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Economic performance of variable structure control: a case study
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Abstract

The operating point of a chemical process is usually computed by optimizing a steady-state objective function, e.g. the profit,
subject to the steady-state characteristics of the plant. However, the resulting point typically lies in the boundary of the operating
region. The presence of disturbances can easily cause constraint violations in the transient. Thus, it is necessary to move the
operating point away from the active constraints into the feasible region. The magnitude of this ‘back-off’ has a direct influence
on the economic side. The purpose of this paper is to study the effect of the combination of a state-observer and controller
designed using structure variable techniques at the economical level of the process control. © 2000 Elsevier Science Ltd. All rights
reserved.
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1. Problem formulation

Consider the following system

x; = f(x)+gr(x)r+gu(x)u+gw(x)w (1)

y=h(x)+ l r(x)r+ l u(x)u+ lw(x)w (2)

where x�Rnx is the system state, y�Rny is the system
output, r�Rl is the optimization variable that will be
considered constant all the time, u�Rk is the control
input and w�Rm is the disturbance input belonging to

the set W=
!

w :
!ŵ,Öt]0

0,ÖtB0
with ŵ�51

"
.

In order to complete the description of our system,
consider now a set of inequalities, that should be sa-
tisfied at any time,

zc(x,r,u,w)=p(x)+qr(x)r+qu(x)u+qw(x)w50 (3)

where zc(x,r,u,w)�Rnz. Normally, this set of inequalities
follows from some process variable constraints (e.g.
product quality, safety and environmental regulations,
etc.).

The vector fields f :Rnx�R
nx, gr:Rl�R

nx, gu:Rk�
R

nx, gw:Rm�R
nx, h :Rnx�R

ny, l r:Rl�R
ny, l u:Rk�R

ny,
lw:Rm�R

ny, p :Rnx�R
nz, qr:Rl�R

nz, qu:Rk�R
nc and

qw:Rm�R
nc are C�. Let us assume, that given r, u and

w the steady state is unique (i.e. the equation x; =zx=0
has a unique solution of x).

In this system (for given values of u and w), the
operating point is usually designed to optimize some
objective function (z0) at the steady state. This opti-
mization can be posed as,

1.1. Optimization problem

min
r

z0(x, r)

s.t. x; = f(x)+gr(x)r+gu(x)u+gw(x)w=0

zc(x, r, u, w)=h(x)+ l r(x)r+ l u(x)u+ lw(x)w50 (4)

Then, the operating condition is fixed by setting the
vector r. Generally, the solution of this problem is at
the intersection of many constraints (l ’) as the dimen-
sion of vector r (l). The effect of the disturbances at this
point is to prevent the plant from working at this
desired operating point. Under these perturbed condi-
tions, the process operation may become unfeasible. To
maintain feasibility, a move may be required in the
operating point away from that determined at the
optimization level. The magnitude of this movement

* Departmento De Ingenierı́a Eléctrica, Universidad Nacional Del
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due to the likely effect of the disturbances is referred to
as ‘back-off’. The possibility of minimizing the neces-
sary back-off is an appealing idea, as it promises the
minimizing of the effect of the disturbances in the
process economy and it has been studied by several
authors (Bandoni, Romagnoli & Barton, 1994; Perkins
& Walsh, 1994). Figueroa, Bahri, Bandoni and Romag-
noli (1996), deal with this problem for the case of
dynamic closed loop system, solving the following
problem.

1.2. Back-off problem

min
r

zo(xo, r, uo)

s.t.

x;
zc(x, r, u, w)

y

u

= f(x)+gr(x)r+gu(x)u+gw(x)w

=p(x)+qr(x)r+qu(x)u+qw(x)w50

=h(x)+ l r(x)r+ lu(x)u+ lw(x)w

=k(x, y)

Â
Ã
Ì
Ã
Å

Öw�W, Öt]0

(5)

where the subscript o in the objective function means
the values of x and u at the steady state, and k(x, y) is
a controller expression, which can be dynamic or static.
A typical selection of the control scheme is made by
using the concept of constrained control (Maarleveld &
Rijnsdorp, 1970), where the regulatory control objec-
tives are chosen as the set of active constraints that
define the optimal operating point. The operative con-
dition obtained for the solution of Problem 5 is called
back-off operative point.

Obviously, the back-off magnitude depends on the
selected control scheme. It should present good distur-
bance rejection properties to maintain the plant opera-
tion as close as possible to the steady-state optimum
point. In this context, it is known that variable struc-
ture controllers could be designed to present good
disturbance rejection properties (Hung, Gao & Hung,
1993). Variable structure control with sliding mode is a
special type of control technique that is capable of
making a highly robust control system with respect to
system parameter variations and external disturbances.
In addition, this technique provides an easy way to
design the control law for linear or nonlinear plants.

However, the application of this kind of controller
requires the complete knowledge of all the system vari-
ables and states. This is a very strong limitation for the
industrial application of these techniques. To solve this
problem, in this paper, we proposed the use of a non
linear observer by means of a second order sliding
mode. Then, the combined observer-controller is ana-
lyzed in an economical context.

The paper is organized as follows. The next section
describes the variable structure control and in Section 3
a concept of observer is introduced. An illustrative

example, in terms of a flowsheet system, is studied in
Section 4 and some general conclusions are presented in
Section 5.

2. Variable structure control

The variable structure control (VSC) and their re-
lated sliding modes have been widely studied in the last
30 years (see e.g. Emelyarov, 1985; De Carlo, Zak &
Mattheews, 1988; Stolite & Sastry, 1988).

Let us assume that, to apply the VSC control, the
state vector x is fully measurable and the system has a
strong relative vectorial degree in an open set D�Rnx.
Let us define an auxiliary function s :Rnx�S¦Rn with
entries si(x) for i=1, …, n. This function s(x), called
commutation function, divides the state space into re-
gions in which si(x) has different signs. The number of
such functions is considered equal to the number of
control inputs (n=k).

The control strategy in the VSC system, consists of
an adequate set of non-continuous functions of states,
disturbances and set point signals. These control ac-
tions are usually defined as

ui(t)=
!ui

+(x, t) if si(x)\0
ui

−(x, t) if si(x)B0
(6)

The set of equations si(x)=0 are called switching
functions. They describe the surfaces of discontinuity in
the control action u. Then, a control strategy, valid in
each region, will drive the system state at least to some
scalar switching function in a finite time. This proce-
dure is usually known as a reaching mode. Once the
system has reached this surface, another function takes
control of the process, repeating the procedure.

The control objective in our case is to regulate the
system on the optimal operating condition fixed by r*,
despite the presence of the disturbances w(t). Consider
that x* is the steady state at this operative point. Then,
an appropriate choice for the switching functions is,

si= �xi−xi* �−oi (7)

for a small scalar oi\0. However, the number of such
functions should be equal to the number of control
variables (i.e. k). Applying the concept of constrained
control, the l ’ states related to the active constraints
plus the k– l ’ states for which the distance between the
optimal and the back-off operative point (i.e. �xi

bo−
xi* �) is the largest1, will be selected simultaneously as
switching functions.

The control action vector for this application is
defined as

1 This choice is equivalent to considering the states with steady-
state which is the most sensitive to the disturbances.
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u=u0+Du (8)

where u0 is the constant manipulated variable necessary
to retain the operating point at its steady-state value
free from disturbances and Du is the varying part of the
control action. Now, Du is defined as,

Du(t)=
!ui

+(x, t)to force si to decrease if si(x)\0
(9)ui

−(x, t) if si(x)B0

It is interesting to note the dependence of ui
+ in terms

of sign{xi−xi*}. This means that the control action
will be different depending either on xi\xi* or on
xiBxi*, regardless of si(x)\0 in both cases. This pol-
icy will force the process state to go into the region
defined by si= �xi−xi* �−oiB0. Then, the system will
go to the steady state in an autonomous form, since x*
is a stable equilibrium point.

From the above definition, it is clear that if si\0,
then ui

+ should verify
dsi

dt
=

dsi

dx
dx
dt

=sign{xi−xi*}

× ( f(x)+gr(x)r+gu(x)(u0+ui
+(t))

+gw(x)w)B0 (10)

for i=1, …, k in order to reduce s.
This reaching mode is known as direct switching

function. There are two aspects to consider, based on
this control action. Firstly, the discontinuity in s=0
could produce some problems in the plant. It is possible
to reduce this fact by smoothing the control action.
Secondly, if the magnitude of the control action is too
large, some problems of saturation could affect the
process. At this point some bounds are usually applied
to the values of u. In our particular application, this
limit can be determined by using the constraints infor-
mation from expression (Eq. (3)).

3. Variable structure observer

In the previous section a VSC structure had been
proposed under the assumption that the state vector x
was fully measurable. As a result of this assumption,
the control action Du in Eq. (9) depends on the states
and on the disturbances. However, some of these vari-
ables are typically unmeasured. In order to solve this
problem, we propose the use of a second order sliding
mode technique in a nonlinear estimation framework
(Chiacchiarini, Desages, Romagnoli & Palazoglu, 1995;
Colantonio, Desages, Romagnoli & Palazoglu, 1995).

Let us consider the following system for the observer

x̂; = f(x̂)+gr(x̂)r+gu(x̂)u+gw(x̂)6 (11)

ym=h(x̂)+ l r(x̂)r+ l u(x̂)u+ lw(x̂)6 (12)

where x̂�Rnx is the observer state; ym�R
ny is the ob-

server output and 6 is the disturbance vector. Note the

similarity between the plant (Eqs. (1) and (2)) and its
observer (Eqs. (11) and (12)), the state x̂ and the output
signal ym in the observer directly correspond to the
state and output in the physical system. Moreover, on
the right side of Eqs. (11) and (12) it is possible to
consider x̂i=xi and wi=6i for the entries related to the
measured states and disturbances, respectively. Then,
y"ym only if wi"6i for unmeasured disturbances. In
this context, the observer objective will be obtain to
w=6 in order to have ym=y.

An appropriate choice for the switching functions for
the observer are

s i
o=yi−ymi (13)

Then, let us propose the following Lyapunov
function

Li=a(s i
o)2+c(s; i

o)2 a, c\0 (14)

It is clear that the solution of Li=0 is given by
(s i

o, s; i
o)= (0, 0). To make sure that this point is asintot-

ically reached, it is enough to verify that L: iB0, then we
should prove,

as i
o+cs̈ i

oB0 (15)

From the Lyapunov stability point of view, Eq. (15)
it is a necessary and sufficient condition to ensure that
the system will reach the surface s i

o=0 with zero
derivative. To obtain also a specified dynamic for the
system, we can modify the right side of Eq. (15) to
obtain

as i
o+cs̈ i

oB−h sign(s i
o) (16)

for a small scalar h\0. This sliding mode is called
second order sliding mode (Chiacchiarini et al., 1995).

Note that the number of the switching functions
defined by Eq. (13) should be equal to the number of
non measurable disturbances. If we consider the com-
pleted system described by the equations Eqs. (1), (2),
(11) and (12), we note that the variables 6i are unknown
signals that represent the unmeasured disturbances wi

which we want to estimate. Therefore, from the above
mentioned, our objective will be to modify the value of
6i satisfying Eq. (16) in order to obtain ym=y. In the
next section, this idea will be clarified in an illustrative
example.

4. Example

The case study considered in this section consists of
two continuous stirred tank reactors (CSTR) in series,
with an intermediate mixer introducing a second feed
(de Hennin & Perkins, 1993), as shown in Fig. 1. A
single irreversible, exothermic, first order reaction A�
B takes place in both reactors. The dynamic model of
these reactions is
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Fig. 1. Flowsheet example.

Table 2
Summary of the results

Case QF
1 Q2 zO ($)

0.20620.3552No disturbances 90.352
Ziegler–Nicholsa 72.3000.18750.2724

86.6000.21990.3224Fully measurable
0.3537Observer 0.1863 86.586

a Disturbances are considered only for first reactor.

−1.0 Cool2−0.1QF
1 −0.1Q2

expressed in [$/h]. The optimization variables are the
first and second feed flowrates (QF

1 , Q2). There are eight
operational constraints placed on the process (c i; i=1,
…, 8),

c1:T15350 K c2:T25350 K
c3:QF

1 +Q250.8 m3/s c4:cool1530.0 W
c5:cool2520.0 W c6:QF

1]0.05 m3/s
c7:Q2]0.05 m3/s c8:C250.3 mol/m3

For the nominal value of disturbances, the optimum
operating point is at the intersection of constraints c1

and c5 with an objective function of zo=90.3522 $/h
for the optimizing variables QF

1 =0.3552 m3/s and
Q2=0.2062 m3/s.

Using the back-off concept let us analyze the perfor-
mance of the VSC control. It is compared with a
classical multiloop strategy. For the VSC structure, two
cases are considered. First, the ideal case of completely
measurable states is assumed; then, an observer is in-
cluded in the scheme. In both cases, the manipulated
variable is the cooling flowrate for the reactors (Q cw

1 ,
Q cw

2 ). The economical profit is compared by solving
Problem 5.

The multiloop strategy consists of two loops con-
trolling the temperature in each reactor with the respec-
tive cooling flowrate. The PI controllers are tuned using
the Ziegler–Nichols technique. The economical perfor-
mance of this loop is shown in Table 2.

4.1. Fully measurable problem

In this section, we suppose that the state vector is
fully measurable. The switching surfaces are chosen as,

si= �Ti−T*i�−0.1 i=1, 2.

Note that s1 is defined in terms of an active con-
straint (c1) while s2 is defined in terms of a variable
related to the other active constraint (c5). The use of
Cool2 is not recommendable because this variable can-
not the obtained directly by measurement. The manipu-
lated variable for each surface is defined as

Q cw
i =Q*cw

i +DQ cw
i

V1 d(C1)
dt

= −koe−E/RT1
C1V1+QF

1 (CF
1 −C1) (17)

V1 d(T1)
dt

=Dhkoe−E/RT1
C1V1+QF

1 (TF
1 −T1)+Cool1

(18)

V2 d(C2)
dt

= −koe−E/RT2
C2V2+QF

2 (CF
2 −C2) (19)

V2 d(T2)
dt

=Dhkoe−E/RT2
C2V2+QF

2 (TF
2 −T2)+Cool2

(20)

In order to model the mixer its dynamics are ne-
glected. Therefore, the balances around the mixer are as
follows,

CF
2 =

(QF
1 C1+Q2C2)

QF
2 TF

2 =
(QF

1 T1+Q2T2)
QF

2

QF
2 = QF

1 +Q2

The reactors are cooled by cooling jackets surround-
ing each reactor volume. The amount of heat trans-
ferred between reactor and coolant is,

Cool1=
UaQ cw

1 cp

Ua+Q cw
1 cp

(T ci
1 −T1)

Cool2=
UaQ cw

2 cp

Ua+Q cw
2 cp

(T ci
2 −T2)

The temperatures and compositions of the two feeds
are considered as disturbances (i.e. w=
[TF

1 CF
1 T2 C2]T). The range of these disturbances

are shown in Table 1.
The objective function of the process is related to the

net profitability of flowsheet,

zo=10(QF
1 CF

1 +Q2C2−Q20.3)−0.01 Cool1

Table 1
Lower and upper bounds for process disturbances

Lower boundDisturbance Upper bound

TF
1 320 K295 K

19.5 mol/m3CF
1 22 mol/m3

320 K295 KT2

22 mol/m3C2 19.5 mol/m3
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where Q*cw
i =Ai*Ua/cp(Ua−Ai*) with A*i = − (−

Dhkoe−E/RT*i
C*iVi+Q*Fi (T*Fi −T*i))/Vi(T ci

i −T*i). This
is the value necessary to keep the operating point at its
optimum, free from disturbances.

The varying part of the control action (DQ cw
i (t)) is

defined as

DQcw
i (t)=

DQcw
+ i=

AiUa

cp(Ua−Ai)
−Q*cw

i +si sign{Ti−T*i} if si(x)]0

DQcw
− i=0 if si(x)B0

with Ai= − (−Dhkoe−E/RTi
CiVi+QF

i (TF
i −Ti))/

Vi(T ci
i −Ti) in order to verify inequality (Eq. (10)).

To avoid saturation and physical limits, lower and
upper bounds are imposed over each manipulated vari-
able. First, it is clear that Q cw

i should be larger than 0.
The upper bounds are established by using the maxi-
mum available cooling (Constraints c4 and c5),

Q cw
1 5

30Ua

cp(Ua(T ci
1 −T1)−30)

Q cw
2 5

20Ua

cp(Ua(T ci
2 −T2)−20)

4.2. Non fully measurable problem

Now, we will consider the more realistic assumption
related to the impossibility of measuring the states C1

and C2 and disturbance inputs CF
1 and C2. Note that

the control action in the previous section will not be
applied now, because Ai depends on these variables.
Then, to avoid this problem, let us consider the follow-
ing model for the observer:

V1 d(Cm
1 )

dt
= −koe−E/RT1

Cm
1 V1+QF

1 (CFm
1 −Cm

1 ) (21)

V1 d(Tm
1 )

dt
=Dhkoe−E/RT1

Cm
1 V1+QF

1 (TF
1 −T1)+Cool1

(22)

V2 d(Cm
2 )

dt
= −koe−E/RT2

Cm
2 V2+QF

2 (CFm
2 −Cm

2 ) (23)

V2 d(Tm
2 )

dt
=Dhkoe−E/RT2

Cm
2 V2+QF

2 (TF
2 −T2)+Cool2

(24)

CFm
2 =

(QF
1 Cm

1 +Q2C2m)
QF

2

where CFm
1 and C2m are unknown variables that repre-

sent the feeds’ composition CF
1 and C2, that should be

estimated. Note that the states in the observer Eqs.
(21)–(24) will differ from the states in the process Eqs.
(17)–(20) only if CFm

1 "CF
1 and C2m"C2. Then, our

objective will be to make CFm
1 =CF

1 and C2m=C2 in
order to obtain Cm

1 =C1 and Cm
2 =C2. In this case, the

control action described in the last section will be
applicable again.

Due to the fact that only T1 and T2 are measurable,
the following sliding surfaces are defined,

s i
o=Ti−Tm

i i=1, 2 (25)

By using them, a second order sliding mode as the
one defined in Eq. (16) will be constructed. To do this
we should compute

s; i
o=T: i−T: m

i =Dhkoe−E/RTi
(Ci−Cm

i ) i=1, 2.
(26)

s̈1
o=Dhkoe−E/RT1!

(C1−Cm
1 )

×
�

−koe−E/RT1
−

QF
1

V1 +e−E/RT1 E/R
(T1)2 T: 1�

+
QF

1

V1(CF
1 −CFm

1 )
"

and

s̈2
o=Dhkoe−E/RT2!

(C2−Cm
2 )

×
�

−koe−E/RT2
−

QF
2

V2 +e−E/RT2 E/R
(T2)2T: 2�

+
QF

1

V2(C1−Cm
1 )+

Q2

V2(C2−C2m)
"

By replacing these expressions in Eq. (16), we obtain

a(T1−Tm
1 )+cDhkoe−E/RT1!

(C1−Cm
1 )

×
�

−koe−E/RT1
−

QF
1

V1 +e−E/RT1 E/R
(T1)2 T: 1�

+
QF

1

V1(CF
1 −CFm

1 )
"
5−hsign(T1−Tm

1 ) (27)

and

a(T2−Tm
2 )+cDhkoe−E/RT2!

(C2−Cm
2 )

×
�

−koe−E/RT2
−

QF
2

V2 +e−E/RT2 E/R
(T2)2 T: 2�

+
QF

1

V2(C1−Cm
1 )+

Q2

V2(C2−C2m)
"
5−hsign(T2−Tm

2 )

(28)
Now, let us define DCF

1 =CFm
1 −CF

1 and DC2=
C2m−C2, then from Eqs. (27) and (28), we reach

DCF
15

1
cDhkoe−E/RT1(QF

1 /V1)
{−a(T1−Tm

1 )

−hsign(T1−Tm
1 )}+

V1

QF
1 (C1−Cm

1 )

×
�

−koe−E/RT1
−

QF
1

V1 +e−E/RT1 E/R
(T1)2 T: 1�

(29)

Á
Ã
Í
Ã
Ä
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and

DC25
1

cDhkoe−E/RT2(Q2/V2)
{−a(T2−Tm

2 )

−hsign(T2−Tm
2 )}−

QF
1

Q2

DCF
1

+
V2

Q2

(C2−Cm
2 )

×
�
−koe−E/RT2

−
QF

2

V2 +e−E/RT2 E/R
(T2)2 T: 2�

(30)

where C1 and C2 are obtained using Eq. (26). In these
expressions, T: 1 and T: 2 are evaluated by using finite
differences. These expressions allow us to write the
following algorithm for the estimation of CFm

1 and C2m.
Estimation algorithm step 1, set k=0, CFm

1 (0)=20
and C2m(0)=20; step 2, compute DCF

1 (k) using Eq. (29)
and then compute CFm

1 (k+1)=DCF
1 (k)+CFm

1 (k); step
3, compute DC2(k) using Eq. (30) and then compute
C2m

1 (k+1)=DC2(k)+C2m(k); and step 4, k=k+1,
return to step 2.

In this way, when CFm
1 �CF

1 and C2m�C2, then
DCF

1�0 and C2m�C2. Thus, we obtain the values
necessary to implement the controller of Section 4.1.
The performance of this estimator could be appreciated
in Fig. 2, where C1 and their estimation Cm

1 are shown,
when a step is applied to the composition in the first
feed.

The comparison between both control schemes is
performed in terms of dollars. The back-off problem is
solved for these controllers using the algorithm de-
scribed in Figueroa et al. (1996). The set of distur-
bances considered are described in Table 1, some of the
critical perturbations detected are related to the upper
limit of the feed composition and temperatures. The
results are summarized in Table 2. The operating points

shown in this table allow optimal and feasible opera-
tion for all possible disturbances.

5. Conclusions

In this paper, the capabilities of the VSC schemes in
the economical context of the process control have been
studied. The controller structure is used to bring the
actual operating point as close as it is possible to the
optimum (in terms of dollars) in the presence of distur-
bances. The use of estimators to compute the non
measurable disturbances does not produce any addi-
tional loss in the economic performance of the process
and their implementation only implies software
modifications.

6. Nomenclature

x system state vector
r optimization variables vector

control input vectoru
disturbance input vectorw

y system output vector
W set of possible disturbances

vector of constraintszc

s vector of commutation functions
objective function for the optimizationzo

problem
observer state vectorx̂

ym observer output vector
observer disturbance vector6
dimension of the state vectornx

l number of optimization variables
number of control inputsk

m number of disturbance inputs
number of system outputsny

nc number of constraints
l’ number of active constraints

number of commutation functionsn
vector fields that describe the modelf, gr, gu, gw,

h, l r, l u, lw, p,
qr, qu, qw

k(x, y) generic expression for the controller
control action applied when Si(x)\0 (Bui

+(−)

0)
constant value of the manipulatedu0

variable
varying value of the manipulated variableDu

L Lyapunov functions

CSTR’s example
volume of CSTR c i (V1=V2=5.0 m3)Vi

concentration of A in CSTR c iCi

temperature in CSTR c iTi

Fig. 2. Time simulation for the estimator.
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k0 Arrhenius Constant (2.7·108 s−1)
concentration in feed c1 (20 mol/m3)CF

1

CF
2 feed Concentration in CSTR c2

concentration in feed c2 (20 mol/m3)C2

TF
1 temperature in feed c1 (300 K)

feed temperature in CSTR c2 (300 K)TF
2

temperature in feed c2 (300K)T2

coolant inlet temperature in CSTR c1T ci
1

(250 K)
coolant inlet temperature in CSTR c2T ci

2

(250 K)
coolant flowrate in CSTR c1 (at steady-Q cw

1

state 0.35 m3/s)
Q cw

2 coolant flowrate in CSTR c2 (at steady-
state 0.8 m3/s)

Cp coolant heat capacity (1 J/kg K)
Ua overall heat transfer coefficient (0.35 W/

°C)
E/R activation energy (6000 K)

heat of reaction (5.0 K m3/mol)Dh

heat transferred between cooling jacketCool1

and reactor in CSTR c1 (W)
Cool2 heat transferred between cooling jacket

and reactor in CSTR c2 (W)
QF

1 feed flowrate in feed c1
QF

2 feed flowrate in CSTR c2
feed flowrate in feed c2Q2

constraints on the CSTR’s systemCi

zo process profit
variable partD

CFm
1 unknown composition in feed c1

unknown composition in feed c2C2m

Concentration of A in CSTR c i in theCm
i

observer
Tm

I temperature in CSTR c i in the observer

Subscripts
0 values at steady-state

ith entry of a vectori

Superscripts
* optimal value
bo back-off point

observero
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