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Case 3 (Suboptimal Controller witd = 4): In this case, Use of CPWL Approximations in the Design of a Numerical
H(z) = 2*I. The suboptimal controller parameters become the Nonlinear Regulator
equations shown at the bottom of the previous page, from which it
follows that.J, = 0.0065. Fig. 4 shows the output responses of the Mirta S. Padin and José Luis Figueroa

plant with the same measurement noise as in case 1. Fig. 5 shows the

input plots in this case. ) )
putp Abstract—This paper presents the state regulation problem for non-

linear plants with initial conditions in a given bounded region, proposed
originally by Kreisselmeier and Birkholzer [1]. An efficient computer im-
plementable algorithm is presented, based on canonical piecewise lineal ap-
proximation for the discrete model of the plant.

VI. CONCLUSION |. INTRODUCTION

A control engineer is often faced with nonlinear systems, and, there-

A design method for multivariable EMM systems which reduces tHere, design methods that can handle nonlinearities are of great prac-
effect of measurement noise on the plant outputs is presented in tina! interest. Kreisselmeier and Birkholzer [1] present a solution for
paper. This method uses the freedom of the controller parameters Hige following problem: Given a nonlinear pladt and a set of ini-
to increasing the degree of the observer polynomial matrix. For soiti@l conditionsG, find a numerical controller for stable state regula-
fixed degree of the observer polynomial matrix, the controller for thigon from G, if one exists. A numerical design method is, in essence,
EMM is obtained as a solution of a simple optimization problem. It i@ computer-implementable algorithm. The numerical design method
also shown that the effect of the measurement noise in the plant outgii@posed has beemell founded theoreticallysuch that the feedback
become smaller as the degree of the observer polynomial matrix is @@ntroller defined by the algorithm is guaranteed to be a stabilizing
creased. This method will be applicable to pole placement control feRe. The particular technique proposed, however, has the disadvantage

a multivariable plant with measurement noise, which will be reportedf requiring excessive computation time. In this paper, we propose a
in a forthcoming paper [13]. computational method that retains the theoretical foundations of the

methodology of [1] in a more efficient algorithm using a canonical
piecewise linear (CPWL) approximation for the system.
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a continuous, positive definite functidfx, u) exists such that for all holds for a sufficiently smalp = p(r,). Further, letk(x) be an asso-

X € @, the right-hand side of ciate feedback satisfying
, - ‘ Ux, k(x)) + V(f(x, k(x)) —
T00) =it D161 w), w) @ < f [I(x. ) + V(f(x.0))] ®)
- uel/

is well defined and assumes values below some finite constart  ith « lower than the minimum of a function of the claks. varying
sup,eq J (%), whereg, (x, u) is the solution of (1) with initial stat&  ith ». Then, the feedback systexa1 = f(x«, k(x:)) is practically
and control sequenae = {uo,us, uz,---, }. Letl', denote the set asymptotically stable fron to NV (ro).

of points in®" such that the right-hand side of (2) exists and satisfies Theorem 1 says thaf(x) is a practical control Lyapunov function,
J(x) < 7. MoreoverJ(x) is positive and decreasing as— 0in  provided thafli’(x) is lower thanV (x) in a suitable region. This re-

I';. Then, for allx € T’ the function/(x) satisfies the equation quirement is related to the fact that the extended performance criterion
o ) includes the minimization over a sliding time horizonWf< V at a
J(x) = inf [[(x. ) +J(f(x,u))]. ) certain point, then the time horizons greater than zero are effective at

) _ . . _ _ this point, and, thereforé, contains descent information. If this infor-
Sincel(x, u) is positive definite forc # 0, the existence of(x) im- mation is provided in a region that contaifisexcept possibly a small
plies that/(x) is a Lyapunov function if', andk(x) is an asymptot-  enough neighborhood of the orighfi(p), then a controller can be de-
ically stabilizing control from to the origin. Setting the iteration duced fromV’ (x), which is practically asymptotically stabilizing from
. . G to N(ro).

Jr1(x) = fll(x,u) + Jr(f(x, )], Jo(x)=0, T'€ 2 The r(esUIts, astatedabove, cannot be implemented on a computer

o ) ) ) (4} without modifications. Therefore, [1] modifies the feedback construc-
which is of the dynamic programming type, it follows tht(x) con-  ion by including state and input discretization, interpolation, and an
verges to/(x) In Lo a_sT — . ) appropriate feedback parameterization. A discretizatibn for the

Now, to obtain a finite implementable algorithm, there areé somgate_spaca” is performed defining a canonical grid of points with
basic subproblems involved in the solution of this problem. They aP(istancel; between them and approximating each stat® the
associated with the computing region, with the parameterization of tH@arest point. A similar discretizatigD, ) is performed for the con-
controllers and with the systematic errors in the computations. To ags| yariablesu. Then, lefTp andT p be the discrete versions of the
count for these subproblems, [1] performs some modifications to thgisF andT7. SinceT andT are bounded’, andT » are finite. To
problem. First, acost criterion with terminal cost and free terminal yefine theinterpolation let us consider a functiofi” from the dis-
timeis used. Second,garameterized controller that is piecewise-Congete set defined above #. Then, it is possible to extend the range
stantin the state spaggused. Third, practical asymptotical stability f gefinition to allR" using a multilinear interpolation (a linear inter-
is used, which can be made arbitrarily close to asymptotic stability. L§8|ation is considered in each dimension, [1]) that we will describe as
us defmg this concept. . I(W,x) : R* — R.
~ Definition 1: A feedback systemx1 = f(xt, k(x¢)) with tra-Einajiy. to perform an implementable design algorithm, we set up
jectorieso? (x) is said to bepractically asintotically stablérom G to 1 following design function:

N(r,),ifafunctions(r,t) € K, exists such that for at € G

W(x) = min{Vx, uhin [KX» u)+1 (W: (=, u))] } ©

_ _ S _ where only the function values 6 at the discretization points are
where N (r,) is a neighborhood of the origin with radius and the involved. Associated with this design equation, we define the design

[0F Nl + k(o5 (x))[| < max{ro,o(Ixll.t)}.  t€Z (5)

definition of the seti{,, is in Appendix A. iteration

As a candidate of a practical control Lyapunov function, i.e., a con- —
trol Lyapunov function for practical asymptotic stability, we define the Wo(x) =V(x) (10
extended cost criterion as Wi (x) = Iuin{W'T(x),min[l(x, w) + I(Wo, f(x, u))]} (11)

i} that admits a computer implementable algorithm. Moreover, [1] shows

Vix) = Y :,Igz+ Z Hou(x.m),uy) + V(v (x,m))| . (6) thatWr.., converges to a solution of the design equatioas: oo
R R and is in some sense closeltgx) for sufficiently largeT'.
It differs from the infinite-time horizon criterion/(x) because LetWT,(‘r) be any member of the design iteratiop sequence, aqd let
it considers the cost over all possible finite time horizons witA" @ssociate (pointwise) feedbaekrom the state discretization grid
terminal cost? and takes the infimum of those. Throughout thid® %" be chosen such that =) € U for all = in the grid and for all
section, I(x,u) and V(x) are continuous, positive-definite and* €lp

satisfy ¢, ([ul) + o,(Ixl) < Ixw) < F(ul) + Zx]) Uz (=) + I(Wis (2 h(2))
and p—(|Ix])) < Vi(x) < BwA|lx||]) for appropriate functions . N el
gl,g\—,‘, P, P € K, forallx € R" andu € R™. Also, a bounded - Lf.lg%nn[l(”’ W+ I(Wr, f(z,0))] (12)

regionT C R is defined such thdi{x,u) > V(x) forallx € T and

. - N . i.e., such that = R(z) is a minimizing argument of the right-hand
u € ™. From these definitions, itis possible to show ([1]) that on.l)éide inT . Then, using the discretizatidn, we obtain a state feedback

a bounded set of controllets € U needs to be considered. Then, it ISh(D(x)) . %" — %™, which is piecewise constant in the state-space

possible to write the following feedback theorem. Based on this setup, [1] proposes a design algorithm using dynamic
Theorem 1: Let V'(x) be defined by (6), and suppose that P, LH prop gn alg g dy

programming. Let1, z2, - - -, zz denote the discrete set of points con-
V(x) < V(x) Veel—N(p) @) tglned inlp, gndu LUz, Uy denote the discrete set gf cor_nrol ac-
tions constrained &/ ;,. Write from (10), (11), the following directly
IThe class of functiong(,.. is defined in Appendix A. implementable design algorithm.
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1) Initialization: For alli € [1, 7] (i.e., we constraitix, u € X?)), the model (20) can be reformulated as

_ _ a linear function,
Wo(zi) = V(z). (13) ) . .
Xikt1 = Ekx - Xk + Eu - Uk + 7% (21)

Wher'e&)i(x = Bxx+2?:1 Cxi'(_)(xi'")/g-/ _')i(u = Bxu+2;’:1 Cxi*Qui-

~ — 4 B ~d with ~7 = sion(ove: U — A
Wrii(zi) = min{W’T(:i)g min [[(z,u;) + I(W'T,f(zi,uj))]} i = ax+Zi_:1 Cxi Bi- i with ] = silbn(amx—l—.au,u Bi).
J€N ] The sign function in the last expression determines thector
L . . _ (1‘_1) bglonging ~condition? i.e., the sign vector+’ defined as
. Af]Eer f||r|1|§h|n911 ttle_ |terat|0rt1), sz:]y at_sFané_ the feedback function ¥ = [,4d.--,72] is univocally related to thejth partition
() foralli € [1.7] is given by the minimizing argument (I6)). Consequently, a poirtt”, u") will lie in ¥’ iff it satisfies the

h(z;) = arg [min ][l(z;,, uy) +I(Wx, f(z,u5))]  (15) inequality

uj€lug-,uw

2) lteration fromI' to T' + 1: For alli € [1,7]

i _ 4 h | 4 h |
the computation of which is part of (14). AT G X G R S0 2
To terminate the iteration, the criterion used is that the differeneghere[¢l_ ], = —+7 axi, [,]i = =7/ aui [13]i = 774 and]- ]
Wr_1(z) — Wr(z) be smaller than a given tolerance. Note thamneans théth row in the matrix - ]. The problems associated with the
the iteration can be executed and it will converge (because thetermination of these regions and the CPWL approximations have
sequencer(z) is nomotonically decreasing and bounded fronbeen extensively studied in the literature (see, e.g., [7]-[9]).
below) no matter if the plant is asymptotically controllable. Therefore, Now, consider the system at any initial condition, uo) € X° that
asymptotic controllability does not need to be checkegriori to verifies the steady-state equations (is&,= f(xo,19)). While the
using the design algorithm. Moreover, since the sequéfigé¢z) is  system is in sector® (suppose that this occurs faf samples), it is
monotonically decreasing and bounded from below, if we obtain @asy to see that the state vector will be
efficient way to solve (14), we can do it for only a sufficiently large

horizonT. Xi = EgxXio1 + Eyu - Wio1 + 772 Vi=1,---,n°. (23)
In this paper, let us consider the following expressions for the Lygnjs expression is valid till the moment the system reaches next sector

punov functions (calledR'), when the value of the state is

V(X? ll) = XT Q’l(x + uTQhu (16) Xnpo = (ggx)“o Xo + £guun0—1 + £Jotx£§1uuno—'2

'LO—
and (€)oo s o+ (650" T o +
n—
I(x,u,t) = xTQ;x + uTQLu a7) + (ggx) 772 4t (ggx) ! 7}2

whereQ. andQ} are positive definite weighting matrices for ak= and, using this state as an initial condition for seatbrit is possible
1,2,---,T. Then, taking a large enough horizon tiffiethe solution 10 compute
of (15) can be obtained by solving the following optimization problem: Xi= it +Ehy w4 Vi=n® 410l (24)

T T .
min Z <Ol x; + Z W Qiu st This expre§sion will bg valid till the ;ystem reaches sgﬁfo(at nh).
gz, ug o Note that since the points are solutions of the approximated model,
Xip1 = f(xXe, ) (18) they satisfy (1) at any time. Then, it is possible to obtain a “Predictive

Model” by using the following algorithm.
Algorithm 1: CPWL Model Formulation
I1l. SOLUTION TO CPWL PROBLEM Data: A set of control variablepuo, uy, - - -, ur], the final horizon

. . o 7', and the initial state vectoto solution of the model approximation
In this paper, we consider the use of a CPWL approximation for t 57) 0 PP

nonlinear model (1). These functions allows us to write nonlinear func- . _
tions as several linear expressions, each of those valid in a certain reStelo 1) Setj :_0’ ]‘ = O_a”d"’ :\0' ) o
gion. Based on the properties of this representation, we will obtain a>'cP 2) ~Determine in which sectol”, point (xi, ux) lies, and
practical and efficient approach for the optimization problem. In math- compute the linear model valid in this sector.
ematical terms, this can be described as follows. Step3) If k < T, continue; Otherwisestop v

Step 4) Computexki1 = ExxXk + Eku * Uk + 7%

Let X C R" andU C R™ be the domains ok andu variables, - y
Step 5) If no entry of the vectorz}, = &, xk11 + &auk +

respectively, and consider the set n% changes sign, let = &k + 1 and return to Step 3.
N={x". u']':xe X, uel} (19) Otherwise, let’ = k —»’~" andj = j + 1, and return
to Step 2 to proceed similarly in the next sector.
which is the domain where we want to approximate the systefjking the results of this algorithm, a generic expression for the pre-

(1). Consider also the following partition in the sBtsuch that yictive model. when the system goes through setfrsr’, - - -, R"]
N = U7, ¥/, whereX’ is called the jth partition.” Then, the CPWL a1 pe written as oo

representation [4], [5] of the system is
X = (bxxX(J + (bxuU + @r (25)
Xk+1 = aAx + Bxxxk + Bxuuk

+ Z Cxi
i=1
. . . . . 2The domainX is divided into a finite number of polyhedral regiois
where all the matrices and vectors have appropriate dimensions Wifinded by a set of hyperplanes of the tygfie= &, -x? +&J, - ub +58, = 0
elements in the real field. If the system is constrained tgtheegion with dimensions no lower tham — 1.

where the matrices are defined in Appendix B. It is important to re-
axiXk + auwiuk — Gi| (20) mark the dependence of the matricks,, ®.. and®, on the sec-
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tors[R%, X', X%, ... ] and on the time§®, ¢!, +,---,]. This means,
in general, expression (25) is no longer valid if any change occurs in
the inputsu.

In some applications, there is no need to consider changes of the
manipulated vectors every period. Moreover, it could unnecessarily in-
crease the dimension of the vecidr for the solution of the control
problem. To avoid this problem, we propose to modify the matrices in-
volved in (25) in order to consider another sampling time. To do this, we
consider that the manipulated variable changes eaampling times.
Then, for horizonn (the input signal changes times) the length of Fig- 1. Inverted pendulum.
this horizon ist;;, = m - t. Note that in this case, the matrices involved
in (25) can be easily computed by adding uptalblumns inside each
t rows.

Now, let us rewrite the control problem using these model. We shou 4
note that the initial state vectsp is knowna priori, for our application
we can pose this model as

X = &’x (XO) + (quU (26)

with &, (x0) = PxxXo+®P.. Placing these expressions in the objectiv
function of (18), we obtain the objective function for the optimizatiol
as

T T
Vet = 35 Qhxa 4 3 ol Qs
=1 i=1

=X"Q:X+U"Q,U
=U"0u,U+6,U+6 (27)
whereQx = diag{Q),i = 1,---.T}, Qu = diag{Qi.,i =
Lo, Th Oun = (P QuPru + Qu), Ou = 2(P5 QuPru) and
0 = (d5 Qx®x).
The bounded set of controllers is now expressed as

20 25

wel ={U:HU< h} (28)

with HT = [17 —17] andh? = [UT —UT7]. 4
Then, the control problem of (18) can be solved for each pointin ti
state grid by

min Vy = U'0,U+0,U+0 stHU<h (29)

which is a typical quadratic programming problem that can be solv 2r
using any commercial algorithm. Then, we can store the first step of t
manipulated variable for each pointin the state space, thereby obtair 1
the numeric controller. Note that in this solution for the problem, w
assume that the model (26) is not dependingioiihis assumptionis g
unrealistic. Since that only the first control action is implemented, hov
ever, this is not a substantial problem. Moreover, an algorithm soluti
could be implemented by an alternated solution of problem (29) a ='[
algorithm for compute CPWL model. This iteration should continu
while the norm of two successive solutiondfis larger than arelative -2 L L . L
small tolerance. Note that this kind of algorithmic solution is necesse. , 5 10 15 20 25
due to the nonlinear nature of the original problem. Moreover, the con
vergence of this algorithm toward the global optimum cannot alwayég' ’

be guaranteed; however, this is the typical problem of nonlinear opti- ] o )
mization. for the feedback design. The control objective is to retain the pendulum

in the upright position, which it is an unstable equilibrium point.
The normalized system is described by the differential equation

Time Simulation for cases A and B.

IV. EXAMPLE: CONTROL OF AN INVERTED PENDULUM

Consider the simple inverted pendulum of Fig. 1. The state variables &y =y
of this system are the angle and the angular velocity, = 2. The do = sinwr + g(u)
input « is a torque in the shaft, which is bounded to such an amouYrgleI
that the pendulum cannot directly be turned from the hanging in e

the upright position. Instead, it is first necessary to “gain enough mo- -0.7, foru < —0.7
mentum,” which requires complex trajectory planning, even for this glu) =< u for —0.7 < u < —0.7,
simple example. It is this nonlinearity that poses the maidtifficulty 0.7 foru > 0.7
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The states:; andx, are the controlled outputs and the torquis the 2 T T J T T
manipulated variable. A discrete CPWL model was used to solve t
numerical control problem. In this approximation, the space is divide 1-5F
into 43 sectors. The sample time for simulation is 0.005 s. The ing
sample time is 0.15 s, and the control horizon is 4.5 s. We consic 1}
such a small sample time because the system is unstable; therefore
simulation error will be bounded. The computing regiof'is- {x € 05r
R ||x1] < 6.6 and|xs| < 3.6}.

The manipulated variables are constrained- @7 < « < 0.7, and ot
the weighting matrices are defined as

0.01 0 Bl ]
) . i—1 ] — [ —_
o o { 0 0.002} (1.2) fori=1,---,T -1 Al |
S P XU 121 fori T
0 0o002| (I Tori= sk ]
and ’

QL =0.1. 2 . . . . .

-1 0 1 2 3 4 5

Using these data, the numerical controller is computed. Simulations for
two sets of initial conditions were performed. Fig. 3. Phase plane plot.

Case Aw; =n/4 and xz2 =0 APPENDIX A
Case Bx; =#/2 and s = 0. FUNCTION CLASSES

A function classl(,., which is used to characterize positive definite-

The results are presented in Fig. 2(a) and (b), respectively. The plotg i ang decrescence (including radial unboundedness), is defined as
the phase plane are show in Fig. 3. The numerical results are equivalgibys.

to those obtained in [1]. However, the CPWL-based algorithm needs ahefinition: A function ¢: R+ — R is said to belong to the class
least one-fifth of the time for convergence as compared with the R, ’

' , if it is continuous, strictly increasing, and satisfie®) = 0, and
proach in [1].

lim;— oo (1) = oc.

A function classk,, which is used to characterize asymptotic sta-
bility, is defined as follows.

Definition: A functione: R x ZT — R is said to belong to the

V. CONCLUSION classk, if

The result of this paper is an improvement of an existing computer 1) o(r,t) € K, for each fixedt € Z7,
design algorithm, which defines a practically asymptotically stabilizing 2) @ (1) > o(r,t2) forall t; > ¢, andr # 0,
control from an initial regimen to a target state, if one exists, due to 3) ‘T((”) = Oforallt € Z, andr
[1]. The improvement is based on a transformation of the original non- 4) limi—oc o(r,#) = 0 forall r € RY
linear problem into a simple quadratic programming problem by usifkgom this definition,o(r,¢) is a function that is, as a function of
a canonical piecewise lineal approximation of the system model. Thiictly monotone decreasing and goes to zero asymptotically, and that

applicability of this method is tested by an example. is, as a function of” (for all t), positive definite.
(:Dxu =
I Exu 0 e 0 0 0
()" (60" 0 2 0 S
E)](x (E)(lx)n(]il Egu E)]cx (Eix)no*z E?{u T Elu e 0 0
1 n' _(]. n9—1 0 o1 n! 0 n9—2 -0 1 néfl o1 : :
(gxx) ({xx) Exu ({xx) (gxx) {xu (gxx) (xu 0 0
nt_1 1 ; nt 0 n9—1 0 h nlt—1 1 : nt 0 n0—2 0 - h nft—1 : 1 n9—1 1 o ;:L
(fxx) e (Exx) (gxx) Exu (gxx) , e (gxx) (Exx) gxu et ( xx) , e (Exx) Exu ' Exu 0
k nt n0— n't nt n9— n' nd—
ol (Exx)n e (g:l;x) (g)(ix) ! Egu (-;:lx) e ({)lcx) (g:ocx) : {)(zu e ()’:x) e (g)lcx) ! E:lcu e :I;lu ),cLu :I;lu -
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APPENDIX B
MODEL MATRICES

The matrices that define the Predictive Model

X = @xxxl) + ¢xuU + ¢T

are defined a®¥J = [ul uf, .-, uf)7. X = [xT %I, -, LT
and as shown at the bottom of the previous page

B, =

r Exx 1

(&)

(€)™
Gax (E22)"

(b)) (€2
(af:x)""f (k)" (€)™
(ngzx)n "'(&ix)n (ggx)n -

e
&y + 12

’I'ZO '
(e
t=1

n0

ST () T 0 +

t=1

S () 3 (20 02 + () M
Jj=1 t=1

n

Jj=1 t=1
. Q

n n

(g),éx)J "'Z(ng)t_] 775.) + (g:éx)j_l 77f

i=1 t=1

wheren' is the sample time at which the system leaves segtor
Note the dependence of the matrickgx, Pxu and ®x on the sec-
tors[R°, X', 82, ... R"] and on the “times[n°, n', n?,-- -, n"]. This

means, in general, the expression is no longer valid if any change

curs in the inputsy, forall & = 1,---,T. In these expressiong,=
n® 4+ nt 4+ 0?4, 0l
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Constrained Robustness Analysis by Randomized
Algorithms

Xinjia Chen and Kemin Zhou

Abstract—This paper shows that many robust control problems can be
formulated as constrained optimization problems and can be tackled by
using randomized algorithms. Two different approaches in searching reli-
able solutions to robustness analysis problems under constraints are pro-
posed, and the minimum computational efforts for achieving certain relia-
bility and accuracy are investigated and bounds for sample size are derived.
Moreover, the existing order statistics distribution theory is extended to the
general case in which the distribution of population is not assumed to be
continuous and the order statistics is associated with certain constraints.

Index Terms—Order statistics, randomized algorithm, robustness,
sample size.

|. INTRODUCTION

It is now well known that many deterministic worst case robustness
analysis and synthesis problems are NP hard, which means the exact
analysis and synthesis of the corresponding robust control problems
may be computationally demanding [5], [13]. On the other hand, the
deterministic worst case robustness measures may be quite conserva-
tive due to overbounding of the system uncertainties. As pointed out in
[9] by Khargonekar and Tikku, the difficulties of deterministic worst
case robust control problems are inherent to the problem formulations,
and a major change of the paradigm is necessary. An alternative to the
deterministic approach is the probabilistic approach, which has been
studied extensively by Stengedt al. (see, e.g., [10], [11]), and ref-
erences therein. Aimed at breaking through the NP-hardness barrier
and reducing the conservativeness of the deterministic robustness mea-
sures, the probabilistic approach has recently received a renewed atten-
tion in the works of Barmish and Lagoa [4], Barmishal.[2], Barmish
gpd Polyak [3], Khargonekar and Tikku [9], Bat al. [1], Tempo,et
al. [12], Yoon and Khargonekar [14], Zhet al.[16], Chen and Zhou
[6], [7], and references therein.
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