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Case 3 (Suboptimal Controller withd = 4): In this case,
H(z) = z3I . The suboptimal controller parameters become the
equations shown at the bottom of the previous page, from which it
follows thatJ4 = 0:0065. Fig. 4 shows the output responses of the
plant with the same measurement noise as in case 1. Fig. 5 shows the
input plots in this case.

VI. CONCLUSION

A design method for multivariable EMM systems which reduces the
effect of measurement noise on the plant outputs is presented in this
paper. This method uses the freedom of the controller parameters due
to increasing the degree of the observer polynomial matrix. For some
fixed degree of the observer polynomial matrix, the controller for this
EMM is obtained as a solution of a simple optimization problem. It is
also shown that the effect of the measurement noise in the plant outputs
become smaller as the degree of the observer polynomial matrix is in-
creased. This method will be applicable to pole placement control for
a multivariable plant with measurement noise, which will be reported
in a forthcoming paper [13].
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Use of CPWL Approximations in the Design of a Numerical
Nonlinear Regulator

Mirta S. Padín and José Luis Figueroa

Abstract—This paper presents the state regulation problem for non-
linear plants with initial conditions in a given bounded region, proposed
originally by Kreisselmeier and Birkholzer [1]. An efficient computer im-
plementable algorithm is presented, based on canonical piecewise lineal ap-
proximation for the discrete model of the plant.

I. INTRODUCTION

A control engineer is often faced with nonlinear systems, and, there-
fore, design methods that can handle nonlinearities are of great prac-
tical interest. Kreisselmeier and Birkholzer [1] present a solution for
the following problem: Given a nonlinear plantP and a set of ini-
tial conditionsG, find a numerical controller for stable state regula-
tion fromG, if one exists. A numerical design method is, in essence,
a computer-implementable algorithm. The numerical design method
proposed has beenwell founded theoretically, such that the feedback
controller defined by the algorithm is guaranteed to be a stabilizing
one. The particular technique proposed, however, has the disadvantage
of requiring excessive computation time. In this paper, we propose a
computational method that retains the theoretical foundations of the
methodology of [1] in a more efficient algorithm using a canonical
piecewise linear (CPWL) approximation for the system.

II. PROBLEM DESCRIPTION

Consider a nonlinear plantP described by

xt+1 = f(xt;ut) (1)

with statext 2 <n, controlut 2 <m and discrete-time variablet 2
Z
+
o . It is assumed thatf : <n � <m ! <

n is continuous. Further, let
G � <n be any prespecified bounded region in the state space, which
contains a neighborhood of the origin.

GivenP andG, it is typically unknown whether a feedback con-
troller exists, such that the resulting feedback system is asymptotically
stable for all initial conditionsx 2 G. The objective here is to set up a
numerical design method that can handle this situation and compute a
stabilizing feedback controller, if one exists.

The design strategy is to compute the optimal cost and an associ-
ated feedback controller(ut = k(xt)) off-line for all x in the region
of interest. Once computed, the feedback can be stored in the control
computer, so that in the actual feedback loop virtually noon-linecon-
trol computations are required. To find the optimal solution for allx in
the region of interest, Kreisselmeier and Birkholzer [1] use the method
of dynamic programming([2], [3]).

Kreisselmeier and Birkholzer [1] show that a feedback controller
k exists such that the closed-loop systemxt+1 = f(xt; k(xt)) is
asymptotically stable fromG to the origin iff the plant is asymptoti-
cally controllable fromG to the origin. Moreover, under this condition,
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a continuous, positive definite functionl(x;u) exists such that for all
x 2 G; the right-hand side of

J(x) = inf
u

1

t=0

l(�t(x;u);ut) (2)

is well defined and assumes values below some finite constant
o =
sup

x2G J(x), where�t(x;u) is the solution of (1) with initial statex
and control sequenceu = fu0;u1;u2; � � � ; g. Let �o denote the set
of points in<n such that the right-hand side of (2) exists and satisfies
J(x) � 
o. MoreoverJ(x) is positive and decreasing asx ! 0 in
�o. Then, for allx 2 �o the functionJ(x) satisfies the equation

J(x) = inf
u

[l(x;u) + J(f(x;u))]: (3)

Sincel(x;u) is positive definite forx 6= 0, the existence ofk(x) im-
plies thatJ(x) is a Lyapunov function in�o andk(x) is an asymptot-
ically stabilizing control fromG to the origin. Setting the iteration

JT+1(x) = inf
u

[l(x;u) + JT (f(x;u))]; J0(x) = 0; T 2 Z+o
(4)

which is of the dynamic programming type, it follows thatJT (x) con-
verges toJ(x) in �o asT ! 1.

Now, to obtain a finite implementable algorithm, there are some
basic subproblems involved in the solution of this problem. They are
associated with the computing region, with the parameterization of the
controllers and with the systematic errors in the computations. To ac-
count for these subproblems, [1] performs some modifications to the
problem. First, acost criterion with terminal cost and free terminal
timeis used. Second, aparameterized controller that is piecewise-con-
stant in the state spaceis used. Third, apractical asymptotical stability
is used, which can be made arbitrarily close to asymptotic stability. Let
us define this concept.

Definition 1: A feedback systemxt+1 = f(xt; k(xt)) with tra-
jectories�ct(x) is said to bepractically asintotically stablefromG to
N(ro), if a function�(r; t) 2 K� exists such that for allx 2 G

k�ct(x)k+ kk(�ct(x))k � maxfro; �(kxk; t)g; t 2 Z+o (5)

whereN(ro) is a neighborhood of the origin with radiusr0 and the
definition of the setK� is in Appendix A.

As a candidate of a practical control Lyapunov function, i.e., a con-
trol Lyapunov function for practical asymptotic stability, we define the
extended cost criterion as

V (x) = inf
u;t 2Z

t �1

t=0

l(�t(x;u);ut) + V (�t (x;u)) : (6)

It differs from the infinite-time horizon criterionJ(x) because
it considers the cost over all possible finite time horizons with
terminal costV and takes the infimum of those. Throughout this
section, l(x;u) and V (x) are continuous, positive-definite and
satisfy '

l
(kuk) + '

l
(kxk) � l(x;u) � 'l(kuk) + 'l(kxk)

and '
V
(kxk) � V (x) � '

V
(kxk) for appropriate functions

'
l
; '

V
; 'l; 'V 2 K',1 for all x 2 <n andu 2 <m. Also, a bounded

region� � <n is defined such thatl(x;u) > V (x) for all x 2 � and
u 2 <m. From these definitions, it is possible to show ([1]) that only
a bounded set of controllersu 2 U needs to be considered. Then, it is
possible to write the following feedback theorem.

Theorem 1: Let V (x) be defined by (6), and suppose that

V (x) < V (x) 8x 2 ��N(�) (7)

1The class of functionsK is defined in Appendix A.

holds for a sufficiently small� = �(ro). Further, letk(x) be an asso-
ciate feedback satisfying

l(x; k(x)) + V (f(x; k(x)))� �

� inf
u2U

[l(x;u) + V (f(x;u))] (8)

with � lower than the minimum of a function of the classK' varying
with �. Then, the feedback systemxt+1 = f(xt; k(xt)) is practically
asymptotically stable fromG to N(r0).

Theorem 1 says thatV (x) is a practical control Lyapunov function,
provided thatV (x) is lower thanV (x) in a suitable region. This re-
quirement is related to the fact that the extended performance criterion
includes the minimization over a sliding time horizon. IfV < V at a
certain point, then the time horizons greater than zero are effective at
this point, and, therefore,V contains descent information. If this infor-
mation is provided in a region that contains�, except possibly a small
enough neighborhood of the originN(�), then a controller can be de-
duced fromV (x), which is practically asymptotically stabilizing from
G to N(r0).

The results, asstatedabove, cannot be implemented on a computer
without modifications. Therefore, [1] modifies the feedback construc-
tion by including state and input discretization, interpolation, and an
appropriate feedback parameterization. A discretization(D) for the
state-space<n is performed defining a canonical grid of points with
a distanced1 between them and approximating each statex to the
nearest point. A similar discretization(D2) is performed for the con-
trol variablesu. Then, let�D andUD be the discrete versions of the
sets� andU . Since� andU are bounded,�D andUD are finite. To
define theinterpolation, let us consider a functionW from the dis-
crete set defined above to<. Then, it is possible to extend the range
of definition to all<n using a multilinear interpolation (a linear inter-
polation is considered in each dimension, [1]) that we will describe as
I(W;x) : <n ! <.

Finally, to perform an implementable design algorithm, we set up
the following design function:

W (x) = min V x;min
u

l(x;u) + I W; f(x;u) (9)

where only the function values ofW at the discretization points are
involved. Associated with this design equation, we define the design
iteration

W0(x) =V (x) (10)

WT+1(x) = min WT (x);min
u

[l(x;u) + I(WT ; f(x;u))] (11)

that admits a computer implementable algorithm. Moreover, [1] shows
thatWT+1 converges to a solution of the design equation asT ! 1

and is in some sense close toV (x) for sufficiently largeT .
LetWT (x) be any member of the design iteration sequence, and let

an associate (pointwise) feedbackh from the state discretization grid
to<m be chosen such thath(z) 2 UD for all z in the grid and for all
z 2 �

D

l(z; h(z)) + I(WT ; f(z; h(z)))

= min
u2U

[l(z;u) + I(WT ; f(z;u))] (12)

i.e., such thatu = h(z) is a minimizing argument of the right-hand
side in�D. Then, using the discretizationD, we obtain a state feedback
h(D(x)) : <n ! <

m, which is piecewise constant in the state-space.
Based on this setup, [1] proposes a design algorithm using dynamic

programming. Letz1; z2; � � � ; zn denote the discrete set of points con-
tained in�D, andu1; u2; � � � ; um denote the discrete set of control ac-
tions constrained inUD. Write from (10), (11), the following directly
implementable design algorithm.

Authorized licensed use limited to: UNIVERSIDAD SUR. Downloaded on December 22, 2008 at 06:42 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 6, JUNE 2000 1177

1) Initialization: For alli 2 [1; n]

W0(zi) = V (zi): (13)

2) Iteration fromT to T + 1: For all i 2 [1; n]

WT+1(zi) = min WT (zi); min
j2[1;m]

[l(zi; uj) + I(WT ; f(zi; uj))]

(14)
After finishing the iteration, say at stageT , the feedback function

h(�) for all i 2 [1; n] is given by the minimizing argument

h(zi) = arg min
u 2[u ���;u ]

[l(zi;uj) + I(W
T
; f(zi;uj))] (15)

the computation of which is part of (14).
To terminate the iteration, the criterion used is that the difference

WT�1(z) � WT (z) be smaller than a given tolerance. Note that
the iteration can be executed and it will converge (because the
sequenceWT (z) is nomotonically decreasing and bounded from
below) no matter if the plant is asymptotically controllable. Therefore,
asymptotic controllability does not need to be checkeda priori to
using the design algorithm. Moreover, since the sequenceWT (z) is
monotonically decreasing and bounded from below, if we obtain an
efficient way to solve (14), we can do it for only a sufficiently large
horizonT .

In this paper, let us consider the following expressions for the Lya-
punov functions

V (x;u) = x
T
Q

1
xx + u

T
Q

1
uu (16)

and

l(x;u; t) = x
T
Q

t
xx + u

T
Q

t
uu (17)

whereQt
x andQt

u are positive definite weighting matrices for allt =
1; 2; � � � ; T . Then, taking a large enough horizon timeT , the solution
of (15) can be obtained by solving the following optimization problem:

min
u ;u ;���;u

T

i=1

x
T
i Q

i
xxi +

T

i=1

u
T
i Q

i
uui s.t.

xi+1 = f(xt;ut) (18)

III. SOLUTION TO CPWL PROBLEM

In this paper, we consider the use of a CPWL approximation for the
nonlinear model (1). These functions allows us to write nonlinear func-
tions as several linear expressions, each of those valid in a certain re-
gion. Based on the properties of this representation, we will obtain a
practical and efficient approach for the optimization problem. In math-
ematical terms, this can be described as follows.

Let X � <n andU � <m be the domains ofx andu variables,
respectively, and consider the set

@ = f[xT ;uT ]T : x 2 X;u 2 Ug (19)

which is the domain where we want to approximate the system
(1). Consider also the following partition in the set@ such that
@ = [�j=1@

j , where@j is called the “jth partition.” Then, the CPWL
representation [4], [5] of the system is

xk+1 = ax +Bxxxk +Bxuuk

+

�

i=1

cxi �xixk + �uiuk � �i (20)

where all the matrices and vectors have appropriate dimensions with
elements in the real field. If the system is constrained to thejth region

(i.e., we constrain(x;u 2 @j)), the model (20) can be reformulated as
a linear function,

xk+1 = �
j
xx � xk + �

j
xu � uk + �

j
x (21)

where�jxx = Bxx+
�

i=1 cxi ��xi �

j
i ; �

j
xu = Bxu+

�

i=1 cxi ��ui �


j
i ; �

j
x = ax+

�

i=1 cxi ��i �

j
i , with 
ji = sign(�xix+�uiu��i).

The sign function in the last expression determines thesector
belonging condition,2 i.e., the sign vector 
j defined as

j = [
j1; 


j
2; � � � ; 


j
�] is univocally related to thejth partition

([6]). Consequently, a point(xh;uh) will lie in @j iff it satisfies the
inequality

z
j
@
= �

j
@x � x

h + �
j
@u � u

h + �
j
@
� 0 (22)

where[�j
@x]i = �
ji �xi; [�

j
@u]i = �
ji �ui; [�

j

@
]i = 


j
i �i and [ � ]i

means theith row in the matrix[ � ]. The problems associated with the
determination of these regions and the CPWL approximations have
been extensively studied in the literature (see, e.g., [7]–[9]).

Now, consider the system at any initial condition(x0;u0) 2 @0 that
verifies the steady-state equations (i.e.,x0 = f(x0;u0)). While the
system is in sector@0 (suppose that this occurs forn0 samples), it is
easy to see that the state vector will be

xi = �
0
xxxi�1 + �

0
xu � ui�1 + �

0
x 8i = 1; � � � ; n0: (23)

This expression is valid till the moment the system reaches next sector
(called@1), when the value of the state is

xn = �
0
xx

n
x0 + �

0
xuun �1 + �

0
xx�

0
xuun �2

+ �
0
xx

2
�
0
xuun �3 + � � �+ �

0
xx

n �1
�
0
xuu0 + �

0
x

+ �
0
xx �

0
x + � � �+ �

0
xx

n �1
�
0
x

and, using this state as an initial condition for sector@1, it is possible
to compute

xi = �
1
xxxi�1 + �

1
xu � ui�1 + �

i
x 8i = n

0 + 1 � � � ; n1: (24)

This expression will be valid till the system reaches sector@2 (atn1).
Note that since the pointsxi are solutions of the approximated model,
they satisfy (1) at any time. Then, it is possible to obtain a “Predictive
Model” by using the following algorithm.

Algorithm 1: CPWL Model Formulation
Data: A set of control variables[u0;u1; � � � ;uT ], the final horizon

T , and the initial state vectorx0 solution of the model approximation
(17).

Step 1) Setj = 0; k = 0 andn�1 = 0.
Step 2) Determine in which sector,@j , point (xk;uk) lies, and

compute the linear model valid in this sector.
Step 3) If k < T , continue; Otherwise,stop.
Step 4) Computexk+1 = �jxxxk + �jxu � uk + �jx.
Step 5) If no entry of the vectorzj

@
= �

j

@x
xk+1 + �

j

@u
uk +

�
j

@
changes sign, letk = k + 1 and return to Step 3.

Otherwise, letnj = k� nj�1 andj = j +1, and return
to Step 2 to proceed similarly in the next sector.

Using the results of this algorithm, a generic expression for the pre-
dictive model, when the system goes through sectors[@0;@1; � � � ;@h],
can be written as

X = �xxx0 +�xuU+�x (25)

where the matrices are defined in Appendix B. It is important to re-
mark the dependence of the matrices�xx;�xu and�x on the sec-

2The domain@ is divided into a finite number of polyhedral regions@
bounded by a set of hyperplanes of the typez = � �x +� �u +� = 0

with dimensions no lower than� � 1.
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tors [@0;@1;@2; � � � ; ] and on the times[t0; t1; t2; � � � ; ]. This means,
in general, expression (25) is no longer valid if any change occurs in
the inputsu.

In some applications, there is no need to consider changes of the
manipulated vectors every period. Moreover, it could unnecessarily in-
crease the dimension of the vectorU for the solution of the control
problem. To avoid this problem, we propose to modify the matrices in-
volved in (25) in order to consider another sampling time. To do this, we
consider that the manipulated variable changes eacht sampling times.
Then, for horizonm (the input signal changesm times) the length of
this horizon istih = m � t. Note that in this case, the matrices involved
in (25) can be easily computed by adding up allt columns inside each
t rows.

Now, let us rewrite the control problem using these model. We should
note that the initial state vectorx0 is knowna priori, for our application
we can pose this model as

X = ~�x(x0) + �xuU (26)

with ~�x(x0) = �xxx0+�x. Placing these expressions in the objective
function of (18), we obtain the objective function for the optimization
as

VT (x;u) =

T

i=1

x
T

i Q
i

xxi +

T

i=1

u
T

i Q
i

uui

= X
T
QxX+UT

QuU

= U
T�uuU+�uU+� (27)

whereQx = diagfQi
x; i = 1; � � � ; Tg; Qu = diagfQi

u; i =
1; � � � ; Tg; �uu = (�T

xuQx�xu + Qu); �u = 2(~�T

xQx�xu) and
� = (~�T

xQx
~�x).

The bounded set of controllers is now expressed as

u 2 U = fU : HU � hg (28)

with HT = [IT �IT ] andhT = [UT

u �UT

l ].
Then, the control problem of (18) can be solved for each point in the

state grid by

min
U

VT = U
T�uuU+�uU+� s.t.HU � h (29)

which is a typical quadratic programming problem that can be solved
using any commercial algorithm. Then, we can store the first step of the
manipulated variable for each point in the state space, thereby obtaining
the numeric controller. Note that in this solution for the problem, we
assume that the model (26) is not depending onu. This assumption is
unrealistic. Since that only the first control action is implemented, how-
ever, this is not a substantial problem. Moreover, an algorithm solution
could be implemented by an alternated solution of problem (29) and
algorithm for compute CPWL model. This iteration should continue
while the norm of two successive solutions ofU is larger than a relative
small tolerance. Note that this kind of algorithmic solution is necessary
due to the nonlinear nature of the original problem. Moreover, the con-
vergence of this algorithm toward the global optimum cannot always
be guaranteed; however, this is the typical problem of nonlinear opti-
mization.

IV. EXAMPLE: CONTROL OF AN INVERTED PENDULUM

Consider the simple inverted pendulum of Fig. 1. The state variables
of this system are the anglex1 and the angular velocity_x1 = x2. The
input u is a torque in the shaft, which is bounded to such an amount
that the pendulum cannot directly be turned from the hanging into
the upright position. Instead, it is first necessary to “gain enough mo-
mentum,” which requires complex trajectory planning, even for this
simple example. It is this nonlinearity that poses the mainx difficulty

Fig. 1. Inverted pendulum.

Fig. 2. Time Simulation for cases A and B.

for the feedback design. The control objective is to retain the pendulum
in the upright position, which it is an unstable equilibrium point.

The normalized system is described by the differential equation

_x1 = x2

_x2 = sinx1 + g(u)

where

g(u) =

�0:7; for u � �0:7

u for �0:7 � u � �0:7;

0:7 for u � 0:7
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The statesx1 andx2 are the controlled outputs and the torqueu is the
manipulated variable. A discrete CPWL model was used to solve the
numerical control problem. In this approximation, the space is divided
into 43 sectors. The sample time for simulation is 0.005 s. The input
sample time is 0.15 s, and the control horizon is 4.5 s. We consider
such a small sample time because the system is unstable; therefore, the
simulation error will be bounded. The computing region is� = fx 2
<2 j jx1j � 6:6 andjxsj � 3:6g.

The manipulated variables are constrained to�0:7 � u � 0:7; and
the weighting matrices are defined as

Qi
x =

0:01 0

0 0:002
� (1:2)i�1 for i = 1; � � � ; T � 1

2 �
0:01 0

0 0:002
� (1:2)i�1; for i = T

and

Qi
u = 0:1:

Using these data, the numerical controller is computed. Simulations for
two sets of initial conditions were performed.

Case A:x1 = �=4 and x2 = 0

Case B:x1 = �=2 and x2 = 0:

The results are presented in Fig. 2(a) and (b), respectively. The plots in
the phase plane are show in Fig. 3. The numerical results are equivalent
to those obtained in [1]. However, the CPWL-based algorithm needs at
least one-fifth of the time for convergence as compared with the ap-
proach in [1].

V. CONCLUSION

The result of this paper is an improvement of an existing computer
design algorithm, which defines a practically asymptotically stabilizing
control from an initial regimen to a target state, if one exists, due to
[1]. The improvement is based on a transformation of the original non-
linear problem into a simple quadratic programming problem by using
a canonical piecewise lineal approximation of the system model. The
applicability of this method is tested by an example.

Fig. 3. Phase plane plot.

APPENDIX A
FUNCTION CLASSES

A function classK', which is used to characterize positive definite-
ness and decrescence (including radial unboundedness), is defined as
follows.

Definition: A function': <+o ! <+o is said to belong to the class
K', if it is continuous, strictly increasing, and satisfies'(0) = 0, and
limt!1 '(r) = 1.

A function classK� , which is used to characterize asymptotic sta-
bility, is defined as follows.

Definition: A function': <+o �Z
+
o
! <+o is said to belong to the

classK� if

1) �(r; t) 2 K' for each fixedt 2 Z
+
o

,
2) �(r; t1) > �(r; t2) for all t2 > t1 andr 6= 0,
3) �(0; t) = 0 for all t 2 Z

+
o

, and
4) limt!1 �(r; t) = 0 for all r 2 <+o .

From this definition,�(r; t) is a function that is, as a function oft,
strictly monotone decreasing and goes to zero asymptotically, and that
is, as a function ofT (for all t), positive definite.
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APPENDIX B
MODEL MATRICES

The matrices that define the Predictive Model

X = �xxx0 + �xuU+ �x

are defined asU � [uTo u
T
1 ; � � � ; u

T
T ]

T ; X = [xT1 x
T
2 ; � � � ; x

T
T ]

T

and as shown at the bottom of the previous page
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whereni is the sample time at which the system leaves sector@
i.

Note the dependence of the matrices�xx; �xu and�x on the sec-
tors[@0;@1;@2; � � � ;@h] and on the “times”[n0; n1; n2; � � � ; nh]. This
means, in general, the expression is no longer valid if any change oc-
curs in the inputsuk for all k = 1; � � � ; T . In these expressions,p =
n0 + n1 + n2+; � � � ;+nh.
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Constrained Robustness Analysis by Randomized
Algorithms

Xinjia Chen and Kemin Zhou

Abstract—This paper shows that many robust control problems can be
formulated as constrained optimization problems and can be tackled by
using randomized algorithms. Two different approaches in searching reli-
able solutions to robustness analysis problems under constraints are pro-
posed, and the minimum computational efforts for achieving certain relia-
bility and accuracy are investigated and bounds for sample size are derived.
Moreover, the existing order statistics distribution theory is extended to the
general case in which the distribution of population is not assumed to be
continuous and the order statistics is associated with certain constraints.

Index Terms—Order statistics, randomized algorithm, robustness,
sample size.

I. INTRODUCTION

It is now well known that many deterministic worst case robustness
analysis and synthesis problems are NP hard, which means the exact
analysis and synthesis of the corresponding robust control problems
may be computationally demanding [5], [13]. On the other hand, the
deterministic worst case robustness measures may be quite conserva-
tive due to overbounding of the system uncertainties. As pointed out in
[9] by Khargonekar and Tikku, the difficulties of deterministic worst
case robust control problems are inherent to the problem formulations,
and a major change of the paradigm is necessary. An alternative to the
deterministic approach is the probabilistic approach, which has been
studied extensively by Stengel,et al. (see, e.g., [10], [11]), and ref-
erences therein. Aimed at breaking through the NP-hardness barrier
and reducing the conservativeness of the deterministic robustness mea-
sures, the probabilistic approach has recently received a renewed atten-
tion in the works of Barmish and Lagoa [4], Barmish,et al.[2], Barmish
and Polyak [3], Khargonekar and Tikku [9], Bai,et al. [1], Tempo,et
al. [12], Yoon and Khargonekar [14], Zhu,et al. [16], Chen and Zhou
[6], [7], and references therein.

In addition to its low computational complexity, the advantages of
randomized algorithms can be found in the flexibility and adaptiveness
in dealing with control analysis (and possibly synthesis) problems with
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