M range cells (Gandhi and Kassam, 1988), where

(10)

This processor exhibits severe performance degrada-
tionin in presence of an interfering target in the ref-
erence window or in regions of abrupt change in the
background cluter power (Gandhi and Kassam, 1988).

Another example is the OS CFAR processor pro-
posed by Rohling, which has been considered to alle-
viate both of the above-cited problems (Gandhi and
Kassam, 1988). In this algorithm the amplitude val-
ues taken from the reference window are first rank-
ordered according to increasing magnitude, i.e., z1 <
r9 < ..xp. The central idea of an OS CFAR proce-
dure is to select one value xy, where k € {1,2,..., M}
from the previous sequence, and to use it as an esti-
mate for the average clutter power F [z] as observed
in the reference window (Rohling, 1983).

E. Homogeneity Test

A classic homogeneity test is the Anderson-Darling
(AD) test (Stephens, 1974). It is used to test if a win-
dow of data comes from a specific distribution. The
AD test makes use of the specific distribution in calcu-
lating critical values. Currently, tables of data support
the AD test for the following distributions: normal,
lognormal, exponential, Weibull, etc. (SED, 2003).
Extensive tables of goodness of fit critical values A2,
for the two and three parameter Weibull distributions
were developed through simulation for the Anderson-
Darling statistic (Evans et al., 1989). The test is de-
fined as follows,

A2 = -M
1
g (2 — 1) [In (w;) +In (1 — wyn—i41)]
(11)
o = rmon(-(2))

where, ¢; are the ordered samples obtained by sorting
x; in increasing order, M is the number of samples to
be analyzed, and & and B are the estimated parameter
values.

The test statistic A2 in Eq. 11 is compared to the
A2 .. predetermined values, illustrated for example for
the two-parameter Weibull distribution in Table I, at
the 0.20, 0.15, 0.10, 0.05 and 0.02 levels of significance
(defined as the probability of a false rejection of the
null hypothesis in a statistical test). The critical val-
ues A2 ., change with the number of samples used.
The values in Table I are valid for M = 40 Weibull
distributed samples. If the test statistic A2 in Eq. 11
is lower than the critical value A%, in Table I, then it
is decided that the distribution fits Weibull (Doyuran

and Tanik, 2007).

Table 1: Critical values for various levels of significance
for M = 40 Weibull distributed samples.

0.20
0.511

0.15
0.561

0.10  0.05
0.632 0.755

0.02
1.036

Signif. %
AQ

crit




F. Neural Networks

The perceptron is the simplest model of a neuron. The
weights (w;,i =1,..., M) scale the input signals. A
bias factor wy is also contemplated. Figure 4 depicts
the perceptron.

Figure 4: Computational model of a single neuron.

The usual activation functions f(.) are: the sigmoid
and the hyperbolic tangent (tanh). In this work the
hyperbolic tangent (tanh) is used (Galvez et al., 2004),
which has a wider operating range.
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Figure 5: Multilayer perceptron architecture.

Neural Networks are realizations based on input pat-
terns mapped onto output patterns. An usual realiza-
tion is the multilayer architecture. A multilayer NN
consists of an input layer, one or more hidden layers,
and an output layer. Each layer (except for the input
layer) is formed by a number of neurons or process-
ing units, each one consisting of a linear combiner and
a nonlinear device as is shown in Fig. 5. The linear
combiner uses synapses of adjustable weights (Haykin
et al., 1991).

There are several reasons for the use of NN ap-
proach: (1) a NN has the intrinsic ability to learn
from the input data and to generalize; (2) it is non
parametric and makes weaker assumptions about the

input data distributions than traditional statistical
(Bayesian) methods; and (3) NN are capable of form-
ing highly non linear decision boundaries in the feature
space (Haykin and Deng, 1991).

In order to recognize patterns, the network needs
to be trained. The backpropagation is a well-known
and largely successful learning algorithm for super-
vised learning networks where input and domain are
known a priori, as described in Galvez et al. (2004).
Solving a problem with NN generally involves the fol-
lowing steps: (1) select a network topology, which fits
to the nature of the problem. (2) choose the activation
functions, which are appropriate for the nature of the
problem. (3) training the NN with a training proce-
dure. (4) generalizing the network over a set of sam-
ples different from those used for the training (Galvez
et al., 2004).

Lopez Estrada and Cumplido (2005) provide a solu-
tion to the problem of selecting the appropriate algo-
rithm for target detection in background clutter with
high probability of detection and low false alarm. The
approach is based in parallel execution of CA CFAR,
GO CFAR and SO CFAR algorithms and a fusion cen-
ter based on a NN with different fusion rules. The use
of CFAR variants on parallel allows to detect targets
in different clutter types by fusioning the results into a
single decision. The NN is a good solution to solve the
problem of target detection using three or more vari-
ants of CFAR algorithm and fusioning their results.

In this work the CFAR processor combines ML esti-
mation method with NN for the clutter parameter es-
timation, resolving homogeneity and determining clut-
ter bank transition points and size, obtaining then, a
quite efficient operation when working in Weibull ho-
mogeneous and non homogeneous radar environments.

III. CANN CFAR PROCESSOR

In this section a detailed description of the novel cell
average neural network constant false alarm (CANN
CFAR) processor is presented. Figure 6 depicts the
CANN CFAR block diagram. The radar return is the
input to the ML Parameter Estimation block where
clutter parameters are estimated. A portion of the
radar return (at the end of range) and higher than
the CFAR window size, is chosen for this estimation;
the estimation is performed assuming homogeneity.
The threshold multiplier 6 (Pf,) (Eq. 7) is found and
used in the thresholding blocks, for a large number
of reference cells (M) and relatively high Py,. The
CANN CFAR estimates the clutter parameters only
once within each radar return; note that the ML and
RH CFAR processors make such estimation for each
CFAR window, making the process more computa-
tional intensive.

The radar return enters NN1, NN2 and NN3 Neu-
ral Network blocks in groups of samples, these blocks
follow the structure shown in Fig. 5 for the multilayer
perceptron architecture and were trained by means of



the backpropagation learning algorithm.
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Figure 6: The CANN CFAR.

The processor performance is significantly affected
when the assumption of homogeneous reference win-
dow is violated (Gandhi and Kassam, 1988). By this
reason Homogeneity Test block (NN1) analyzes each
portion of the radar return signal by means of NN1 in
order to determine whether that portion of signal is
homogeneous or not.

If the homogeneity test is positive, the CA CFAR
threshold is applied. This is justified since the CA
CFAR processor is the optimum CFAR processor
(maximizes probability of detection) in a homoge-
neous background for certain well defined conditions!
(Gandhi and Kassam, 1988). As the size of the refer-
ence window increases, the probability of detection ap-
proaches that of the optimum detector which is based
on a fixed threshold (Gandhi and Kassam, 1988).
Then, T is obtained according to Eq. 8.

On the other hand, if the homogeneity test is nega-
tive, that is a clutter bank is detected within the CFAR
window, the transition point is estimated by means of
the Transition Point block (NN2) and the clutter bank
size is estimated using the Clutter Bank Width block
(NN3). Making use of these two data, the threshold is
then set by dividing the window into three groups of
cells: the set that is situated previos to the transition
point, the group that contains the clutter bank itself
and those cells that follow the clutter bank. Each re-
gion is averaged separately and multiplied by § (Pyq)
(Eq. 7) in order set a different threshold for each men-
tioned group of cells, resulting then, a threshold that
avoids clutter banks. Finally, the detection is carried
out, a target is declared if the signal amplitude in the
CUT is greater than the threshold.

A study of the performance of the proposed scheme
is presented in the following section.

1Optimality can be shown when the reference cells contain
independent and identically distributed (IID) observations gov-
erned by an exponential distribution.

IV. PERFORMANCE ANALYSIS

In this section, CANN CFAR simulation results are
shown to illustrate and discuss its performance. Also,
the examples included are used to perform compar-

isons with other CFAR processors, as for example, RH
CFAR and OS CFAR.

A. System Simulation

The parameters used to define the estimation are de-
scribed in the following. The ML Parameter Estima-
tion block takes 80 samples at the end of each Weibull
distributed radar return in order to estimate scale «
and shape 3 parameters with the purpose of obtaining
the threshold multiplier ¢ (Py,)-

NN training, using the backpropagation algorithm,
is performed using Weibull distributed radar return
contains 40 samples, coincident with the width of the
CFAR window size.

In the case of NN1 Homogeneity Test block, a net-
work composed by 40 input, 40 neurons in its hid-
den layer and only one output, was trained for 20000
epochs by means of 6160 radar returns; 400 homoge-
neous with diverse parameters (o =1; 8 =2, 1.6 , 1.4,
1.33), and 5760 non homogeneous containing different
size and parameter clutter banks situated at several
positions. The NN2 Transition Point block has 40 in-
put, 100 neurons in its hidden layer and one output.
This network was trained for 3000 epochs using 3200
radar return each containing clutter banks situated at
several positions.

The NN3 Clutter Bank Width block is composed
by 40 input, 140 neurons in the hidden layer and one
output. It was trained for 3000 epochs using 20480
radar returns which contain different size and param-
eter clutter banks situated at several positions.

The CA Threshold blocks obtain a constant thresh-
old in the case of homogeneous clutter by means of
Cell Averaging the 40 samples in the shift register and
multiplying them by ¢ (P fa) according to Fig. 3.

B. Homogeneity Test

A group of 1000 homogeneous different parameter
Weibull radar returns are used with the NN1 Homo-
geneity Test and the AD test, for comparison pur-
poses. The percentage of homogeneity error resulting
of the use of both tests, for the radar returns used,
are included in Table 2. When using NN homogeneity
method the error is higher than with the AD test.

Table 2: Homogeneity test in percentages implemented
with the NN Homogeneity Test and with the AD test.
Homog. error Non Homog. error

17.62 % 1.88 %

5.50 % 39.86 %

NN
AD

On the other hand, when testing homogeneity on
a group of 1000 non homogeneous Weibull radar re-
turns, the NN homogeneity test gives better results,



a 2 %, error only, that is to say a 37.98 %, less than
the AD test. This is a great advantage in detection
since if a non homogeneous radar return is confused
by homogeneous, it could produce a large number of
false alarms.

With the AD test the homogeneity error is approx-
imately constant for any shape parameter (3). In the
case of the NN homogeneity test, the error increases
when the Weibull shape parameter (3) goes beyond
0 = 2 (Rayleigh PDF). Thus, for 8 = 2, the error is
7.8 % , for 3 = 1.6 the error is 14.6 % and for 8 = 1.3
the error is 27.2 %. When a homogeneous radar re-
turn is confused by non homogeneous, in block NN1,
the following blocks NN2 and NN3 act as if it were
a non homogeneous radar return, trying to detect a
clutter bank within the window. As a consequence,
this result in a variable threshold that is high in the
area of the erroneous clutter bank detected, affecting
in consequence, the P, performance.
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Figure 7: P, against the Signal to Clutter Ratio (SCR)
for different shape parameter values with homogeneous
Weibull clutter.

C. Probabililty of Detection

The Py (Eq. 5) evaluation was performed using Mon-
teCarlo simulations for 100000 homogeneous Weibull
radar return samples with distribution parameters
(a=1;8=2,16,14, 1.33).

Figure 7 illustrates typical results obtained for Py vs
signal-to-clutter ratio (SCR)?, for different shape pa-
rameter, with homogeneous Weibull clutter. CANN,
RH and OS CFAR performance is evaluated and com-
pared. It can be appreciated from the curves that
the performance of the CANN CFAR is slightly above
the other processes, denoting an improvement in the

2The ratio between clutter and signal level is called signal
to clutter ratio (SCR) and can be calculated as SCR=Average
Signal Power/Average Clutter Power=E[s2]/E[c?], where the
average power is equal to the mean square value of signal or
clutter distribution respectively.

P, especially for higher shape parameter 3 (less spiky
Weibull distributions) and small SCR.

An study was made in order to evaluate Py loss in
the NN1 block when homogeneity test fails and a pos-
sible propagation of the error occurs through the NN1,
NN2 and NN3 cascade. The results are summarized
in Table 3. 100 homogeneous radar returns of 1200
samples each were processed by NN1 Test block and
compared to an ideal behaviour of this block. From the
results, it can be concluded that P, loss increases as
the shape parameter goes beyond the Rayleigh case
(8 = 2). This is an expected result, considering
that the homogeneity error increases when the Weibull
shape parameter is higher than g = 2.

Table 3: P, loss obtained for homogeneity test error for
100 homogeneous radar returns of 1200 samples each with
a SNR of 12 dB and a Py, = 1075,

8 P; NN1 P; NN1 ideal P; loss
2.0 0.80 0.83 3%
1.6 0.64 0.68 4%
1.4 0.51 0.56 5%
1.3 0.44 0.51 Th

D. Thresholding

Figure 8 depicts a comparison between the three
CFAR methods of thresholding. The detection thresh-
old is applied over a Weibull non homogeneous radar
return containing a target near a clutter bank. In the
case of the OS CFAR it can be observed that clutter
bank picks overcome the threshold resulting in an in-
crement in the number of false alarms. In this case
the clutter bank masks the target, missing the detec-
tion. In the case of RH CFAR processor, the threshold
avoids the clutter bank and detects the target cor-
rectly, but has the disadvantage of requiring much
more processing time than the other two algorithms.

In the case of the CANN CFAR, it should be noted
that the threshold is set just over the clutter bank
without touching it, and also correctly detects the tar-
get. The CANN and the OS CFAR processes take ap-
proximately the 3 %, of the time that the RH takes.
This is due to the fact the RH CFAR window displace-
ment is made by sample, but in the CANN CFAR the
displacement is carried out by groups of samples (40
for this case). As a consequence, the parameter es-
timation in the RH algorithm is made every window,
i.e, if the radar return is composed by 512 samples, the
parameter estimation will be done at least 472 (512-
40) times for a 40 sample CFAR. In the CANN CFAR
the parameter estimation is carried out only once for
each 512 sample return, at the beginning of the pro-
cess, taking the last 80 samples for this case. On the
contrary, in the case of the OS CFAR the displacement
is made by sample, without any parameter estimation
within the CFAR window in this case.



Taking into account previous results and exhaustive
simulations, the following remarks are important. The
CANN CFAR estimates the Weibull distribution pa-
rameters only once at the beginning of the process,
taking the last radar return samples for the task. This
has the advantage of speeding up the system, but the
disadvantage of running the risk of taking a non repre-
sentative group of samples for the parameter estimate,
resulting in an inaccurate threshold multiplier 6 (Py,).
In the case of the OS CFAR, since one clutter pa-
rameter is assumed known and the other estimated,
that can result in a threshold multiplier far from the
optimum. The RH CFAR, on the other hand, esti-
mates the Weibull radar return parameters each CFAR
window, even up to three times within the window in
the cases of non homogeneous sample groups, resulting
then, a more exact § (Py,) calculus, but a very time
consuming process.
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Figure 8: Weibull non homogeneous radar return contain-
ing a target near a clutter bank. Py, = 1073, a =1, 3 = 2.
Clutter Bank: o =4, 8 = 2.

V. CONCLUSIONS

The CANN CFAR is quite efficient when working in
Weibull homogeneous and non homogeneous radar en-
vironments with the great advantage of having a faster
operation than the RH CFAR, due to the conceptual
different way in which the samples are processed.

An analysis in section IV showed that a P; loss
occurs when the NN1 homogeneity test fails, espe-
cially when the the shape parameter goes beyond the
Rayleigh case (8 = 2). As a future work it should be
convenient to investigate a CFAR structure capable of
avoiding error propagation through the NN1, NN2 and
NN3 cascade.

When estimating the Weibull parameters by means
of the ML Parameter Estimation block (fig. 6), ho-
mogeneity is assumed for that portion of signal, in
a future work it should be convenient to test homo-
geneity in order to assure approximation to the radar

return parameters due to the direct influence of them
over the threshold calculation (eq. 6 and 7), and in
consequense over the Py. On the other hand, it could
be useful to try another less time consuming method
than the ML estimation with the purpose of obtaining
the radar return parameters each CFAR window.

The CANN CFAR acts as a shift register, but the
data displacement is made by groups of samples and
not by sample as is the case of the conventional pro-
cessors. That is useful to save processing time. A pos-
sible disadvantage of CANN CFAR technique is that
it could increment the false alarm probability in the
cases of sharp edge clutter bank discontinuities very
near the end of the CFAR window. A future work in
order to overcome this problem could be to implement
an edge clutter bank detector.
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