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The search for a QED-based (and then QFT-based) formalism that brings solid grounds to the whole

area of relativistic quantum chemistry was just implicit in the first decades of the quantum theory.

During the last few years it was shown that it is still unclear how to derive a well-defined N-electron

relativistic Hamiltonian, and also the way negative-energy states may contribute to electron correlation.

Furthermore, the relationship among electron correlation and radiative QED corrections is even more

difficult to guess. These are few of the fundamental problems that need to be solved before such a

program of research is finished within the wavefunction approach to quantum physics. The polarization

propagator formalism was developed as an alternative approach to study atomic and molecular

properties within both regimes, relativistic and nonrelativistic. In this article we expose how far away one

can go today working with polarization propagators, until including QED (and afterwards QFT) effects.

We will uncover its deepest formal origin, the path integral formalism, which explains why polarization

propagators can be written formally the same in both regimes. This will also explain why the NR limit is

obtained scaling the velocity of light to infinity. We shall introduce a few basic aspects of elementary

propagators to show what they have in common with polarization propagators. Then we shall remark

on the most important news that appears with the latter ones. Within the relativistic regime the

contributions of negative energy orbitals to electron correlation are straightforwardly included. New

insights on the relationship between spin and time-reversal operators are also given, together with an

ansatz on how to consider both, QED and electron correlation effects on the same grounds. We focus

here on the treatment of NMR spectroscopic parameters within such a formalism, that is still not broadly

used by the quantum chemistry community. Most of the other response properties can be treated

in a similar manner.

1 Introduction

In the search for a QED-based theory to describe atomic and
molecular properties one first needs to learn how to properly
define or consider some dynamical variables that just appears in
relativistic quantum chemistry. Among these one can mention
the definition of a relativistic many-electron Hamiltonian, the
way the negative-energy states contribute to the electron correla-
tion and how to include QED effects and electron correlation on
the same theoretical grounds. These long-standing difficulties
and some new developments on polarization propagators theory
justify the search for an alternative proposal to that of the usual
wavefunction approach.

The occurrence of positive-energy and negative-energy states
in the solutions of the Dirac equation are related with particles

and antiparticles (electrons and positrons, respectively), and so
with creation and annihilation of both particles. How should
negative-energy states be included in the description of atomic
and molecular properties? Do they have any meaning for
the explanation of a chemical (low-energy) process, if real
antiparticles are not available?

From a chemical point of view it is hard to realize the
importance of considering the influence of electron–positron
pairs on the molecular properties. There is still an interesting
and long standing controversy on whether negative-energy
states (which do introduce the concept of electron–positron
pair creation) should not be considered on calculations due to the
high energy necessary to create real positrons or be included from
the outset as generating virtual particles.1–11 This controversy is
still underway though some new proposals have recently been
published.12 We are also introducing here new arguments that
may shed some more light on it.

The appearance of negative energy states in the framework
of relativistic quantum chemistry and physics was always a
source of difficulties. They were treated in different manners
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through: (a) well-defined positive-energy projectors, (b) unitary
transformations based on the spirit of the Foldy–Wouthuysen
transformation though with several improvements, or (c) properly
applying polarization propagators.

By using positive-energy projectors Sucher was one of the
first to discuss what is known as the no-pair Hamiltonians.13

He was engaged in deriving a relativistic many-body Hamiltonian
from QED and was also able to show explicit expressions for the
energy level shifts that arise from the effects of virtual photons and
virtual electron–positron pairs. Appropiate projectors were also
found useful when looking for relativistic corrections to magnetic
properties at two-component levels, starting from four-component
ones.5,14–16 There are few methodologies developed to obtain
appropiate unitary transformations for block diagonalizing the
relativistic Hamiltonian17–22 or expressing all working equations in
terms only on the ‘‘large’’ components.8,23–31 In a recent review
Saue has discussed in some detail the whole set of relativistic
Hamiltonians available in quantum chemistry.32

We should also mention several other new 4- and 2-components
methodologies that during the last few years were developed and
implemented for including relativistic effects in molecular electric
and magnetic properties, within both wavefunction and DFT
approaches. They were published in regular articles9,33–40 and also
in review articles.8,11,41–43 In a few of them small though significant
effects like nuclear-size effects were studied.44–48

All previous considerations show a growing interest to go
one step further and introduce QED effects also on proper-
ties.12,49 Few recent articles that include QED effects on the
atomic properties50–52 or attempts to explain how one may do it
for molecular properties53–56 were published. Lindgren also
introduced a new approach in a book.57 In his recent article12

Kutzelnigg mentioned that there are indications of a change
of paradigm in the sense that for getting the correct Hamiltonian
one may try in opposition of what was previously looked for,
e.g. by introducing clear cut approximations of the QED
Hamiltonian, each of which can be studied exactly. The way it
was done before was to start from a full QED and then construct
a Hamiltonian. We suggest here to choose a different road,
meaning the application of the path integral formalism. We are
going to present effective QED-based Hamiltonians (including
perturbative Hamiltonians) in a Liouvillian framework in order
to introduce QED effects on the response properties in a many-
body atomic or molecular system.

This article will focus on some new theoretical insights
arising from the polarization propagator formalism, and some
of its applications to a few specific magnetic properties that are
very much influenced by relativistic effects: the NMR spectro-
scopic parameters. Its application to most other second order
properties could be pursued in a similar manner.

Norman Ramsey was the first to propose a consistent non-
relativistic theory for such parameters.58–60 He found several
theoretical mechanisms for describing the interaction among
nuclei and the electronic environment that gave accurate results
when calculations were performed with high-level methods on
only light-atom containing molecules. After a few decades it
was realized that when heavy-atoms are included in the model

molecular systems relativistic effects should (must) be included
(depending on the weight of the atoms).61,62 In addition to
that Pyykkö and Zhao63 suggested that QED effects on NMR
parameters may be of the same size as solvent effects on heavy-
atom containing molecules.

A higher-level of theory for including QED effects in the
spectroscopic parameters was published by Romero and Aucar
more than ten years ago.53,54 They did it based on two different
theoretical schemes arriving to formal expressions which are
however still not implemented in computational codes. No
clear indications were proposed on how to handle electron
correlation and relativistic effects on the same grounds and in
actual calculations being the full theory formally sound.7 Right
now there is no other general QED-based theory for calculation
of both NMR spectroscopic parameters though Pachucki and
coauthors proposed a theory for including QED effects on
magnetic shieldings of hydrogen-like ions.64

A theoretical explanation of any quantum phenomenon
requires a coherent formalism from which one should be able
to describe and predict the evolution of the quantum system
under study, and afterwards the prediction of the likely results
of the measurements. To learn about the spectroscopic properties of
an atomic or molecular quantum system one should make it
possible that the system does interact with internal or external
fields. From the analysis of some specific responses one then
obtains a pattern from which to explain or describe those properties.

The principles of quantum mechanics can be explicitly
formulated by two different and equivalent formalisms: (a)
the most used in atomic and molecular physics, for which the
dynamical (classical) variables are replaced by linear operators
acting on wavefunctions or state vectors which belong to a given
Hilbert space. Basic commutator relationships between the
elementary dynamical variables, the position and its canonical
conjugate linear momentum are well defined. This formalism is
due to Schrödinger, Heisenberg, Dirac, and others; and (b) the
path integral formalism (first developed by Richard Feynman)
where the propagator is the basic dynamical variable. This
formalism is mainly used in quantum field theory. It offers a
straightforward though quite unconventional way to describe
how in quantum physics, a perturbation (transmitted through
virtual particles or virtual excitations) goes from a given space-
time point to another one.

One of the aims of this article is to show how polarization
propagators can be derived from the path integral formalism,
and so which are the elements they have in common with all
other propagators. We shall stress the relationship of the Green
functions with the Feynman’s formulation of quantum
mechanics. It will not be possible to do it in all details here but
we will expose it in such a way that one can grasp the basic
knowledge needed to understand what is at the basis of the
relativistic polarization propagator theory. This fundamental step
will permit us to go one step forward and propose its formulation
within the QED framework and, afterwards, it will also indicate
how one can go back to their NR limit in a nice and natural way.

We shall start giving a brief introduction of the well-known
aspects of the path integral formalism, and how the Green
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functions are obtained from it. We introduce the concept
of non-interacting and interacting propagators, and their gen-
erating functionals. This first section will give a theoretical
support to the following sections. Polarization propagators are
then introduced with their main features. Its usual definition
and the statement of a theorem about how they can be derived
from the path integral formalism, meaning the MO representative
of the Green’s function corresponds to the quantum correlation
between two perturbative interactions. This last point is given
here for the first time and is one of the main novelties of this
article. This finding gives us new insights on what polarization
propagators are and how are they connected with previous and
sound knowledge.

Then we give a brief introduction of the theory of relativistic
polarization propagators1,3,7 highlighting the way electron
correlation is properly included in them. Furthermore we will
show some properties of new pseudo-singlet and pseudo-triplet
operators that become traditional singlet and triplet NR opera-
tors when the velocity of light is scaled to infinity. In the last
section we show a transparent relationship between the S-matrix
formalism and polarization propagators and finally we propose
an ansatz for including both the QED and electron correlation
effects on the same grounds.

2 The path integral formalism for
quantum physics

We introduce in this section the basic language that gives
support to the fact that polarization propagators have the same
formal definition within both domains, relativistic and non-
relativistic. Furthermore we shall highlight the main features of
some powerful theoretical tools that were mainly developed
within the quantum field theory, QFT and are now necessary to
introduce in quantum chemistry.

2.1 Basic features and definitions

In classical physics the equation of motion for a N-particle system
can be obtained by applying the least action principle: one should
be able to write the actual Lagrangian of the system, include it in
the action S and then minimize it. The Lagrangian L is defined as
the difference between the kinetic and potential energies.

Let us consider first the evolution of a given one-particle
system in a one-dimensional space between two points, A and B,
as shown in Fig. 1. The particle could make its displacement
through any available path. The action is written then as

S ¼
ðtB
tA

dtLðq; _q; tÞ (1)

q and :
q being the generalized coordinate and the generalized

velocity, respectively. Applying the least action principle, one finds
that there is only one path that the particle must follow: qc(t).

What would happen in quantum physics? The basic
assumption is that the particle could follow any available path.
In fact one must consider the whole universe of the likely paths,
which should also include paths where the particle travels

backward in time as happens to the path q4 in Fig. 1. This is
the starting point of the path integral formalism, and was
suggested and later developed by Richard Feynman.

Let us see how the equations of motion are obtained for
quantum systems. In quantum mechanics the dynamical variables,
like position of the particle becomes an operator q̂(t). In what
follows it is better to work within the Heisenberg or the interaction
pictures were the operators explicitly depend on time. It is easier to
consider any available trajectory in those pictures.

For the actual path that a particle shall follow to be known,
measurements need to be done. So the eigenvalues of the
position eigenstates should be determined,65

q̂|q0(t = 0)i = q0|q0(t = 0)i (2)

The eigenvalues of the position operator at any given time
are obtained from the evolved eigenstate

q0ðt 0Þj i ¼ e�
i
�hĤt 0 q0ðt ¼ 0Þj i ¼ e�

i
�hĤt 0 q0j i (3)

Ĥ being the Hamiltonian operator of the system.
The probability amplitude that the particle (system) being in

a position (initial state, CA) qA(tA) would be found in another
position (final state, CB) qB(tB) is computed as

P(qA,qB) = N2|A(qA,qB)|2 (4)

where N is a normalization constant, and

A qA; qBð Þ ¼ qB tBð ÞjqA tAð Þh i ¼ qBh je
i
�hĤ tB�tAð Þ qAj i (5)

is the transition or probability amplitude. This amplitude
contains a complete description of the quantum system.

If Ĥ is of the form

Ĥðp; qÞ ¼ 1

2m
p2 þ VðqÞ (6)

it can be shown that

qB tBð Þh jqA tAð Þi ¼ N

ðtB
tA

Dqe
i
�hS q;tB ;tA½ � (7)

where Dq ¼
Q1
i¼1

dqi and N is a normalization constant. The

action S[q; tB, tA] is a functional of a particular path, q, but
also a function of the end points tB and tA. Functional integrals

Fig. 1 Different pathways for a particle in a one-dimensional trajectory.
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mean that the integration is taken over all functions q(t) and it
gives a number. Eqn (7) is the Feynman path integral and gives
the probability amplitude as a sum over histories.

The probability amplitude of eqn (7) is also known as a
propagator and is equivalent to

qB tBð Þh jqA tAð Þi /
X

all possible paths; qi

e
i
�hS qi ;tB;tA½ �

¼ lim
n!1

ðqB
qA

dq1 . . . dqne
i
�h

Ð tB
tA

L q1 ; _q1ð Þdt
. . . e

i
�h

Ð tB
tA

L qn; _qnð Þdt

(8)

The propagator depends on the value of the function q(t) at
all points. Not all paths, qi are equally likely. The classical path
makes S stationary under a small change of the path. So, in its
vicinity there will appear a constructive addition of phases
represented by the closely related values of S[q; tB, tA]. The
contribution of all other paths is zero because their contribu-
tions are cancelled among themselves.

2.2 Propagators for quantum fields

Right now, we have considered the evolution within a non
relativistic framework of a quantum system, by the measure-
ment of the position of point particles at any time which then
produce the trajectory q(t). The passage of the NR description of
a point particle position q(t) to a relativistic quantum field f(xm)
may be done by replacing q by f and t by xm = (r, t).
The quantum field f(xm) describes a system with an infinite
number of degrees of freedom because at each time, f has an
independent value at each point in space. In what follows we
will rename the space-time position xm as x to simplify notation.
Its meaning is such that, when working within a NR framework
they will represent position and time separately. On the other
hand, when working within a relativistic framework x0 = ct and
the other 3-coordinates will represent the space point r. As is
usual in QFT, c is set equal to 1 when there is no explicit
reference to it.

We need to work with fields because in the framework of
relativistic quantum theory even the one-particle wave function
becomes an operator. Both, the Klein–Gordon, KG and the
Dirac equations describe quantum fields, for bosons and
fermions respectively. The appearance of negative-energy states
is related with the existence of antiparticles and force us to
reinterpret both equations as describing the evolution of many-
particle systems.

In any case one can obtain the KG or the Dirac equation
through the application of the Euler–Lagrange equation.
One only needs to define adequately the Lagrangian density

function, L f; _f;rf
� �

.

Eqn (7) can be generalized to the case of quantum fields as

fB tBð Þh jfA tAð Þi /
X

all possible fields; f

e
i
�hS f;tB ;tA½ � (9)

In the absence of any external perturbation the system will
stay in its ground or vacuum state, |0i at both times, initial tA

and final tB. The propagator of eqn (9) shall now describe the
evolution of a system where one virtual particle (bosonic
or leptonic) is created at a space-time position xA and annihi-
lated at a different space-time position xB. In the same manner
one may also consider an equivalent phenomenon for
which virtual excitations are transmitted from one space-time
to another.

In QFT the ground-state to ground-state transition ampli-
tude of the free (or independent) particle is usually written as

Z0 ¼ 0; tBh j0; tAi

¼ N

ð
Dfe

i
�hS f;tB ;tA½ � ¼ N

ð
Dfe

i
�h

Ð
d4xLðfÞ

(10)

where the initial and final times are explicitly shown. In this
case the evolving field is the vacuum or the ground-state. The
(infinitely many) trajectories mean that quantum fluctuations
of the ground state are likely produced on top of the ‘‘classical’’
ground-state. The amplitudes for propagating (virtual) particles,
which refer to excitations about the ground state, are calculated
as the product of fields weighted by the exp (iS/�h). This topic will
be expanded in Section 4.

For future developments and understandings of what
the polarization propagators refer to we shall consider now
the way in which the inclusion of a perturbation do modify the
probability amplitude Z0.

2.3 The evolution of a perturbed scalar field

Let’s consider the specific case of an scalar field whose Lagrangian
density L0 is

L0 ¼
1

2
@mf@mf
� �

� VðfÞ (11)

where the operator qm qm is the well known D’Alembertian
operator. We follow the presentations of Ryder66 and Zee.67

When the potential is V(f) = 1/2m2f2, the Lagrangian density
L0 will be the adequate function from which the scalar field
excitations without interactions among themselves are
obtained. If the potential V contain terms with a different
potential dependence of f (like third or fourth) it shall imply
that the interactions among the scalar field excitations shall be
included. This is an important point that will be dealt with in
more detail in Section 2.5.

In order to consider the effect of a perturbation J on the
ground state of the quantum system, we should modify the
Lagrangian density as

L ! Lþ Jf (12)

meaning that the field f has a source J. There will appears an
excitation in the perturbed system in a given space-time that
will disappears in another space-time. In this case the transi-
tion amplitude becomes

Z0ðJÞ ¼
ð
Dfe

i
�h

Ð
d4x 1=2 @mf@mf�m2f2ð Þ½ �þJf

¼
ð
Dfe

i
�h

Ð
d4x �1=2f @m@

mþm2ð ÞfþJf½ �
(13)
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being the last term obtained from integrating by parts. Its
formal solution can be grasped from a relationship with the
discrete case (see pages 273–275 of ref. 65)

ð1
1

ð1
1

. . .

ð1
1
dq1 dq2:::dqNe

i
2
qAqþiJq ¼ ð2piÞN

det½A�

 !1=2

e
�i
2
JA�1J (14)

A being a matrix and q a vector. Matrix A is equivalent to the
diferential operator�(qmq

m + m2). Then, eqn (13) can be rewritten as

Z0ðJÞ ¼ Z0ðJ ¼ 0Þe�i=2
Ð Ð

dx4dy4JðxÞDFðx�yÞJðyÞ

¼ Z0ðJ ¼ 0ÞeiWðJÞ
(15)

Given that the transition amplitudes are normalized the factor
Z0(J = 0) is not relevant.

The equation that defines A�1

AA�1 ¼ I or
X
j

AijAjk
�1 ¼ dik (16)

has its equivalence in the field case

�(qmq
m + m2)DF(x�y) = d(4)(x � y) (17)

where DF(x � y) is known as the free-particle Feynman propa-
gator. The propagator DF(x � y) is related wih a Green function
as follows, G(x, y) = iDF(x � y) and the vacuum to vacuum (or
ground-state to ground-state) transition amplitude Z0(J) is the
generating functional for the free (or independent) particle
Green function. As can be seen from eqn (17) the Feynman
propagator is clearly the inverse of an operator

DF(x � y) = �(qmq
m + m2)�1 (18)

whose analytic expression can be obtained within the momen-
tum space. The Feynman propagator is also the inverse of the
operator that appears in the quadratic term of the Lagrangian
function (see eqn (13)). This last statement can be taken as a
definition of a propagator (see page 216 of ref. 66).

Considering that

dð4Þðx� yÞ ¼
ð
d4k

ð2pÞ4
eikðx�yÞ (19)

its solution is

DFðx� yÞ ¼
ð
d4k

ð2pÞ4
eikðx�yÞ

k2 �m2 þ ie
(20)

The prescription ie is needed in order to solve the integration
over k.

By expanding the exponential factor of eqn (15) one finds a
series of terms, which represent the propagation of one particle
between the sources, the propagation of two particles between
sources and so on. Then we have at hand a many-particle
theory. Each term of this series is a Green function; so
that Z0(J) is a generating functional for the Green functions of
the theory.

Let’s analyze the first term of the series which represent
the propagation of one particle between the sources placed on
two space-time points, x and y

�i=2
ðð

dx4dy4JðxÞDFðx� yÞJðyÞ (21)

Introducing the Fourier transform of J(x)

JðxÞ ¼ 1

ð2pÞ4
ð
d4keikxJðkÞ (22)

one finds that eqn (21) can be written as

�i=2
ð
d4k

ð2pÞ4
J�ðkÞ 1

k2 �m2 þ ie
JðkÞ (23)

Now, if J(x) = J1(x) + J2(x) where J1(x) and J2(x) are concentrated
in two different regions of he space-time framework one shall
have four terms in the last equation. If the self-energy terms are
not considered one obtains the following analytic expressions
for eqn (21)

�i=2
ð
d4k

ð2pÞ4
J2
�ðkÞ 1

k2 �m2 þ ie
J1ðkÞ (24)

The calculation of this integral will give a non-vanishing
contribution only when there is a significant overlap between
J1(x) and J2(x) in its Fourier transformation together with the
constraint that within the region of such overlap (k2 � m2) is
close to zero. The physics behind this theory is the following:
there is a source in the space-time region 1 whose perturbation
to the field is transmitted to the whole space-time framework but
absorbed later on in the space-time region 2. The perturbation is
transmitted by (virtual) particles like photons or electrons that
are created in region 1 and annihilated in region 2 or vice versa.

For electromagnetic fields, f is replaced by the vector
potential Am. For spinor fields there will be two fields, c and

�
c.

Equivalent procedures as that considered above give the
photon propagator or the electron propagator when the Lagrangian
is the appropiate one. Such propagators represent the transmission
of elementary excitations of a field.

2.4 The 2-point correlation function and the generating
functional, W

We are interested in the analysis of the propagator of an
excitation that is created in a given spacetime (say xA) and
annihilated in another spacetime (say xB). The Feynman pro-
pagator or causal propagator is a correlation function that takes
care of the physical sense of time. Its definition is

DF(xB � xA) = �ih0|Tf(xB)f†(xA)|0i (25)

where T represent the time-ordering operator, f†(xA) creates a
particle from the vacuum or the ground state at the space-time
xA and f(xB) annihilates such particle at the space-time xB;
the field operator f(x) is a complex scalar (like the KG) field.
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Then the Feynman propagator can be calculated as

DF xB � xAð Þ ¼ �i 0h jf xBð Þfy xAð Þ 0j i if tB 4 tA
0h jfyðxAÞfðxBÞ 0j i if tA 4 tB

� �
(26)

The second line describes the propagator of a virtual anti-
particle that travels from space-time xB to space-time xA.

The Feynman propagator and so the 2-point Green function
can be also obtained from the path integral formalism. It can
be proven that (see ch. 14 of ref. 65)

0; tfh jT ½f tAð Þf tBð Þ� 0; tij i ¼ N

ð
Dff tAð Þf tBð Þe

i
�h

Ð tf
ti
Ldt

(27)

It is worth to mention that on the lhs one has operator fields,
and on the rhs there are c-number fields. The meaning of that
identity is the following: for each path represented by a given
field f the correlation between the actual values of the field at
different times is weighted by an exponential of the action.
When ti -�N and tf -N the last equation becomes the path
integral definition of the Feynman propagator.

From the last fundamental identity one can obtain a relation-
ship between Generating functionals and Feynman propagators.
Let us consider again the functional Z0[ J ]

Z0½J� ¼
ð
Dfe

i
�h

Ð
d4xðLþJfÞ (28)

Its first functional derivatives with respect to J are

dZ0½J�
dJ xAð Þ ¼ i

ð
Dff xAð Þe

i
�h

Ð
d4xðLþJfÞ

d2Z0½J�
dJ xAð ÞdJ xBð Þ

¼ i2
ð
Dff xAð Þf xBð Þe

i
�h

Ð
d4xðLþJfÞ

(29)

so that

d2Z0½J�
dJ xAð ÞdJ xBð Þ

����
J¼0
¼ i2

ð
Dff xAð Þf xBð Þe

i
�h

Ð
d4xðLðfÞÞ

¼ � 0h jTf xAð Þf xBð Þ 0j i

(30)

This second derivative of the functional is then equal to
iDF(xA � xB).

We have seen that Z0[ J ] is the generating functional of the
Greens function (which include all connected and discon-
nected Feynman diagrams) of the theory. What about the
functional W [ J ]? From eqn (15)

W [ J ] = �i ln Z0[ J ] (31)

Applying to this equation a second-order functional deriva-
tive:

d2W ½J�
dJ xAð ÞdJ xBð Þ

¼ i

Z0
2

dZ0

dJ xAð Þ
dZ0

dJ xBð Þ
� i

Z0

d2Z0

dJ xAð ÞdJ xBð Þ
(32)

For J = 0 we obtain

dZ0

dJðxÞ

����
J¼0
¼ 0; Z0½0� ¼ 1 (33)

and so

d2W ½J�
dJ xAð ÞdJ xBð Þ

¼ �i d2Z0

dJ xAð ÞdJ xBð Þ

����
J¼0
¼ �DF xA � xBð Þ (34)

This shows that the functional W generates the propagator
that has no disconnected part. Then it is W that one want to
calculate. Such functional is related with the polarization
propagator as will be seen in Section 3.5.

2.5 From non interacting (free) to the interacting propagators

In previous sections we worked out the free particle propagators
and its generating functionals. Meaning propagators that arise
from generating functionals where the potential energy is quad-
ratic. In such cases the equations of motion for the field operators
are linear. The effect of the external perturbation is propagated by
f, which couple the external sources. The particles associated with
the field operator f do not interact each other. When the unper-
turbed Lagrangian contain anharmonic terms the equation of
motion for the field operators will become nonlinear, meaning
that the particles arising from the field operator f and propagates
the perturbation, do interact each other. In quantum chemistry it
would imply that electron correlation must be included.

Let us write again the generating functional of eqn (13) though
now with a potential u(f) that may contain an anharmonic term

Z½J� ¼
ð
Dfe

i
�h

Ð
d4x 1=2 @mf@mfð ÞþuðfÞþJf½ � (35)

If u(f) = �m2f2 + l/4! f4 the generating functional becomes
Z[ J ] - Z[ J , l] (see p. 48 of ref. 67), where

Z½J; l� ¼
X1
s¼0

1

s!
J x1ð Þ . . . J xsð Þ

�
ð
Dff x1ð Þ . . .fðxsÞe

i
�h

Ð
d4x 1=2 @mf@mf�m2f2ð Þ�l

4!f
4

	 


¼ Z½0; 0�
X1
s¼0

1

s!
J x1ð Þ . . . J xsð ÞGðsÞ x1 . . . xsð Þ

(36)

In this way the 2-point Green function can be written as

G xA; xBð Þ ¼ 1

Z½0; 0�

ð
Dff xAð Þf xBð Þ

� e

i

�h

Ð
d4x 1=2 @mf@mf�m2f2ð Þ½ ��l

4!f
4

� � (37)

Now we give a final remark on the path integral formalism
and its relationship with Green functions. For l = 0, the 2-point
Green function reduces to iDF(xA � xB), the free (or indepen-
dent) particle propagator. The propagator DF(xA � xB) describes
the propagation of elementary particles between xA and xB in
the absence of any interaction between them. On the other
hand, the 2-point Green function G(xA, xB) describes the
propagation of elementary particles between xA and xB in the
presence of interactions between them.
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3 Polarization propagators

What can we do if we want to deal with the propagation of the
effect of an electric or magnetic perturbation within the whole
electronic framework of an atomic or molecular system? Is it
possible to do it applying the path integral formalism? How?

To answer such questions we should go one step ahead of what
we have learned right now working with fundamental propaga-
tors, and introduce the same principles and rules but in bounded
and correlated systems. We shall deal with the transmission of
basic virtual excitations through the whole atom or molecule.
They would have a similar flavor as the fundamental virtual
particles whose transmission was treated in previous sections.

Previous works published by Jens Oddershede and coauthors,68,69

and ourselves1,3,7 are merged here in a concise way. We will give
a brief introduction to the basic aspects of the formalism of
polarization propagators. One can always start up with the
usual definition of the polarization propagators, as the
ground-state average value of the time-ordered product of two
operators written in its second-quantized form; this is quite
well adapted to what we pursue. Given that we want to consider
the propagation of perturbative bosonic excitations within
a molecular system based on basic excitation operators, we
should define then a basis of operators on which all operators
should be applied.

Once the equation of motion for the polarization propaga-
tors is written one can use the superoperator formalism
to obtain its solutions in a compact way. Some strategies
developed long time ago are still useful to write down the
actual matrix expressions used in computational codes.
As was previously shown1,7 the definition of polarization pro-
pagators is not restricted to a given regime, be it relativistic or
non relativistic. We will show in this section that polarization
propagators can be safely derived from the path integral
formalism and this is the deepest underlying theoretical reason
for the application of the same definition in both regimes.

Then we go one step further to relate what we have obtained
analytically in previous sections with what can be obtained in a
basis of excitation operators. These results are among the most
important of this article and shall be given in Section 3.5. They
show how the Feynman formalism can be applied to any
response theory on many-body systems.

3.1 Second-quantization and superoperator formalisms

The second-quantization formalism is especially useful when
one wants to handle atomic and molecular problems mostly in
an algebraic way. Operators and wavefunctions can both be
treated as operators, and so the equations of motion are
expressed in an entirely algebraic way. There are algebraic rules
which all basic creation and annihilation operators should
fulfil. These operators are defined in such a way that

a†
aai|0i = |Ca

i i (38)

being Ca
i a monoexcited N-electron state. The indices a,b,. . .,

refer to unoccupied Hartree–Fock, HF or Dirac–Hartree–Fock,
DHF orbitals and i, j,. . ., stand for occupied HF or DHF orbitals.

We define a complete operator manifold h from which one
can generate all excited states of a given N-electron molecular
system: h|0i=|ni. If |0i is the reference state which usually is a
self consistent field, SCF, the number conserving operator
manifold may be written as,

h = {h2, h4,...} (39)

where

h2 ¼ ayaai; a
y
i aa

n o
;

h4 ¼ ayaa
y
baiaj ; a

y
j a
y
i abaa

n o
; etc:

(40)

Any one-electron operator P can be written as

P ¼
X
p;q

Ppqa
y
paq; (41)

or, by using spin-adapted excitation operators,68

P ¼
X
p;q

PpqEpq (42)

Assuming a Hilbert space of dimension n spanned by n
independent vectors, there are n2 independent operators. The
basis operators span an operator’s space of dimension n2 called
Liouville space. There is a close analogy between the Hilbert
space spanned by the state functions and the Liouville space
spanned by the corresponding linear operators. The Liouville
space also forms an operator’s algebra where the product of two
operators is well defined.

One can then introduce superoperators which define opera-
tor relations in the above mentioned Liouville space. An special
relation among superoperator operators valid for any operator
A is the commutator:

ĤA � [H, A] (43)

The basic linear operators which span the Liouville space
form an operator algebra. In line with this the superoperators
in turn form an algebra, since they span a vector space
of dimension n2 � n2 where products like the previous com-
mutators are defined.

Any pair of operators P, Q, etc. are elements in a super-
operator space with a well-defined binary product

(P|Q) = h0|[P†, Q]|0i (44)

Within the superoperator formalism the inverse of an
operator can be written in terms of matrices. So, the inner
projection of the superoperator resolvent (EÎ � Ĥ0)�1 is

(EÎ � Ĥ0)�1 = |h̃)(h|EÎ � Ĥ0|h̃)�1(h) (45)

assuming that h span a complete operator space.
This way of writing the operators is especially suited to work

out the actual equations and oriented to obtain explicit
formulas to be implemented in computational codes.
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3.2 Definition of polarization propagators

Given two operators P(xA) and Q(xB) that may be field operators
and describe excitations on the electronic ground-state of a
molecular system, the polarization propagator is defined as

i P xAð Þ;Q xBð Þh ih i ¼ �h 0h jT P xAð ÞQ xBð Þð Þ 0j i

¼ �hy tA � tBð Þ 0h jP rAð ÞQ rBð Þ 0j i

þ �hy tB � tAð Þ 0h jQ rBð ÞP rAð Þ 0j i

(46)

where xA and xB stand for the space-time points xA = (rA, tA) and
xB = (rB, tB), respectively. This definition of polarization propa-
gators is independent on whether the underlying theoretical
framework is relativistic or NR,1 even though its formulation
was given for the first time within a NR regime.70–72 This is a
remarkable fact that gives support to what was observed in
previous articles treating propagators within the relativistic
regime.3,7,73 The reference state |0i will properly be chosen
according to the regime considered.

Since the polarization propagator has the same basic quan-
tum nature as a wave function one may ask for its equation of
motion i.e. how the polarization evolves with time. One can
write explicit expressions for that equation of motion which can
be solved by formal procedures.68 Afterwards one transform
time-dependent expressions to their corresponding energy-
dependent framework in order to make use of this tool in
spectroscopic problems.

Operators P and Q are expressed in the interaction picture and
obeys a Heisenberg-like equation of motion. So the equation of
motion for polarization propagators in the energy framework is

hhP;QiiE = (P|h̃)(h|EÎ � Ĥ0|h̃)�1(h|Q) (47)

This is the final expression of the equation of motion that needs
to be solved, though it cannot be done within an full excitation
operator manifold. It is equivalent to the Dyson equation though
written in a matricial representative form.

Then, using he manifold decomposition of eqn (39), this last
eqn (47) can be written in a matrix form as

P;Qh ih iE ¼ Pya;P
y
b; . . .

� � Maa Mab . . .

Mba Mbb . . .

. . . . . . . . .

0
BB@

1
CCA
�1

Qa

Qb

. . .

0
BB@

1
CCA; (48)

where

Pa = (P|ha), (49)

and

Mab = (ha|EÎ � Ĥ0|h̃b). (50)

We can write eqn (48) in a more compact way

hhP;QiiE = bPM�1bQ (51)

The factor M�1 of the rhs of eqn (48) is known as the
principal propagator, while bP and bQ are the property matrix
elements or, as they were named within the semi-empirical
models, the perturbators.74 The principal propagator depends

only on both the electronic molecular system as a whole
and the spin (time-reversal within the relativistic regime)
dependence of the perturbators, but it is independent of the
particular response property under study. It gives the whole
excitation pathway for the transmission of the interaction
between the external perturbations related with the property
matrix elements, through the unperturbed electronic system.
They are like the streamlines through which the perturbation is
transmitted. Furthermore the external perturbations intervene
explicitly only on the perturbators though indirectly on principal
propagator through its spin (or time reversal)-dependence.

3.3 Perturbative expansion

One cannot solve the equation of motion for polarization
propagators in an exact manner. It was shown by Oddershede
and coauthors68 that eqn (51) can perturbatively be expanded as a
function of the fluctuation potential V. The order in perturbation
theory is shown explicitly through the superoperator EÎ � Ĥ0

where Ĥ0 = F̂ + V̂, and implicitly through the references states used
to evaluate the superoperator binary product.

The superoperator F̂ stands for the Fock or Dirac–Fock super
operator, and V̂ is the fluctuation 2-particle super operator that do
contain Coulomb and may also contain Breit or other interactions
including QED corrections. As usual the Hamiltonian H0 describe
only the internal interactions of the electronic system.

The order of the reference state in perturbation theory
comes from the expansion of such state using the Rayleigh–
Schrödinger perturbation theory. The zeroth-order state is the
SCF solution

|0i = O(|SCFi + |01i + |02i +� � �) (52)

O being a normalization constant and |0ii the ith order correc-
tion to the SCF state. The first order correction to the |SCFi
state may be written as

01
�� �
¼ 1

4

X
ab;ij

kabij ð1Þayaa
y
baiaj SCFj i (53)

where

kab
ij (1) = (biJaj)(ei + ej � eb � ea)�1 (54)

are the first order Rayleigh–Schrödinger correlation coefficients
and (biJaj) = (bi|aj) � (bjJai)

Perturbators are then written as

(P|ĥi) = O2hSCF + 01 + � � � |[P†,ĥi]|� � � + 01 + SCFi (55)

The lowest order for this perturbator is zero

(P|ĥ2) = O2hSCF|[P†,ĥ2]|SCFi (56)

and so, the polarization propagator at zeroth-order will
be composed of both, perturbators and principal propagators
at zeroth-order. To first order one shall have perturbators
at zeroth-order and the principal propagator at first order;
and so on.

The lowest non-vanishing contribution for h4 to first-order
terms are
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(P|ĥ4) = O2(hSCF|[P†,ĥ4]|01i + h01|[P†,ĥ4]|SCFi) (57)

The consistent polarization propagator till first order is
known as the random phase approximation, RPA, and is
composed of perturbators at zeroth-order and the matrices of
the principal propagator till order one. Such RPA approxi-
mation is obtained when |SCFi = |HFi or |DHFi (the Hartree–
Fock or Dirac–Hartree–Fock state) and h = h2. This is such that
only the following two supermatrices, A and B should be
considered,

Aai;bjð0; 1Þ ¼ Aai;bjð0Þ þ Aai;bjð1Þ

¼ � 0 a
y
i aa; a

y
baj ;H0

h ih i��� ���0D E
¼ dabdij ea � eið Þ þ aijjjbð Þ

(58)

and

Bai,bj(1) = �h0|[a†
i aa,[a†

j ab,H0]]|0i = (ibJja) (59)

3.4 The polarization propagators and the NMR spectroscopic
parameters

Any static (dynamical) second-order molecular property, i.e.,
those arising from a second-order correction to the energy and
depending on two external static (time dependent) fields, can
be calculated by using polarization propagators.

This is apparent from the following equation

EPQ
2 = 1/2 RehhHP;HQiiE=0 (60)

where HP and HQ are the interaction Hamiltonians related with
external perturbations whose molecular response properties
are of interest.

In the case of NMR spectroscopic parameters the starting
point is a phenomenological perturbing Hamiltonian that
describe accurately the experimental NMR spectra.75 The com-
plete Hamiltonian is then

H = H0 + H1,NMR (61)

being

H1;NMR ¼
X
KL

lK � ðDKL þ JKLÞ � lLf g

þ
X
K

lK � 1� rKð Þ � Bf g
(62)

where lK is the nuclear dipole moment of nucleus K, DKL and JKL

are the direct and indirect nuclear spin coupling tensors, rK the
nuclear magnetic shielding of nucleus K and B the static external
magnetic field. From these last equations it is clear that to derive
theoretical expressions for NMR spectroscopic parameters one
should propose bilinear perturbative Hamiltonians depending
on two different nuclear dipole moments (for J), and on a nuclear
dipole moment and the external magnetic field (for r). Since the
nuclear magnetic moments lK are proportional to the nuclear
spins IK, the magnetic interaction energy between the coupled
nuclei depend on IK and IL, and is expressed as

E(2)
KL = hIK�JKL�IL (63)

and the interaction energy between nuclear spin IM and the
external static magnetic field B is

E(2)
K = �h IK�rK�B (64)

Using perturbation theory, the non-relativistic
paramagnetic-like terms of J and r arise from second-order
corrections to the electronic energy.

E
ð2Þ
PQ ¼

X
na0

0jHPjn
� �

njHQj0
� �

E0 � En

� �
(65)

The perturbation Hamiltonians HP and HQ can be any of the
Hamiltonians proportional to the nuclear spin IM or the exter-
nal static magnetic field B; their explicit forms were given
elsewhere7 for J-couplings and r. It is worth to mention that
in order to have a non-vanishing result, both Hamiltonians
must have the same time-reversal symmetry.76

As shown in eqn (60) and (65) paramagnetic contributions to
both NMR spectroscopic parameters can be obtained within non
relativistic polarization propagator theory. The diamagnetic contri-
bution is calculated as a ground-state expectation value. It should be
noted that mixing perturbations with different electron spin depen-
dence gives vanishing results.76 When considering electron spin
dependent Hamiltonians, the excitation energies of eqn (65) shall be
restricted to that of singlet or triplet type. In the same manner will
the principal propagator of eqn (50) be restricted. Then, in the case
of J-couplings there will be two kind of terms: (i) electron spin-
dependent terms which are related with triplet principal propaga-
tors: 3M�1 and (ii) electron spin-independent terms which are
calculated with singlet principal propagators: 1M�1.

Then, there are five contributions to the indirect nuclear
spin coupling tensor which depend on the electron–nucleus
interaction mechanism involved.

J = JFC + JSD + JPSO + JFC/SD + JDSO (66)

being FC the Fermi contact, SD the spin dipolar, PSO the
paramagnetic spin–orbital and DSO the diamagnetic spin–orbital.
When calculated by the non relativistic polarization propagator
theory each one of the first three terms are written as

JX
KL = gKgL hhVX

K;VX
LiiE=0 (67)

where X = FC, SD or PSO. In eqn (66) JFC/SD only contributes for
systems in solid state phase, so it will not be considered here,
while JDSO is isotropic. All terms of eqn (67) can be calculated at
different levels of approach depending on the fluctuation
potential, i.e. pure zeroth-order (PZOA), consistent first-order
or random-phase approximation (RPA), second-order level of
approach (SOPPA), and so on.68

As just mentioned above there is a relationship among the
perturbative Hamiltonians of eqn (65) with electronic mechanisms
that underlies both spectroscopic parameters, J-couplings and shield-
ings. We first consider the non-relativistic Fermi contact mechanism
for J-couplings since it is the simplest. Then we shall consider its
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relativistic counterpart which is due to a unique mechanism.

HFC ¼
X
K

gKIK � VFC
K (68)

being

VFC
K ¼

8

3
pmB�hge

X
i

d riKð Þsi (69)

the corresponding Fermi contact perturbator, and mB the
nuclear magneton, gK the magnetogyric ratio of nucleus K
and ge the electronic g-factor.

On the other hand there is only one relativistic perturbative
Hamiltonian used for the calculation of J-couplings (see Section 4.3)

H1 ¼
X

gKIK � VRel
K (70)

being

VRel
K ¼ �

e

c
�h

a� rK

rK3


 �
(71)

The vector a represents the Dirac operator.

3.5 Polarization propagators from the path integral
formalism

Is it possible to apply the whole machinery developed in
Section 2 to get the generating functional of the two-time
Green’s function or polarization propagator?

Let’s go back now to discrete variables. We can do it considering
f(x) as the coordinate representative of a vector in a Hilbert space,
and A(x, y) the coordinate representative of an operator on the same
space. If the basis vectors |xi satisfy the closure relationÐ

d4|xihx| = 1 (72)

we shall get the following inner products as

ðJ;fÞ � Jjfh i ¼
ð
d4xJðxÞfðxÞ

ðf;AcÞ � fjAjch i ¼
ð
d4xd4yfðxÞAðx; yÞcðyÞ

(73)

being f(x) = hx|fi and A(x,y) = hx|A|yi.
Applying them we are able to obtain the solution of the

following Gaussian functional integral,

Z½J� ¼
ð
Dfe�

1
2
ðf;AfÞþðJ;fÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
detA
p e

1
2

J;A�1Jð Þ
(74)

Then it is sound to define the following generating func-
tional for the polarization propagator used to calculate the
J-coupling corresponding to the FC NR mechanism,

Z VFC
K
;VFC

L½ � ¼
ð
ðDj~hÞej~hÞ hjEÎ�Ĥ0j~hð Þðhjþ VFC

K
j~hð Þðhjþ VFC

L
j~hð Þðhj

¼ Z VFC
K
¼0;VFC

L
¼0½ �e

iW VFC
K
;VFC

L½ �
(75)

where

W VFC
K
;VFC

L½ � ¼ VFC
K j~h

� �
hjEÎ � Ĥ

Sch

0 j~h
�1� ��1

hjVFC
L

� �
(76)

The Hamiltonian ĤSch
0 is the NR Schrödinger Hamiltonian

for the unperturbed atomic or molecular system.
The last equation resemble eqn (24) with (VFC

K |h̃) replacing
the source J2 and (h|VFC

L ) the source J1. It is then uncovered that
eqn (76) is the MO representative of the Green’s function that
corresponds to the quantum correlation between two perturba-
tive interactions acting on a molecular system. They can be
related with J-couplings. Its physical meaning is the following:
there are a finite number of (virtual) excitations that are created
in a spatial region close to nucleus K; they are transmitted to
the whole electronic molecular framework and then absorbed in
a spatial region close to the nucleus L. The polarization propa-
gator describes how such a density disturbance propagates in an
interacting system. The principal propagator is the Green repre-
sentative of the propagation of such basic virtual excitations.

The formal definition of the generating functional of
eqn (75) does not depend on the space-time framework within
which the evolution of the system is described. It is formally the
same within both, the relativistic and NR domain. It gives
then new avenues for introducing QED effects. Indeed the
generating functional WJ is valid in any regime where an
unperturbed Hamiltonian is well defined.

Within the relativistic regime one can define an appropiate
generating functional for J-couplings

Z VRel
K

;VRel
L½ � ¼

ð
Dj~hÞ

� ej
~hÞ hjEÎ�ĤD

0 j~h
� �

ðhjþ VRel
K
j~hð Þðhjþ VRel

L
j~hð Þðhj

¼ Z VRel
K
¼0;VRel

L
¼0½ �e

iW VRel
K

;VRel
L½ �

(77)

where

W VRel
K

;VRel
L½ � ¼ VRel

K j~h
� �

hjEÎ � Ĥ
D

0 j~h
� ��1

hjVRel
L

� �
(78)

The operator manifold h is well defined within the relativistic
framework as will be shown in the next section. ĤD

0 stands for
the unperturbed atomic or molecular relativistic Hamiltonian.

From the last development a natural understanding of
what were called, within the non-relativistic framework, the
perturbative propagation pathways do appears. In the case of
indirect J-couplings they were named coupling pathways.74

When this concept is extended to the relativistic regime it is
also found that its physical meaning continues being the same.
In fact it gives strong support on what was shown previously:
relativistic propagators go smoothly to its NR counterpart when
c - N. The perturbative propagation pathways can be written
within the NR or the relativistic framework, in such a way that
they can be transformed one into the other applying the usual
‘‘classical’’ transformation.

It is worth to emphasize that eqn (51) represents the
solution of the equation of motion in the energy domain.
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Then if one starts from the relativistic representative of the
double-time Green’s function of eqn (78) one can obtain its NR
counterpart only making c - N. This means that what one is
doing is to apply the transformation to each of the three different
factors of eqn (51) and so each factor goes to its NR counterpart.1

In addition we want to highlight here the fact that the
integral in eqn (7) can be solved by the method of the stationary
phase, identifying the classical path qcl from the stationary
condition of the principle of least action

d
dqðtÞ S½qðtÞ�ð Þ

����
qcl

¼ 0 (79)

were S is the action.
From eqn (7) and what was shown in this subsection one can

say that starting with different functionals W that are related
with every excitation one can obtain the equations of motion. In
other words, applying the principle of least action one do get
the equation of motion for each excitation.

In our case this would be the same as the functional
derivative of the generating functional W[V], which give the
quantum equations of motion for the Green’s functions known
as the Schwinger–Dyson equations.

4 Polarization propagators within an
appropiate relativistic framework

The analysis of molecular properties of heavy-atom containing
molecules requires new mathematical tools. Space and time are
unified as space-time and the Schrödinger equation is not valid
any longer and should be replaced by the Dirac equation which
in turn should be written in a covariant form. There is one
special feature that one needs to treat carefully: there are
solutions of this last equation with negative-energy states. So,
if possible there would be excitations to both branches of the
energy spectra. The possibility to consider excitations to the
negative energy states have been a source of confusion and
difficulties. Perhaps the main inconvenience comes from con-
ceptual difficulties. Today they can be properly handled.7,12,56

Looking for the solutions of the Dirac equation for one-
particle systems one finds that they refer to a many-body
equation. The free-particle Dirac equation is written in a non-
covariant form as7

Hfreec(x) = (ca�p + bmc2)c(x) = Ec(x) (80)

where b and a = (ax,ay,az) are the 4� 4 Dirac matrices, which are
written in the standard representation in terms of the 2 � 2
Pauli matrices r = (sx,sy,sz) as

a ¼
0 r

r 0

 !
; b ¼

1 0

0 �1

 !
(81)

Multiplying by b/c one obtains the covariant (i.e. Lorentz
invariant) form of such equation

(gmpm � mc)c(x) = 0 (82)

where g0 � b, gi � bai, gm = (g0, g) and pm
E

c
;�p


 �
, so that gmpm =

g0p0 � c�p.
Covariance means that such equation will have the same

form when written in any inertial frame of reference. Being an
scalar, the left hand side of eqn (82) is invariant under a Lorentz
transformation. Then it is easier to get its energy spectra. So for
one Dirac particle at rest (p = 0) eqn (82) is written as

g0p0c = mcc or p0c = mcg0c (83)

Given that the operator g0 has doubly degenerate eigenva-
lues �1, one obtains two positive-energy solutions and two
negative-energy solutions. When p a 0 there are doubly degen-
erate eigenvalues of E = �(m2c4 + p2c2)1/2.

Dirac was the first to propose that one should consider the
negative-energy branch as being full of electrons. This awkward
proposal was the breakthrough to start thinking more deeply
on what the vacuum is and mainly on how to handle such a
many-body system. In the early days of quantum mechanics
non-stable solutions could be found without considering the
negative-energy branch as fully occupied. In fact this feature
pointed out to the existence of another particle that obeys the
same equation but with opposite electric charge, the positron.

4.1 Empty-Dirac and QED pictures

As shown in Section 3.2 the actual implementation of the
formalism of propagators hangs on the completeness of the
operator manifold h. Then within the relativistic domain one
should properly consider the whole one-particle energy-spectra.
Two formally equivalent pictures are used at the moment: the
empty-Dirac and the QED. In the first case one considers that the
branch of negative-energies is empty so that electronic excitations
to it are allowed. The negative-energy states are not reinterpreted
as positronic states. On the other hand, in the QED picture one
only works with positive-energy unoccupied states, electronic and
positronic, and occupied electronic states.

The second quantized form of any relativistic operator Ô
within the ‘‘empty Dirac’’ approach is written as,77

Ô ¼
X
pq

Opqâ
y
pâq þOp~qâ

y
pâ~q þO~pqâ

y
~pâq þO~p~qâ

y
~pâ~q (84)

where the tilde on Roman indices means orbitals which belongs to
the negative-energy branch. There are two branches of unoccupied
electronic spinors, the usual and positive, and the negative.

In the particle-hole picture

b̂
y
p ¼ âyp; b̂p ¼ âp when ep 4 0

b̂
y
~p ¼ â~p; b̂~p ¼ â

y
~p when ep o 0

(85)

the operator Ô (also named as Fock space operator12,56) is
written in our own nomenclature as

Ô ¼
X
pq

Oee
pqb̂
y
pb̂q þO

ep
p~qb̂
y
pb̂
y
~q þO

pe
~pqb̂~pb̂q þO

pp
~p~qb̂~pb̂

y
~q (86)

On the other hand, in the QED picture the negative energy
states are reinterpreted according to the QED approach as
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positive energy positrons. The operators are written in normal-
ordered form as

: Ô :¼
X
pq

Oee
pqb̂
y
pb̂q þO

ep
p~qb̂
y
pb̂
y
~q þO

pe
~pqb̂~pb̂q �O

pp
~p~qb̂
y
~qb̂~p ¼ Ô

QED

(87)

The unoccupied spinors may be electronic or positronic. For
the last spinors we use creation (annihilation) operators b̃† (b̂).

When calculating the property matrix elements of eqn (49)
with operators expanded in any of both pictures one gets the
same c-numbers. This will be shown in the Section 4.3, as we
shall also give the actual supermatrix expressions of matrices A
and B defined previously in Section 3.3. In this way the
principal propagator can be divided in four blocks depending
on which are the excitation operators considered.

4.2 Kramer’s excitation operators

Within the relativistic domain spin is not any longer a good
quantum number. The spin symmetry can be recovered by what
was baptized as Kramer’s operators.76,77 These operators fulfil
different commutation relationship as compared with previous
excitation operators like the spin-adapted excitation operators
of eqn (42), though they form the most useful basis for
expanding operators in the relativistic domain.

The Kramer’s time-reversal adapted operators form a basis
for superoperators algebra. They are of two types: X̂�. The one
body operators that are time-reversal symmetric and Hermitian
(like the Hamiltonian) are represented by X̂+. Time-reversal
anti-symmetric and Hermitian operators as the perturbative
operators entering in the calculation of magnetic properties
with propagators are represented by X̂�.

Any one-electron operator can be written in terms of time-
reversal restricted basic excitation operators, the X̂ operators,
known as Kramer’s single replacement operators.76–78 There are
two types of X operators, depending on both the symmetry under
time-reversal and the hermitian conjugation of the operators, say
X̂, being represented as an expansion on the X̂ operator basis.

X̂
s

pq ¼ âypâq þ sâ
y
�qâ�p;

X̂
s

�pq ¼ â
y
�pâq � sâ

y
�qâp;

X̂
s

p�q ¼ âypâ�q � sâyqâ�p;

(88)

where s = � depending on whether the operator Ô is time-
reversal symmetric (TRS) and Hermitian (+) or not (�). In such
X̂-basis any one-particle Hermitian and TRS operator, like the
ground-state Hamiltonian, is written as

Ô ¼
X
pq

OpqX̂
þ
pq þ

1

2
O�pqX̂

þ
�pq þOp�qX̂

þ
p�q

� �� �
(89)

If the operator Ô is time-reversal anti-symmetric or anti-
Hermitian, it should be expanded in terms of X�. This is the
case for the binary products involving perturbators (see eqn (49))
because they are time-reversal anti-symmetric.

Principal propagators can be written with explicit spin-symmetry
in them. They are usually of singlet- or triplet-type. Do exist in the
relativistic framework similar tensor operators? The answer is
affirmative.76 They are the pseudo-singlet excitation operator,

R̂
�
aið0; 0Þ ¼

1ffiffiffi
2
p X̂

	
ai 	 X̂

	
ia

h i
(90)

and the pseudo-triplet tensor operator

R̂
�
aið1; 0Þ ¼

1ffiffiffi
2
p X̂

�
ai 	 X̂

�
ia

h i

R̂
�
aið1; 1Þ ¼ �X̂

�
a�i

R̂
�
aið1;�1Þ ¼ X̂

�
�ai

(91)

In the next section we will emphasize one interesting
behavior of the principal propagator that appears when written
in this last basis of pseudo-singlet and pseudo-triplet tensors.

4.3 Relativistic formalism

The interaction of an N-electron system with an external
magnetic field is accounted for by the minimal coupling pre-
scription. Its explicit expression is p - p + eA, leading to the
introduction of the perturbative Hamiltonian

H1 = eca�A (92)

where A = AN + AB is the sum of the nuclear and the external
vector potentials

AN ¼ 1

c2

X
K

mK � rK

rK3
(93)

and

AB ¼ 1

2
B� rG ¼

1

2
B� r� RGð Þ (94)

RG is the gauge origin, rK = r � RK, and r and RK are the
coordinates of the positions of the electron and the nucleus K,
respectively. Then eqn (92) can be written as

H1 ¼ eca � 1

c2

X mK � rK

rK3
þ 1

2
B� rG

� �

¼ � e

c
�h
X

gKIK �
a� rK

rK3


 �
� ec

2
B � a� rGð Þ

(95)

From eqn (60), (92) and (95), the second-order perturbative
correcting terms to the energy are written as

Eð2Þ ¼ 1

2
Re H1;H1h ih i

¼ 1

2

e�h

c

2X
KL

gKgLIK �Re
a� rK

rK3
;
a� rL

rL3

� �� �
� IL

þ e2�h

2

X
K

gKIK �Re
a� rK

rK3
; a� rG

� �� �
� Bþ � � �

(96)
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From the last equation, the full relativistic expressions of the
NMR spectroscopic parameters are obtained as

JKL ¼
e2�h2

h
gKgL

a� rK

rK3
;
a� rL

rL3

� �� �
(97)

and

sK ¼ e2
a� rK

rK3
; a� rG

� �� �
(98)

From these equations one observes that there is only one
electronic mechanism involved in describing each of both NMR
spectroscopic parameters. There is no formal distinction
between dia and paramagnetic terms,3 even though one can
recover what is well-known within the NR regime by making
c - N.

In what follows it is better to change the nomenclature of
creation and annihilation operators

âyaâi ! ây î; â
y
i âa ! î

y
â; . . . (99)

So, the restricted excitation operator manifold h2 of eqn (40)
shall be written as

h2 ¼ ây î; î
y
â; ~̂a

y
î; î
y
~̂a

n o
(100)

where now two more basic excitation operators do appears as

compared with eqn (40): ~̂a
y
î which represent a pair annihilation

and î
y
~̂a which stand for pair creation.

The actual expressions of the perturbators are obtained as
follows

0h j P̂; ây î
	 


0j i ¼
X
pq

Pee
pq dqa 0h jp̂y î 0j i � dpi 0h jâyq̂ 0j i
� �

�
X
p~q;~pq

P
ep
p~qdpi 0h jâ

y ~̂q 0j i þ P
pe
~pqdqa 0h j~̂py î

n o
0j i

¼ Pee
ia (101)

The contributions of the last three terms are zero, so only
the first term survives. Similar expressions are found for the

excitations î
y
â, ~̂aî and î

y
~̂a and the property matrix elements will

be – P ee
ai, P ep

iã and – P pe
ãi , respectively.

Within the QED picture one obtain the same results. It
means that one can work safely with any of both equivalent
pictures for getting actual expressions of the polarization
propagators. Then the perturbators at RPA level of approach
can be blocked as,

~P ¼ P̂
yjĥ2

� �
¼ 0h j P̂y; ĥ2

h i
0j i

¼ � ~Pee
ai

~Pee�
ai � ~Ppe

~ai
~Ppe�

~ai

� �
¼ ~P

ee ~P
pe

� � (102)

In line with what was worked out above some new matrix
elements of supermatrices A and B must be considered due

to the new branch of negative-energy states. At RPA level of
approach they are

A
pe;pe

~̂aî; ~̂bĵ
ð0; 1Þ ¼ � h0j î y ~̂a; ~̂b

y
ĵ;H0

� �� �
j0i

¼ � d~a~bdij e~a � eið Þ þ ~aijjj ~b
� � (103)

A
ee;pe

~ai;~bj
ð0Þ ¼ 0

A
ee;pe

ai;~bj
ð1Þ ¼ aijj ~b

� �
� a~bjji
� �

B
ee;pe

ai;~bj
ð1Þ ¼ i~bjja

� �
� iajj ~b
� �

(104)

One can get new insights on what they mean from the
easiest diagrams of the (ee, ee) part. Such diagrams are
obtained for a = b and i = j. They are related with the usual
NR excitations to positive-energy electronic states. In a similar
manner their equivalent diagrams for the (pe, pe) part are

obtained when ã = b̃ and i = j. They refer to the creation (by î
y
~̂a)

and annihilation (by ~̂a
y
î) of virtual electron–positron pairs in two

different space-time points. This ‘‘exchange’’ process has been
treated by Mohr and coauthors for the inclusion of nuclear
polarization effects on the energy spectrum of electronic
systems in an equivalent way (see Section 6.1 of ref. 79)

The contribution of the matrix elements of the super-
matrices A and B belonging to the off-diagonal parts are quite
small. There are no diagonal elements for them due to dab̃ = 0.
Still they are nonzero.

The equation of motion of relativistic polarization propaga-
tors are more conveniently written in the Kramer’s basis as

P̂; Q̂
� �� �

E
¼ P̂

yjX̂þ
� �

~̂
X
þ
jEÎ � Ĥ0jX̂

þ

 ��1

~̂
X
þ
jQ̂


 �
(105)

Perturbators do contain two types of elements that can so be
arranged in two different sub-blocks. We mean vector elements
which contain unoccupied positive-energy states and vector
elements which contain unocuppied negative-energy states.
The vector elements with excitations to positive-energy MOs are

~P
ee ¼ P̂

yjX̂þia
� �

¼
X
pq

Ppq 0h j X̂�pq; X̂
þ
ia

h i
0j i þ . . .

¼
X
pq

Ppq dqi 0h jX̂
þ
pa 0j i � dap 0h jX̂þiq 0j i

n o
¼ �2Pee

ai

(106)

Each vector element P pe
ãi is formally the same though the

orbital a is replaced by ã.
At RPA level of approach the new elements of the super-

matrix A are written in the X-basis as

A
ee;ee
ai;bj ¼ � 0h j X̂ai X̂ jb; Ĥ0

	 
	 

0j i

A
pe;pe

~ai;~bj
¼ � 0h j X̂ ~ai X̂ ~bj; Ĥ0

h ih i
0j i

(107)

The matrix elements of B are constructed in a similar
manner.
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When considering excitations from an occupied MO to both
the positive- and negative-energy MOs one shall get an equiva-
lent expression to that of eqn (48),

hhP̂; Q̂iiRE ¼ Pee;Ppeð Þ Mee;ee Mee;pe

Mpe;ee Mpe;pe


 ��1
Qee

Qpe


 �
(108)

The matrix elements belonging to the supermatrices of
subblocks Mee,pe and Mpe,ee are much smaller than the other
elements belonging to the subblocks (ee, ee) and (ep, ep).

4.4 A proper non relativistic limit

As was shown in the first paper on relativistic polarization
propagators1 both, the relativistic perturbators and the principal
propagators go to their NR limit when c -N. In such a case one
starts with only one electronic mechanism and ends up with
four, of both singlet and triplet-type. How is this possible?

When the principal propagator is written in the tensorial
basis defined in eqn (90) and (91) one has to deal with two types
of binary products, pseudo-singlet and pseudo-triplet. Each of
them will goes to their NR limit when c -N, meaning that, for
the singlet case and time-reversal variant perturbators the
principal propagator will have the following behavior

R̂
�
aið0; 0jEÎ � Ĥ0jR̂

�
bjð0; 0

� ����
E¼0
¼ � 2 1Aai;bj þ 1Bai;bj

� �
þ �ibjj�að Þ þ � � � � �abjj�ið Þ � � �

!c!1 �2 1Aai;bj þ 1Bai;bj

� �
(109)

For the triplet case it follows that each component has the
appropiate NR behavior. In the case of the (1, 0) component

R̂
�
aið1; 0jEÎ � Ĥ0jR̂

�
bjð1; 0

� ����
E¼0

¼ �2 3Aai;bj � 3Bai;bj

� �
þ i�bj�ja
� �

þ � � � !c!1 �2 3Aai;bj � 3Bai;bj

� �
(110)

In order to show the behavior just mentioned above we have
performed the calculation of J(Sn-I) for SnH3I within the
relativistic and NR domain, with exactly the same basis set
and geometry. In the first case it was done applying the
DIRAC80 code with the velocity of light scaled by a factor l.
The results of calculations with l = 10 nicely match with the NR
values obtained with the DALTON code.81 As shown in Table 1
the total NR value obtained from the sum of the triplet
(FC + SD) and singlet (PSO + DSO) mechanisms is close to the

relativistic value with c scaled 10 times. When J is scaled
10 times, J(SnI; SnH3I) = 948.42 Hz, and its NR calculated value
is 956.62 Hz. In the case of J(CBr) we got�48.17 and�49.32 Hz,
respectively.

Within the relativistic domain some well-established ‘‘non-
relativistic-based’’ concepts shall be redefined or even avoided.
In the same manner as the concepts of space and time are
unified in the new space-time concept making a deep change of
what they mean within the NR domain, or the spin dependence
that is avoided and its operators are replaced by operators with
a given time reversal symmetry, diamagnetic and paramagnetic
contributions are transformed in a unique and different kind of
contribution. What is its new physical meaning is still not very well
understood. Based on our theory one can realize that the NR-type of
paramagnetic contribution are related with virtual electronic excita-
tions like the (i - a, j - b) perturbative pathways. On the other
hand the NR-type of diamagnetism do arise from virtual electron–
positron pair creations and annihilations, e.g. (i - ã, j - b̃)
perturbative pathways. These diamagnetic and paramagnetic
NR-type of contributions may be transformed one into the other
type as a function of the velocity of light as shown below.

To obtain the usual NR diamagnetic and paramagnetic type
of contributions to the nuclear magnetic shieldings one should
neglect the contributions that come from the (ee, pe) and
(pe, ee) subblocks of the principal propagator. In such a case
the total contribution obtained from the subblock ee, ee will go
to the paramagnetic term in the NR limit when c - N. In the
same manner, the total contribution of the ( pe, pe) subblock
goes to the NR diamagnetic value.

As observed in Fig. 2 the NR-type of the paramagnetic
contributions strongly depend (in a way more pronounced than
the diamagnetic contribution) on the scaled speed of light. The
paramagnetic sp(I) is positive when calculated within the
relativistic regime (meaning that its contribution becomes NR
diamagnetic-like). In the case of sp(Rn) there is a difference of
around 11 000 ppm (!) among its values when the velocity of
light is scaled from l = 1 to l = 10. In the NR regime sp(Rn) D 0

Table 1 Contributions to J(SnI; SnH3I) and J(CBr; CH3Br) at relativistic
RPA and NR RPA level of approach. All values are in Hz

Relativistica Non-relativistic

l = 1 l = 10 FC + SD PSO DSO Total

J(119Sn 127I) 2144.87 948.42 796.44 160.19 �0.01 956.62
J(13C 79Br) �62.42 �48.17 �82.72 33.35 0.05 �49.32

a l is the scaling factor of the velocity of light.
Fig. 2 Relativistic and NR shieldings of Rn, I and Bi. Its dependence with
the scaled velocity of light.
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ppm as is well-known it should be. Similar behavior was shown
previously in ref. 7. The nuclear magnetic shielding depen-
dence of Bi in BiH3 with the velocity of light is similar to that of
Rn and also to iodine, though in this last case the variation is
less pronounced.

5 Bound-QED theory for atomic and
molecular properties

The natural next step for improving the level of our theory is
concerned with the introduction of QED effects. The best way to
do it is still under development. We shall give here some insights
on what to do as a first step. They are related with previous works
developed by Lindgren,57 Shabaev82 and Mohr and coauthors.79

More than ten year ago we published two formalisms which
would permit the inclusion of QED corrections on magnetic
molecular properties.53,54 They are formally sound, but have
some difficulties striving on practical or formal problems: some
integrals were not solved, and there were no clear indication on
how to introduce electron correlation effects.

5.1 Fundamentals

The equation which describes the electronic behavior of atomic
and molecular systems takes into account the electron–nucleus
and electron–electron interaction by means of electrostatic
fields. This is enough to provide, to a large extent, agreement
with experimental data. However, some quite small discrepan-
cies are measurable. They indicate that the quantum effects of
the electromagnetic fields can be treated as perturbations to
the solutions of the equation which consider classical fields as
zeroth-order. This is the basis of the bound state QED. Within
this formalism the total electromagnetic field is splitted-up into
two parts: a classical field am(x) describing the gross electronic
spectrum, and a perturbation Am(x) describing small corrections
to it (such as processes of creation-annihilation of virtual
particles).

Quantum electrodynamics of bound state systems is usually
formulated in the so-called Furry bound interaction picture.83 In
this picture, one starts from the solutions cn(x) to the Dirac
equation in the potential am(x) (such as the nuclear potential,
for instance) described by the Hamiltonian H0. We consider as
the best option the Fuzzy picture3,32 in which the no pair or
zeroth-order Hamiltonian is dynamically redefined during the
wave function optimization process, such that it adapts to the
average repulsion between the electrons, as defined in the used
wave function approximation. Then one enforce that the energy
should be stationary with respect to the mixing of positive-energy
and negative-energy electronic orbitals. E is minimized for
rotations between occupied electronic orbitals and unoccupied
positive-energy orbitals, and E is maximized for orbital rotations
between occupied orbitals with unoccupied negative-energy
orbitals. In this case the external Coulombic nuclear-electron
interaction is introduced in the SCF procedure.

H0cðxÞ ¼ i�hgm@m þ
e

c
gmam �mc

� �
cðxÞ ¼ 0 (111)

The interactions between an external classical or quantized
electromagnetic field and Dirac fields are given by

H 0ðtÞ ¼ �e
c

ð
drjmðxÞAmðxÞ: (112)

where the electron current jm(x) = �c(x)gmc(x). In the bound-
state QED the Dirac current is not normal ordered because
one should consider the equal time contraction between fermio-
nic operators. Otherwise one should not include the vacuum-
polarization corrections.79

Expansion of the Dirac field in terms of a complete set of
zeroth-order solutions cn(x) =cn(r)e�iEnt/�h of the Dirac equation
in the potential am(x), and the promotion of the coefficients of
the expansion to creation and annihilation operators, allows us

to hold the particle interpretation. Hence, the operator ân b̂
y
m

� �
annihilates (creates) electrons (positrons) in the unperturbed
bound states cn (cm) with En 4 0 (Em o 0).7

Then the electron–positron field can be written as

cðxÞ ¼
X
En 4 0

ancnðxÞ þ
X

Em 4 0

bymcmðxÞ; (113)

or

�̂cðxÞ ¼
X

âyrðtÞ�urðrÞ þ
X

�̂b
y
r�vrðrÞ

ĉðxÞ ¼
X

âsðtÞusðrÞ þ
X

~̂b
y
svsðrÞ

(114)

where �c(x) =c†g0, and the functions u and v refer to positive and
negative energy solutions of eqn (113), respectively.

For actual calculations of magnetic molecular properties,
both the empty-Dirac and the QED pictures are formally
equivalent; so in what follows we will continuously work within
the empty-Dirac picture to introduce QED corrections.

5.2 S-matrix formalism and polarization propagators

The main interest in the bound state problem is the calculation
of level shifts. In the approach by Gell-Mann and Low84 and
Sucher85 the interaction Hamiltonian HI(t) is replaced by an
adiabatically damped one

He
I ðxÞ ¼

ð
d3xe�e x0j jjmðxÞAmðxÞ: (115)

so that the energy shift of an unperturbed ground-state |0i is
given by the level shift formula

DE0 ¼ lim
e!0;l!1

iel
2

@

@l
0h jSe;l 0j ic

0h jSe;l 0j ic
þ const: (116)

where Se,l is the S-matrix defined as

Se;l ¼ 1þ
X1
k¼1

ð�ilÞk

k!

ð
d4x1 . . .

ð
d4xkT He

I x1ð Þ . . .He
I xkð Þ

� �
:

(117)

T{He
I(x1). . .He

I(xk)} is the time-ordered product (i.e., x0
1 o x0

2 o. . . o x0
k)

of the operators He
I(x1). . .He

I(xk).
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It could be instructive to analyze the second-order level shift
yet from another point of view. Since for NMR applications we
are interested in the effect of two external magnetic fields the
relevant term is

S
ð2Þ
el ¼

ð�ilÞ2

2!

ð
d4x1 d

4x2T HI xAð ÞHI xBð Þf g (118)

and so,

0h jSð2Þe 0j i ¼ � 1

2!

ð1
�1

dtA

ð1
�1

dtB 0h jT HI tAð ÞHI tBð Þð Þ 0j i

¼ i

2!

ð1
�1

dtA

ð1
�1

dtB HI tAð Þ;HI tBð Þh ih i

(119)

This is a very important relationship between the second-
order S-matrix and the polarization propagator.

Let’s consider in more detail the polarization propagator
that appears in the last line of the last equation. We assume that
both perturbative external fields, represented by H1 of eqn (95)
are treated as classical. We will give explicit expressions for only
one of both external fields.

HN
1 tAð Þ ¼ �

e

c
�h
X
K

gKIK �
ð
drA�c x1ð ÞVN

Kc xAð Þ (120)

The last integral is written in second-quantized language as

¼
X
r;s

âyr tAð Þâs tAð Þ urh jVN
K usj i þ âyr tAð Þb̂

y
s tAð Þ urh jVN

K vsj i
�

þb̂r tAð Þâs tAð Þ vrh jVN
K usj i þ b̂r tAð Þb̂

y
s tAð Þ vrh jVN

K vsj i
�

¼
X
r;s

VN;ee
K;rs â

y
r tAð Þâs tAð Þ þ V

N;ep
K;r~s â

y
r tAð Þb̂

y
s tAð Þ

�

þVN;pe
K;~rs b̂r tAð Þâs tAð Þ þ V

N;pp
K;~r~s b̂r tAð Þb̂

y
s tAð Þ

�
(121)

Then, from what was shown in Section 4.3 the principal
propagator will be constructed with the ee, ep and pe
excitation terms.

The (ee, ee) block of the principal propagator is then related
with time ordered product of basic excitation operators,

âyr tAð Þâs tAð Þ; âyp tBð Þâq tBð Þ
D ED E
¼ i 0h jT âyr tAð Þâs tAð Þâyp tBð Þâq tBð Þ

� �
(122)

Considering a one-electron system and applying the Wick’s
theorem the time ordered product is decomposed in terms
having zero, one and two contractions between the fermion
operators. In order to give non-vanishing contributions they
require two, one and none electrons, respectively, in both the
initial and final states. The last possibility is ruled out as a
purely vacuum process.

The two-electron state refers to a process in which each
electron interacts with one external field but not between them.
Finally, the situation with one-electron states corresponds to
a single electron interacting twice with the external fields.

We shall focus in this process, which is equivalent to the PZOA
level of approach. Note that in every case there is no contraction
between photon operators, and hence there are no photon
propagator since the electromagnetic field is treated as a
classical one.

There are two terms with two-fermion contractions. They
will give the basic electron propagators. When including higher
order radiative corrections to them, like the whole set of proper
self-energy corrections, one would obtain the full electron propa-
gator which introduce the mass renormalization. The full electron
propagator is finally related with the free electron propagator and
the proper self-energy term (see page 193 of ref. 65).

From the previous analysis one realize that QED effects
can be introduced in the calculation of atomic or molecular
properties when they are performed applying the polarization
propagator formalism. Its relationship with the S-matrix
formalism is a clear indication of this statement.

5.3 QED corrections within the polarization propagator
formalism

As was shown above there are a simple relationship between
polarization propagators at both regimes, relativistic and non-
relativistic. In line with that finding we shall advice that QED
effects shall be included separately in its two main factors: the
perturbators and the principal propagator. How to do it?

First we consider the electron correlation arising from
negative energy orbitals. At zeroth order of approach only the
matrix elements of the A(0) supermatrix do contribute to the
principal propagator. They are composed of diagonal elements
which only contain the inverse of the excitation energies between
one occupied atomic or molecular orbital (say i) to any of two
unoccupied orbitals (say a or ã). At RPA level there are two more
terms in the matrices of the principal propagators, A(1) and B(1).
Electron–correlation corrections are so included in these last
matrices up to first order. Further corrections appear when
working up to second-order level of approach as shown in
Sections 3.2 and 3.3. In this way the contribution of negative-
energy states to the electron correlation effects at consistent first
order of polarization propagators will be included through each
matrix element of e.g. Aãi,b̃;j(1) and Bãi,b̃j(1).

QED corrections can be introduced to the principal propa-
gator matrix elements considering that the leading QED effects
are important only for the deep-core electrons, in an atom-
based description of electronic molecular systems. On the other
hand, the QED corrections to perturbators should arise from
the matrix elements of eqn (102). They may be calculated at
different levels within perturbation theory.

From the considerations above we are able to introduce the
following ansatz for the calculation of QED effects on atomic or
molecular response properties:

(1) Work out all one-electron relativistic eigenstates and
eigenvalues of the electronic system within the Fuzzy picture.

(2) The leading QED effects (VP, SE,. . .) should be considered
separately within both the principal propagator and the perturbators
matrices. For the principal propagators we assume that only the
deep-core atomic or molecular orbital energies should be modified.
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So, the occupied orbital energies of eqn (58) and (104) shall be
replaced by eQED

i .
(3) Even at RPA level of approach QED effects will also modify the

perturbators. There will appear contributions like the single-vertex
contributions of ref. 52. In such a case two terms would appear: the
hyperfine-vertex, hfs-vertex, contribution and the Zeeman-vertex
contribution. The first vertex contribution is obtained from the term
representing the renormalized part of the 3-point vertex which
consider the electron interaction with the hfs field. The second
vertex contribution is defined analogously to the hfs one.

(4) Going up to second-order in perturbation theory of
polarization propagators some electron correlation and QED
corrections will also appear in the perturbators through the
correlation coefficients k of eqn (54) where ei and ej shall be
replaced by eQED

i and eQED
j . Perturbed-orbital contributions

must also be included.

5.4 The NMR nuclear magnetic shielding within the QED
framework

As mentioned above the NMR spectroscopic parameters are
among the most influenced by relativistic effects due to they
strongly depends on the electronic density ‘‘at the site’’ of the
nucleus. On the other hand they become observables when an
external magnetic field is applied.

The covariant theory of polarization propagators shows that
there is only one electronic mechanism involved. Within this
formalism it is not possible any longer to obtain the NR-like
paramagnetic and diamagnetic contributions by themselves.
On the other hand such a separation is recovered when the
off-diagonal matrix elements are neglected. This is straight
forwardly observed when the polarization propagators are
expressed in a non-covariant form.3,7

The principal propagator matrix does contain the informa-
tion of the electronic system as a whole. So, one can guess that
the magnetic behavior of the atomic or molecular system shall
be in it. The principal propagator can be divided into four-
blocks (see eqn (108)). The diagonal subblocks are related with
the usual paramagnetic (up and left, diagonal) contribution
and the usual diamagnetic (down and right, diagonal) contri-
bution. The last contribution does arise from two-perturbed
terms where virtual creation and annihilation of electron–
positron pairs are involved.

We should stress here that such virtual ‘‘exchange’’ process
of electron–positron creation and annihilation should be
related with the physical origin of the diamagnetic contribu-
tions. This is not a typical QED effect. There is a similar
mechanism known as nuclear polarization that contributes
to the electronic Lamb shift.79 This last mechanism gives
additional contributions to the energy shift of electron bound
states. It is expressed as a new term which describes the
interaction of the Dirac vacuum with virtual nuclear excitations:
an electron which is in the occupied negative energy continuum
can be virtually excited into the occupied, say 1S1/2-state at
different spacetime points via the interaction with virtual
nuclear excitations, while the present electron and the positron
will annihilate each other. This is a kind of ‘‘exchange’’ process.

In our case the source of the ‘‘exchange’’ is the interaction of
the vacuum with any of both magnetic fields, arising from the
vector potentials AN and AB.

There is another interesting feature that is related with what
was written above: the appearance of a branch of energies
within which all virtual excitation, from occupied electronic
states to negative-energy states are contained. As shown in
ref. 86 the interval 2mc2 r ei �eã o 4mc2 gives the total
contribution to sd, and this does not depend of the model
compound studied. The energy at disposal involved in such
excitations to the negative-energy electronic branch cannot be
higher than the value from which real electron–positron pairs
shall be produced.

On the other hand the NR paramagnetic-type of contributing
terms arise from the excitations to positive-energy electronic
states. The dependence of these terms with the scaled value of
the velocity of light is more pronounced than in the case of the
diamagnetic terms as shown in Fig. 2. The paramagnetic-like
behavior of the three nuclei studied is similar though sp(Rn)
and sp(Bi) are more influenced by relativistic effects. In the case
of Bi and I, its NR paramagnetic-like behavior becomes
diamagnetic-like within the relativistic regime.

The off-diagonal terms of the relativistic polarization propa-
gator are quite small. They are zero within the NR domain. They
do not contain matrix elements of A(0). Then there is no
leading QED correcting terms on them.

6 Conclusions and outlook

During the last few years several attempts to introduce relati-
vistic quantum methods in a QED framework were published.
One of the main difficulties is related to merging electron
correlation and QED effects on the same theoretical framework.

The path integral formalism was developed long time ago as
an alternative to the wave function based formalism. Both are
completely equivalent though the first one is mostly applied by
the quantum field community of physicist, and the second
one is more traditionaly applied by quantum chemist and
molecular physicist. Polarization propagators are in between
of both communities. Calculations of atomic and molecular
response properties with polarization propagators at second-
order level of approach, SOPPA, are among the most reliable.
They are still not widely applied by the quantum chemist by
perhaps historical reasons.

We have shown in this article the sound formal origin of
polarization propagators. This formalism was developed in the
early ’70s within the NR domain, and then extended to the
relativistic regime 20 years ago. From now on QED effects can
naturally be introduced in polarization propagators and also,
the quantum field framework arise as its natural framework. Its
derivation from an effective generating functional would have
broad applications in the field of many-body systems.

The generalization of polarization propagators to the relati-
vistic framework (right now implemented at first-order or RPA)
gave new insights on the understanding of the physical origin
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of magnetic molecular properties. Diamagnetic and paramagnetic
contributions, which arise from completely different electronic
mechanisms within the NR regime are now unified. They are
produced by the same mechanism which is still not completely
understood. One of the reasons for this is our ‘‘NR way of
thinking’’. It is hardly seen how to grasp physical insights on
magnetic properties without going down from 4-component to
2-component formalism. As an example, in a proper relativistic
framework the spin is not any longer a good quantum number,
so spin–orbit effects cannot be used to explain any physical
situation within the full relativistic formalism.

The path integral formalism is the natural quantum
language that gives solid grounds to derive polarization propa-
gators. We have shown here how to do it and what have
we learned doing it: there is a rule to write propagators within
the path integral formalism as a representation. One can
work out generating functionals from which to obtain double-
time Green functions or polarization propagators. The physical
insight that is intrinsic to the path integral formulation of
quantum mechanics is nicely applied in our propagators.

When a given atomic or molecular system is perturbed by an
external perturbation, its transmission to the whole quantum
system will consider the whole branch of excitations allowed to
do so. There will be several perturbative propagation pathways.
At consistent first-order they are defined by excitations which
contain two occupied atomic or molecular orbitals and two
unoccupied ones. When both occupied orbitals are equal, and
both unoccupied orbitals are also equal, they define the diag-
onal matrix elements of the principal propagator. Such ele-
ments are the largest, so they will give the main propagation
pathways. In this context QED effects can be naturally intro-
duced. We suggested here an ansatz as a first step in this
direction. Next steps should include QED on the perturbators.
What appears as the most important finding is the treatment of
QED and electron correlation on the same and powerful
formalism.

Within the relativistic regime new operators shall replace
the spin-adapted tensor operators. They are the well-known
Kramer’s operators that span a new basis. When the matrices of
the principal propagator are expressed in this last tensor basis,
they become the NR spin-adapted matrices, when c - N. This
finding gives strong support on what the Kramers operators
mean, and also on the physical information that the principal
propagator contain at any regime.

We have uncovered why polarization propagators are
defined with exactly the same formal expressions within both
regimes, relativistic and non-relativistic: it is due to its founda-
tions on the path integral formalism. From this new theoretical
framework it would be possible to find out new roads for
including QED and electron correlation on atomic and mole-
cular properties.

After several decades of continuous developments, the
beauty and fruitfulness of polarization propagators are the
source for always going one step further in our yet unfinished
program. It may be that this last step becomes in one of the
most influential for the near future.
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10 C. van Wüllen, Theor. Chem. Acc., 2012, 131, 1082.
11 D. Peng and M. Reiher, Theor. Chem. Acc., 2012, 131, 1081.
12 W. Kutzelnigg, Chem. Phys., 2012, 395, 16.
13 J. Sucher, Phys. Rev. A: At., Mol., Opt. Phys., 1980, 22, 348.
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J. Chem. Phys., 2009, 130, 084102.
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